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Abstract— One of the hallmarks of the performance, versatility,
and robustness of biological motor control is the ability to adapt
the impedance of the overall biomechanical system to different
task requirements and stochastic disturbances. A transfer of this
principle to robotics is desirable, for instance to enable robots
to work robustly and safely in everyday human environments. It
is, however, not trivial to derive variable impedance controllers
for practical high DOF robotic tasks. In this contribution, we ac-
complish such gain scheduling with a reinforcement learning ap-
proach algorithm, PI2 (Policy Improvement with Path Integrals).
PI2 is a model-free, sampling based learning method derived from
first principles of optimal control. The PI2 algorithm requires no
tuning of algorithmic parameters besides the exploration noise.
The designer can thus fully focus on cost function design to
specify the task. From the viewpoint of robotics, a particular
useful property of PI2 is that it can scale to problems of many
DOFs, so that RL on real robotic systems becomes feasible. We
sketch the PI2 algorithm and its theoretical properties, and how
it is applied to gain scheduling. We evaluate our approach by
presenting results on two different simulated robotic systems, a
3-DOF Phantom Premium Robot and a 6-DOF Kuka Lightweight
Robot. We investigate tasks where the optimal strategy requires
both tuning of the impedance of the end-effector, and tuning
of a reference trajectory. The results show that we can use
path integral based RL not only for planning but also to derive
variable gain feedback controllers in realistic scenarios. Thus,
the power of variable impedance control is made available to a
wide variety of robotic systems and practical applications.

I. INTRODUCTION

Biological motor systems excel in terms of versatility,

performance, and robustness in environments that are highly

dynamic, often unpredictable, and partially stochastic. In con-

trast to classical robotics, mostly characterized by high gain

negative error feedback control, biological systems derive

some of their superiority from low gain compliant control

with variable and task dependent impedance. If we adapt

this concept of adaptive impedance for PD negative feedback

control, this translates into time varying proportional and

derivative gains, also known as gain scheduling. Finding the

appropriate gain schedule for a given task is, however, a hard

problem.

One possibility to overcome such problems is Reinforce-

ment Learning (RL). The idea of RL is that, given only a

reward function, the learning algorithm finds strategies that

yield high reward through trial and error. As a special and

important feature, RL accomplishes such optimal performance

without knowledge of the models of the motor system and/or

the environment. However, so far, RL does not scale well to

high-dimensional continuous state-action control problems.

Closely related to RL is optimal control theory, where

gain scheduling is a natural part of many optimal control

algorithms. However, optimal control requires model-based

derivations, such that it is frequently not applicable to com-

plex robotic systems and environments, where models are

unknown.

In this paper, we present a novel RL algorithm that does

scale to complex robotic systems, and that accomplishes gain

scheduling in combination with optimizing other performance

criteria. Evaluations on two simulated robotic systems demon-

strate the effectiveness of our approach. In the following

section, we will first motivate variable impedance control.

Then, we sketch our novel RL algorithms, called PI2, and

its applicability to learning gain scheduling. In the fourth

section, we will present evaluation results on a 3 DOF and a

6 DOF robotic arm, where the task requires the robot to learn

both a reference trajectory and the appropriate time varying

impedance. We conclude with a review of related work and

discussions of future directions.

II. VARIABLE IMPEDANCE CONTROL

The classical approach to robot control is negative feedback

control with high proportional-derivative (PD) gains. This type

of control is straightforward to implement, robust towards

modeling uncertainties, and computationally cheap. Unfortu-

nately, high gain control is not ideal for many tasks involving

interaction with the environment, e.g. force control tasks or

locomotion. In contrast, impedance control [5] seeks to realize

a specific impedance of the robot, either in end-effector or joint

space. The issue of specifying the target impedance, however,

is not completely addressed as of yet. While for simple

factory tasks, where the properties of the task and environment

are know a priori, suitable impedance characteristics may be

derivable, it is usually not easy to understand how impedance

control is applied to more complex tasks such as a walking

robot over difficult terrain or the manipulation of objects in

daily life (e.g. pillows, hammers, cans, etc.). An additional

benefit of variable impedance behavior in a robot comes from

the added active safety due to soft “giving in”, both for the

robot and its environment.

In the following we consider robots with torque controlled

joints. The motor commands u are calculated via a PD control



law with feedforward control term uff :

u = −KP (q − qd) − KD(q̇ − q̇d) + uff (1)

where KP , KD are the positive definite position and velocity

gain matrices, q, q̇ are the joint positions and velocities, and

qd, q̇d are the desired joint positions and velocities. The

feedforward control term may come, for instance, from an

inverse dynamics control component, or a computed torque

control component [15]. Thus, the impedance of a joint is

parameterized by the choice of the gains KP (“stiffness”) and

KD (“damping”).

For many applications, the joint space impedance is, how-

ever, of secondary interest. Most often, regulating impedance

matters the most at certain points that contact with the envi-

ronment, e.g., the end-effectors of the robot. We therefore need

to assess the impedance at these points of contacts rather than

the joints. Joint space impedance is computed from the desired

task space impedance KP,x,KD,x by help of the Jacobian J

of the forward kinematics of the robot as follows [15]:

KP,q = JTKP,x J and KD,q = JT KD,x J (2)

Here we assume that the geometric stiffness due to the

change of the Jacobian is negligible in comparison to the

terms in Eq.(2). Regulating the task space impedance thus

implies regulating the joint space impedance. Furthermore,

this fundamental mathematical relationship between joint and

task space also implies that a constant task stiffness in general

means varying gains at the joint level.

In the next section we will sketch a reinforcement learning

algorithm that is applied to learning the time dependent gain

matrices.

III. REINFORCEMENT LEARNING IN HIGH DIMENSIONS –

THE PI2 ALGORITHM

Reinforcement learning algorithms can be derived from

different frameworks, e.g., dynamic programming, optimal

control, policy gradients, or probabilistic approaches. Recently,

an interesting connection between stochastic optimal control

and Monte Carlo evaluations of path integrals was made [9].

In [18] this approach is generalized, and used in the context

of model-free reinforcement learning with parameterized poli-

cies, which resulted in the PI2 algorithm. In the following, we

provide a short outline of the prerequisites and the develop-

ment of the PI2 algorithm as needed in this paper. For more

details refer to [18].

The foundation of PI2 comes from (model-based) stochastic

optimal control for continuous time and continuous state-

action systems. We assume that the dynamics of the control

system is of the form

ẋt = f(xt, t) + G(xt) (ut + ǫt) = ft + Gt (ut + ǫt) (3)

with xt ∈ ℜn×1 denoting the state of the system, Gt =
G(xt) ∈ ℜn×p the control matrix, ft = f(xt) ∈ ℜn×1

the passive dynamics, ut ∈ ℜp×1 the control vector and

ǫt ∈ ℜp×1 Gaussian noise with variance Σǫ. Many robotic

systems fall into this class of control systems. For the finite

horizon problem ti : tN , we want to find control inputs uti:tN

which minimize the value function

V (xti
) = Vti

= min
uti:tN

Eτ i
[R(τ i)] (4)

where R is the finite horizon cost over a trajectory starting at

time ti in state xti
and ending at time tN

R(τ i) = φtN
+

∫ tN

ti

rt dt (5)

and where φtN
= φ(xtN

) is a terminal reward at time tN .

rt denotes the immediate reward at time t. τ i are trajectory

pieces starting at xti
and ending at time tN .

As immediate reward we consider

rt = r(xt,ut, t) = qt +
1

2
uT

t Rut (6)

where qt = q(xt, t) is an arbitrary state-dependent reward

function, and R is the positive semi-definite weight matrix

of the quadratic control cost. From stochastic optimal control

[16], it is known that the associated Hamilton Jacobi Bellman

(HJB) equation is

∂tVt = qt + (∇xVt)
T ft −

1

2
(∇xVt)

T GtR
−1GT

t (∇xVt) (7)

+
1

2
trace

(

(∇xxVt)GtΣǫG
T
t

)

The corresponding optimal control is a function of the state

and it is given by the equation:

u(xti
) = uti

= −R−1GT
ti

(∇xti
Vti

) (8)

We are leaving the standard development of this optimal

control problem by transforming the HJB equations with the

substitution Vt = −λ log Ψt and by introducing a simplifica-

tion λR−1 = Σǫ. In this way, the transformed HJB equation

becomes a linear 2nd order partial differential equation. Due

to the Feynman-Kac theorem [13, 25], the solution for the

exponentially transformed value function becomes

Ψti
= lim

dt→0

∫

p (τ i|xi) exp



−
1

λ



φtN
+

N−1
∑

j=0

qtj
dt







dτ i

(9)

Thus, we have transformed our stochastic optimal control

problem into an approximation problem of a path integral.

As detailed in [18], it is not necessary to compute the value

function explicitly, but rather it is possible to derive the optimal

controls directly:

uti
=

∫

P (τ i)u (τ i) dτ i (10)

u(τ i) = R−1Gti

T
(

Gti
R−1Gti

T
)−1

(Gti
ǫti

− bti
)

where P (τ i) is the probability of a trajectory τ i, and bti
is

a more complex expression, beyond the space constraints of

this paper. The important conclusion is that it is possible to

evaluate Eq. (10) from Monte Carlo roll-outs of the control

system, i.e., our optimal control problem can be solved as an

estimation problem.



A. The PI2 Algorithm

The PI2 algorithm is just a special case of the optimal

control solution in Eq. (10), applied to control systems with

parameterized control policy:

at = gT
t (θ + ǫt) (11)

i.e., the control command is generated from the inner product

of a parameter vector θ with a vector of basis function gt –

the noise ǫt is interpreted as user controlled exploration noise.

A particular case of a control system with parameterized

policy is the Dynamic Movement Primitives (DMP) approach

introduced by [6]:

1

τ
v̇t = ft + gT

t (θ + ǫt) (12)

1

τ
q̇d,t = vt

ft = α(β(g − qd,t) − vt)
1

τ
ṡt = −αst (13)

[gt]j =
wjst

∑p

k=1
wk

(g − q0) (14)

wj = exp
(

−0.5hj(st − cj)
2
)

(15)

The intuition of this approach is to create desired trajectories

qd,t, q̇d,t, q̈d,t = τ v̇t for a motor task out of the time evolution

of a nonlinear attractor system, where the goal g is a point

attractor and q0 the start state. The parameters θ determine

the shape of the attractor landscape, which allows to represent

almost arbitrary smooth trajectories, e.g., a tennis swing, a

reaching movement, or a complex dance movement. While

leaving the details of the DMP approach to [6], for this paper

the important ingredients of DMPs are that i) the attractor

system Eq. (12) has the same form as Eq. (3), and that ii) the

p-dimensional parameter vector can be interpreted as motor

commands as used in the path integral approach to optimal

control. Learning the optimal values for θ will thus create a

optimal reference trajectory for a given motor task. The PI2

learning algorithm applied to this scenario is summarized in

Table I. As illustrated in [18, 19], PI2 outperforms previous

RL algorithms for parameterized policy learning by at least

one order of magnitude in learning speed and also lower

final cost performance. As an additional benefit, PI2 has no

open algorithmic parameters, except for the magnitude of the

exploration noise ǫt (the parameter λ is set automatically,

cf. [18]). We would like to emphasize one more time that

PI2 does not require knowledge of the model of the control

system or the environment.

Key Innovations in PI2: In summary we list the key inno-

vations in PI2 that we believe lead to its superior performance.

These innovations make applications like the the learning of

gain schedules for high dimensional tasks possible.

• The basis of the derivation of the PI2 algorithm is the

transformation of the optimal control problem from a

constrained minimization to a maximum likelihood for-

mulation. This transformation is very critical since there

TABLE I

PSEUDOCODE OF THE PI2 ALGORITHM FOR A 1D PARAMETERIZED

POLICY.

• Given:

– An immediate cost function rt = qt + θ
T
t Rθt (cf. Eq. (5))

– A terminal cost term φtN
(cf. 5)

– A stochastic parameterized policy at = gT
t (θ+ǫt) (cf. Eqs. (11)

and (12))
– The basis function gti

from the system dynamics (cf. 14)
– The variance Σǫ of the mean-zero noise ǫt

– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:

– Create K roll-outs of the system from the same start state x0

using stochastic parameters θ + ǫt at every time step
– For all K roll-outs, compute:

∗ P
(

τi,k

)

= e
−

1
λ

S(τi,k)

∑

K

k=1
[e
−

1
λ

S(τi,k)
]

∗ S(τi,k) = φtN ,k +
∑N−1

j=i
qtj ,k + 1

2

∑N−1

j=i+1
(θ +

Mtj ,kǫtj,k)T R(θ + Mtj,kǫtj ,k)

∗ Mtj ,k =
R−1gtj ,k gT

tj,k

gT
tj,k

R−1gtj ,k

– For all i time steps, compute:

∗ δθti
=

∑K

k=1

[

P
(

τi,k

)

Mti,k ǫti,k

]

– Compute [δθ]j =

∑

N−1

i=0
(N−i) wj,ti

[δθti
]j

∑

N−1

i=0
wj,ti

(N−i)

– Update θ← θ + δθ
– Create one noiseless roll-out to check the trajectory cost R =

φtN
+

∑N−1

i=0
rti

. In case the noise cannot be turned off, i.e., a
stochastic system, multiple roll-outs need to be averaged.

is no need to calculate a gradient that is usually sensitive

to noise and large derivatives in the value function.

• Paths with higher cost have lower probability. A clear in-

tuition that has also rigorous mathematical representation

through the exponentiation of the value function. This

transformation is necessary for the linearization of HJB

into the Chapman-Kolmogorov PDE.

• With PI2 the optimal control problem is solved with

the forward propagation of dynamics. Thus no backward

propagation of approximations of the value function is

required. This is a very important characteristic of PI2

that allows for sampling (i.e. roll-out) based estimation

of the path-integral.

• For high dimensional problems, it is not possible to

sample the whole state space and that is the reason for

applying path integral control in an iterative fashion to

update the parameters of the DMPs.

• The derivation of an RL algorithm from first principles

largely eliminates the need for open parameters in the

final algorithm.

IV. VARIABLE IMPEDANCE CONTROL WITH PI2

The PI2 algorithm as introduced above seems to be solely

suited for optimizing a trajectory plan, and not directly the

controller. Here we will demonstrate that this is not the

case, and how PI2 can be used to optimize a gain schedule



simultaneously to optimizing the reference trajectory. For this

purpose, it is important to realize how Eq. (3) relates to a

complete robotics system. We assume a d DOF robot that

obeys rigid body dynamics. qv denotes the joint velocities,

and qp the joint angle positions. Every DOF has its own

reference trajectory from a DMP, which means that Eqs. (12)

are duplicated for every DOF, while Eqs. (13), (14), and (15)

are shared across all DOFs – see [6] for explanations on

how to create multi-dimensional DMPs. Thus, Eq. (3) applied

to this context, i.e. using rigid body dynamics equations,

with M,C,G the Inertia matrix, Coriolis/centripedal and and

gravity forces respectively, becomes:

q̇v = M(qp)−1 (−C(qp,qv) − G(qp) + u)

q̇p = qv (16)
1

τ
ṡt = −αst

where each element ui of the control vector u:

ui = −KP,i

(

qp
i − qp

d,i

)

− ξi

√

KP,i

(

qv
i − qv

d,i

)

+ uff,i (17)

The terms qv
d,i, q

p
d,i are the reference joint angle position and

velocity of the ith DOF and they are given by the set of

equations:

1

τ
q̇v
d,i = α(β(gi − qp

d,i) − qv
d,i + g

i,T
t (θi

ref + ǫ
i
t)

1

τ
q̇p
d,i = qv

d,i (18)

Note that in the control law in (17), we used Eq. (1) applied

to every DOF individually using a time varying gain, and

we inserted the common practice that the damping gain Ki
D

is written as the square root of the proportional gain Ki
P

with a user determined multiplier ξi. A critically important

result of [18] is that for the application of PI2 only those

differential equations in Eq. (16) matter that have learnable

parameter θ
i. Moreover, the optimization of these parameters

is accomplished by optimizing the parameter vector of each

differential equation independently (as shown in Table I),

despite that the DOFs are coupled through the cost function.

For this reason, PI2 operates in a model free mode, as only

one of the DMP differential equation per DOF is required, and

all other equations, including the rigid body dynamics model,

drop out.

For variable stiffness control, we exploit these insights and

add one more differential equation per DOF in Eq. (16):

K̇P,i = αK

(

g
i,T
t,K(θi

K + ǫ
i
K,t) − KP,i

)

(19)

[gt,K ]
j

=
wj

∑p

k=1
wk

(20)

This equation models the time course of the position gains,

coupled to Eq. (15) of the DMP. Thus, KP,i is represented

by a basis function representation linear with respect to the

learning parameter θ
i
K , and these parameter are learned with

the PI2 algorithm following Table I. We will assume that the

Fig. 1. 3-DOF Phantom simulation in SL.

time constant 1

αK
is so small, that for all practical purposes we

can assume that KP,i = g
i,T
t,K(θi

K + ǫ
i
K,t) holds at all times.

Essentially equations 16,17,18 and 20 are incorporated in

one stochastic dynamical system of the form of Eq. (3). In

conclusion, we achieved a novel formulation of learning both

the reference trajectory and the gain schedule for a multi-

dimensional robotic system with model-free reinforcement

learning, using the PI2 algorithm and its theoretical properties

as foundation of our derivations.

V. RESULTS

We will now present results of applying the outlined al-

gorithms to two simulated robot arms with 3 and 6 DOFs,

respectively. For both robots, the immediate reward at time

step t is given as:

rt = Wgain

∑

i

Ki
P,t + Wacc||ẍ|| + WsubgoalC(t) (21)

Here,
∑

i Ki
P,t is the sum over the proportional gains over

all joints. The reasoning behind penalizing the gains is that low

gains lead to several desirable properties of the system such

as compliant behavior (safety and/or robustness [2]), lowered

energy consumption, and less wear and tear. The term ||ẍ||
is the magnitude of the accelerations of the end-effector. This

quantity is penalized to avoid high-jerk end-effector motion.

This penalty is low in comparison to the gain penalty.

The robot’s primary task is to pass through an intermedi-

ate goal, either in joint space or end-effector space – such

scenarios occur in tasks like playing tennis or table tennis.

The component of the cost function C(t) that represents this

primary task will be described individually for each robot in

the next sections. Gains and accelerations are penalized at each

time step, but C(t) only leads to a cost at specific time steps

along the trajectory.

For both robots, the cost weights are Wsubgoal = 2000,

Wgain = 1/N , Wacc = 1/N . Dividing the weights by the

number of time steps N is convenient, as it makes the weights

independent of the duration of a movement.

A. Robot 1: 3-DOF Phantom

The Phantom Premium 1.5 Robot is a 3 DOF, two link arm.

It has two rotational degrees of freedom at the base and one in



Fig. 2. Joint trajectories and gain schedules of the Phantom robot before learning (thin) and after 100 updates (thick). Round markers indicate intermediate
subgoals.

the arm. We use a physically realistic simulation of this robot

generated in SL [14], as depicted in Fig. 1.

The task for this robot is intentionally simple and aimed at

demonstrating the ability to tune task relevant gains in joint

space with straightforward and easy to interpret data.

The duration of the movement is 2.0s, which corresponds

to 1000 time steps at 500Hz servo rate. The intermediate goals

for this robot are set as follows:

C(t) = δ(t − 0.4) · | qSR(t) + 0.2 | + (22)

δ(t − 0.8) · | qSFE(t) − 0.4 | +

δ(t − 1.2) · | qEB(t) − 1.5 |

This penalizes joint SR for not having an angle qSR = −0.2
at time t = 0.4s. Joints SFE and EB are also required to go

through (different) intermediate angles at times 0.8s and 1.2s
respectively.

The initial parameters θ
i for the reference trajectory are

determined by training the DMPs with a minimum jerk

trajectory [26] in joint space from qt=0.0 = [0.0 0.3 2.0]T

to qt=2.0 = [−0.6 0.8 1.4]T . The function approximator for

the proportional gains of the 3 joints is initialized to return

a constant gain of 6.0Nm/rad. The initial trajectories are

depicted as thin lines in Fig. 2, where the angles and gains

of the three joints are plotted against time. Since the task of

PI2 is to optimize both trajectories and gains with respect to

the cost function, this leads to a 6-D RL problem. The robot

executes 100 parameter updates, with 4 noisy exploration trials

per update. After each update, we perform one noise-less test

trial for evaluation purposes.

Fig. 3 depicts the learning curve for the phantom robot

(left), which is the overall cost of the noise-less test trial after

each parameter update. The joint space trajectory and gain

scheduling after 100 updates are depicted as thick solid lines

in Fig. 2.

Fig. 3. Learning curve for the phantom robot.

From these graphs, we draw the following conclusions:

• PI2 has adapted the initial minimum jerk trajectories such

that they fulfill the task and pass through the desired joint

angles at the specified times with only small error. These

intermediate goals are represented by the circles on the

graphs. The remaining error is a result of the trade-off

between the different factors of the cost function (i.e.

penalty for distance to goal vs. penalty for high gains).

• Because the magnitude of gains is penalized in general,

they are low when the task allows it. After t = 1.6s,

all gains drop to the minimum value1, because accurate

tracking is no longer required to fulfill the goal. Once

the task is completed, the robot becomes maximally

compliant, as one would wish it to be.

• When the robot is required to pass through the inter-

mediate targets, it needs better tracking, and therefore

higher gains. Therefore, the peaks of the gains correspond

roughly to the times where the joint is required to pass

through an intermediate point.

1We bound the gains between pre-specified maximum and minimum values.
Too high gains would generate oscillations and can lead to instabilities of the
robot, and too low gains lead to poor tracking such that the robot frequently
runs into the joint limits.



Fig. 4. End-effector trajectories of the Kuka robot before learning (thin), and after 30 (dashed) and 100 updates (thick).

Fig. 5. Learning curve for the Kuka robot.

• Due to nonlinear effects, e.g., Coriolis and centripedal

forces, the gain schedule shows more complex temporal

behavior as one would initially assume from specifying

three different joint space targets at three different times.

In summary, we achieved the objective of variable

impedance control: the robot is compliant when possible, but

has a higher impedance when the task demands it.

B. Robot 2: 6-DOF Kuka robot

Next we show a similar task on a 6 DOF arm, a Kuka Light-

Weight Arm. This example illustrates that our approach scales

well to higher-dimensional systems, and also that appropriate

gains schedules are learned when intermediate targets are

chosen in end-effector space instead of joint space.

The duration of the movement is 1.0s, which corresponds

to 500 time steps. This time, the intermediate goal is for the

end-effector x to pass through [ 0.7 0.3 0.1]T at time t = 0.5s:

C(t) = δ(t − 0.5)| x − [ 0.7 0.3 0.1]T | (23)

The six joint trajectories are again initialized as minimum

jerk trajectories. As before, the resulting initial trajectory

is plotted as a thin line in Fig. 4. The initial gains are

set to a constant [60, 60, 60, 60, 25, 6]T . Given these initial

conditions, finding the parameter vectors for DMPs and gains

that minimizes the cost function leads to a 12-D RL problem.

We again perform 100 parameter updates, with 4 exploration

trials per update.

The learning curve for this problem is depicted in Fig. 5.

The trajectory of the end-effector before learning and after 30

and 100 updates is depicted in Fig. 4. The intermediate goal

at t = 0.5 is visualized by circles. Finally, Fig. 6 shows the

gain schedules before learning and after 30 and 100 updates

for the 6 joints of the Kuka robot.

From these graphs, we draw the following conclusions:

• PI2 has adapted joint trajectories such that the end-

effector passes through the intermediate subgoal at the

right time. It learns to do so after only 30 updates

(Figure 5).

• After 100 updates the peaks of most gains occur just

before the end-effector passes through the intermediate

goal (Figure 6), and in many cases decrease to the

minimum gain directly afterwards. As with the phantom

robot we observe high impedance when the task requires

accuracy, and more compliance when the task is relatively

unconstrained.

• The second joint (GA2) has the most work to perform, as

it must support the weight of all the more distal links. Its

gains are by far the highest, especially at the intermediate

goal, as any error in this DOF will lead to a large end-

effector error.

• The learning has two phases. In the first phase (plotted

as dashed), the robot is learning to make the end-effector

pass through the intermediate goal. At this point, the basic

shape of the gain scheduling has been determined. In the

second phase, PI2 fine tunes the gains, and lowers them

as much as the task permits.

VI. RELATED WORK

In optimal control and model based RL, Differential Dy-

namic Programming (DDP) [7] has been one of the most estab-

lished and used frameworks for finite horizon optimal control

problems. In DDP, both state space dynamics and cost function

are approximated up to the second order. The assumption of

stabilizability and detectability for the local approximation of

the dynamics are necessary for the convergence of DDP. The

resulting state space trajectory is locally optimal while the cor-

responding control policy consists of open loop feedforward

command and closed loop gains relative to a nominal and

optimal final trajectory. This characteristic allows the use of

DDP for both planning and control gain scheduling problems.

In [4, 24] DDP was extended to incorporate constrains in

state and controls. In [10] the authors suggest computational



Fig. 6. Gain schedules of the six joints of the Kuka robot before learning
(thin) and after 30 (dashed) and 100 updates (thick).

improvements to constrained DDP and apply the proposed

algorithm to a low dimensional planning problem.

An example of a DDP application to robotics is in [12]. In

this work, a min-max or Differential Game Theory approach to

optimal control is proposed. There is a strong link between ro-

bust control frequency design analysis such as H∞ control and

the framework of Differential Game Theory [1]. Essentially

the min-max DDP results in robust feedback control policies

with respect to model uncertainty and unknown dynamics.

Although, in theory, min-max DDP should resolve the issue

of model uncertainty, it can lead to overly conservative control

policies. The conservatism results from the need to guarantee

that the game theoretic approach will be always stabilizable,

i.e. making sure that the stabilizing controller wins. For linear

and time invariant systems, such guarantee is feasible through

γ-iteration [23]. However, for nonlinear systems providing this

guarantee is not trivial.

The work on Receding Horizon DDP [17] provided an

alternative and rather efficient way of computing local op-

timal feedback controls. Nevertheless, all the computations

of optimal trajectories and control take place off-line and

the model predictive component is only due to the fact that

the final target state of the optimal control problem varies.

Recent work on LQR-trees uses a simpler variation of DDP,

the iterative Linear Quadratic Regulator (iLQR) [11], which is

based on linear approximations of the state space dynamics,

in combination with tools from Nonlinear Robust Control

theory for region of attraction analysis. Given the local optimal

feedback control policies, the sums of squares optimization

scheme is used to quantify the size of of the basin of attraction,

and provides so-called control funnels. These funnels improve

sampling since they quantize the state space into attractor

regions placed along the trajectories towards the target state.

This is a model based approach and inherits all the problems of

model based approaches to optimal control. In addition, even

though sampling is improved, it is still an issue how LQR

trees scale in high dimensional dynamical systems.

The path integral formalism for optimal control was intro-

duced in [8, 9]. In this work, the role of noise in symme-

try breaking phenomena was investigated in the context of

stochastic optimal control. In [22], the path integral formal-

ism is extended for stochastic optimal control of multi-agent

systems, which is not unlike our multi DOF control systems.

Recent work on stochastic optimal control by [21, 20, 3]

shows that for a class of discrete stochastic optimal control

problems, the Bellman equation can be written as the KL di-

vergence between the probability distribution of the controlled

and uncontrolled dynamics. Furthermore, it is shown that the

class of discrete KL divergence control problem is equivalent

to the continuous stochastic optimal control formalism with

quadratic cost control function and under the presence of

Gaussian noise. In all this aforementioned work, both in the

path integral formalism as well as in KL divergence control,

the class of stochastic dynamical systems under consideration

is rather restrictive since the control transition matrix is

state independent. Moreover, the connection to direct policy

learning in RL and model-free learning was not made in any

of the previous projects. In [3], the stochastic optimal control

problem is investigated for discrete state-action spaces, and

therefore it is treated as Markov Decision Process (MDP).

To apply our PI2 algorithm, we do not discretize the state

space and we do not treat the problem as an MDP. Instead

we work in continuous state-action spaces which are suitable

for performing RL in high dimensional robotic systems. To

the best of our knowledge, our results present RL in one

of the most high dimensional continuous state action spaces.

In our derivations, the probabilistic interpretation of control

comes directly from the Feynman-Kac Lemma. Thus we do

not have to impose any artificial pseudo-probability treatment

of the cost as in [3]. In addition, for continuous state-action

spaces, we do not have to learn the value function as it is

suggested in [3] via Z-learning. Instead we directly obtain the

controls based on our generalization of optimal controls. In the

previous work, the problem of how to sample trajectories is not



addressed. Sampling is performed with the hope to cover all

the relevant state space. We follow a rather different approach

by incremental updating, which allows us to address robotic

learning problems of the complexity and dimensionality of

complete humanoid robots.

VII. DISCUSSION

We presented a model-free reinforcement learning approach

that can learn variable impedance control for robotic systems.

Our approach is derived from stochastic optimal control with

path integrals, a relatively new development that transforms

optimal control problems into estimation problems. In partic-

ular, PI2 goes beyond the original ideas of optimal control with

path integrals by realizing the applicability to optimal control

with parameterized policies and model-free scenarios.

The mathematical structure of the PI2 algorithm makes it

suitable to optimize simultaneously both reference trajectories

and gain schedules. This is similar to classical differential dy-

namic programming (DDP) methods, but completely removes

the requirements of DDP that the model of the controlled

system must be known, that the cost function has to be twice

differentiable in both state and command cost, and that the

dynamics of the control system have to be twice differentiable.

The latter constraints make it hard to apply DDP to tasks with

discrete events, as is typical in force control and locomotion.

We evaluated our approach on two simulated robot systems,

which posed up to 12 dimensional learning problems in con-

tinuous state-action spaces. The goal was to learn compliant

control while fulfilling kinematic task constraints, like passing

through an intermediate target. The evaluations demonstrated

that the algorithm behaves as expected: it increases gains when

needed, but tries to maintain low gain control otherwise. The

optimal reference trajectory always fulfilled the task goal.

Learning speed was rather fast, i.e., within at most a few

hundred trials, the task objective was accomplished. From

a machine learning point of view, this performance of a

reinforcement learning algorithm is very fast.

The PI2 algorithms inherits the properties of all trajectory-

based learning algorithms in that it only finds locally optimal

solutions. For high dimensional robotic system, this is unfortu-

nately all one can hope for, as exploring the entire state-action

space in search for a globally optimal solution is impossible.

Future work aims at applying these methods to actual

robots for mobile manipulation and locomotion controllers.

We believe that our methods are a major step towards realizing

compliant autonomous robots that operate robustly in dynamic,

stochastic environments, without harming other beings or

themselves.
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