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Abstract— This paper presents an optimal shape trajectory
planner for shape-accelerated underactuated balancing systems,
which are destabilized by gravitational forces. These systems
have unactuated shape variables and fully actuated external
variables. They also have the same number of actuated and
unactuated degrees of freedom. Their equations of motion result
in nonholonomic acceleration/dynamic constraints, which relate
the acceleration of external variables to the position, velocity and
acceleration of shape variables. This paper describes a procedure
to use the dynamic constraints for planning shape trajectories,
which when tracked will result in optimal tracking of desired
external configuration trajectories. Examples of planned optimal
shape trajectories for the 3D ballbot system, which is a 3D
omnidirectional wheeled inverted pendulum, are also presented.

I. I NTRODUCTION

Underactuated mechanical systems are systems with fewer
independent control inputs than the degrees of freedom [1].
Examples of underactuated systems can be found in robotic,
aerospace, marine and locomotive applications. These systems
are underactuated due to reasons like higher-order dynam-
ics (e.g., spacecraft, helicopter, underwater vehicles, flexible
robots), actuator failures (e.g., a failed manipulator joint,
aircraft engine failure), and need for dynamic locomotion
platforms (e.g., Segway [2], ballbots [3]). A set of intention-
ally designed underactuated systems used in controls research
include Acrobot, Pendubot, Cart-Pole, Beam-Ball and Rotating
Pendulum [4].

In robotics, balancing (dynamically stable) mobile robots
form a special class of underactuated systems. They include
wheeled robots like Segway [2], ballbots [3] and legged robots
like BigDog [5], MABEL [6]. Balancing robots will play a
vital role in realizing the dream of placing robot workers in
human environments. Unlike statically stable mobile robots,
balancing (dynamically stable) mobile robots can: (i) be tall
and skinny with high centers of gravity, (ii) have smaller
footprints, and (iii) accelerate or decelerate quickly [3]. They
can also be very effective mobile manipulators [7] with
the ability to maintain postural stability, generate forces on
external objects and withstand greater impact forces. These
characteristics make them ideal for navigation and operation
in cluttered human environments. Two-wheeled balancing

robots, like Segway, have kinematic constraints restricting
their direction of motion, whereas, single spherical-wheeled
balancing robots, like ballbots, have omnidirectional motion
that make them more suitable for operation in constrained
spaces. In this paper, such omnidirectional balancing systems
are referred to asshape-accelerated underactuated balancing
systems(described in Sec. II-B).

An interesting and troubling factor in control and plan-
ning of such underactuated systems is the constraint on
their dynamics by virtue of underactuation. These constraints
are second-order nonholonomic [8] constraints,i.e., non-
integrable acceleration/dynamic constraints. These constraints
restrict the family of trajectories that the configurationscan
follow. In control of balancing underactuated systems, which
are destabilized by gravitational forces, it is important to
maintain balance. Maintaining balance makes it difficult to
accurately track any desired configuration trajectories.

In this paper, we propose a planning procedure to ensure
good approximate tracking of desired trajectories for such
underactuated balancing systems. For example, consider a
3D omnidirectional wheeled inverted pendulum robot like the
ballbot [9]. We would like it to track some path on the floor,
which could be a desired path from some global motion
planning algorithm. The question to be answered here is:how
can the wheel/ball be moved along this path while balancing
the pendulum?The answer to this question is not trivial
because of the dynamic coupling between the motion of the
ball and the pendulum. Now, consider a balancing controller,
as in [9], which ensures accurate tracking of desired lean
trajectories for the pendulum, then the question, stated above,
can be reformulated as:how can the lean trajectories of the
pendulum be chosen so that the ball moves along the desired
path?This is the question that is addressed in this paper.

In order to answer the above question, we should look
into the nonlinear dynamics of the system. Given an accurate
model, there have been a variety of controllers designed
in nonlinear control literature, which use partial feedback
linearization [10], to ensure approximate output tracking[11],
[12]. But in real robots, we have to deal with model un-
certainties, higher-order dynamics, nonlinear friction effects



and disturbances. Controllers that cancel out nonlinear terms,
assuming their accurate knowledge, can fail miserably on
real robots. Though the model in-hand may not be accurate,
it can often provide some useful information such as the
dynamic constraints. In [13], an offline trajectory planning
procedure that produces a class of parametric trajectories
for the unactuated shape variables to reach static desired
configurations using the dynamic constraint was presented.
This planning procedure combined with 2-DOF control, an
inner balancing control loop and an outer tracking control loop
[9], proved to be very successful on the real robot. But, there
are a few drawbacks with this approach: (i) it was not easily
generalizable to arbitrary motions; (ii) it was computationally
expensive; and (iii) it was an offline procedure.

In this paper, we present a generalized approach to generate
shape trajectories (e.g., lean angle trajectories in the ballbot),
exploiting the structure of dynamic constraints for shape-
accelerated underactuated balancing systems, which when
tracked will result in optimal tracking of the desired motion.
The advantages of this planning procedure are: (i) it can track
any desired trajectories satisfying certain conditions (discussed
in Sec. III-B); (ii) it is computationally less expensive; and
(iii) it is fast and can be performed online on the real robot.

This paper is organized as follows: Sec. II presents the
properties of shape-accelerated underactuated balancingsys-
tems; Sec. III discusses the special structure of the dynamic
constraint for such systems and explains the shape trajectory
planning procedure that ensures optimal tracking of desired
external configuration trajectories; Sec. IV presents the results
of the optimal shape trajectory planner for a 3D ballbot model;
and finally, Sec. VI presents the conclusion.

II. U NDERACTUATED MECHANICAL SYSTEMS

The forced Euler-Lagrange equations of motion for a me-
chanical system are:

d

dt

∂L

∂q̇
−

∂L

∂q
= F (q)τ, (1)

where, q ∈ R
n is the configuration vector,L (q, q̇) =

K(q, q̇) − V (q) is the Lagrangian with kinetic energyK
and potential energyV , τ ∈ R

m is the control input and
F (q) ∈ R

n×m is the force matrix.
A mechanical system satisfying Eq. 1 is said to be an

underactuated system[1] if m < n, i.e., there are fewer
independent control inputs than configuration variables.

Eq. 1 for an underactuated system can be written in matrix
form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) = F (q)τ, (2)

where,M(q) ∈ R
n×n is the inertia matrix,C(q, q̇) ∈ R

n×n is
the matrix of Coriolis and centrifugal terms andG(q) ∈ R

n×1

is the vector of gravitational forces.

A. External and Shape Variables

The configuration variables that appear in the inertia matrix
are calledshape variables(qs), whereas, the configuration

variables that do not appear in the inertia matrix are called
external variables(qx), i.e., ∂M(q)/∂qx = 0.

Since the inertia matrix is independent of the external
variables, the kinetic energyK(q, q̇) = 1

2 q̇
TM(q)q̇ is also

independent of the external variables,i.e., ∂K(q, q̇)/∂qx = 0.
In this case, the Lagrangian system is said to have kinetic
symmetry [4].

Eq. 2 can be re-written as:

[

Mxx(qs) Mxs(qs)
Msx(qs) Mss(qs)

] [

q̈x
q̈s

]

+

[

hx(q, q̇)
hs(q, q̇)

]

=

[

Fx(q)
Fs(q)

]

τ, (3)

where,h(q, q̇) = [hx(q, q̇), hs(q, q̇)]
T is:

[

hx(q, q̇)
hs(q, q̇)

]

=

[

Cxx(q, q̇) Cxs(q, q̇)
Csx(q, q̇) Css(q, q̇)

] [

q̇x
q̇s

]

+

[

Gx(q)
Gs(q)

]

. (4)

The underactuated systems can be classified based on
whether the shape variablesqs are fully actuated, partially
actuated or unactuated and based on the presence or lack of
input couplings in the force matrixF (q) [4].

B. Shape-Accelerated Underactuated Balancing Systems

In this paper, we are interested in shape-accelerated un-
deractuated balancing systems, which form a special class of
underactuated systems satisfying the following properties:

(i) The shape variables are unactuated and there is no input
coupling,e.g., Fx(q) = Im andFs(q) = 0. A variety of
underactuated systems can be transformed intono input
coupling form with global change of coordinates [4].

(ii) There are equal number of actuated and unactuated
variables, i.e., dim(qx) = dim(qs) = m and hence
n = 2m.
In [4], underactuated systems satisfying properties (i)-(ii)
are referred to asClass− IIa underactuated systems.

(iii) The potential energyV (q) is independent ofqx, i.e.,
∂V (q)/∂qx = 0. This implies thatG(q) = ∂V (q)/∂q is
also independent ofqx. Since both kinetic and potential
energies are independent ofqx, the LagrangianL is also
independent ofqx, i.e., L is symmetric w.r.t.qx.

(iv) Mxx(qs) is constant,i.e., ∂Mxx(qs)/∂qs = 0.
(v) Msx(qs) has differentially symmetric rows,i.e.,

∂Msx(qs)/∂q
i
s = ∂M iT

sx(qs)/∂qs, where M i
sx(qs)

refers to theith row of Msx(qs).
Properties (iii)-(v) makeh(q, q̇) independent of bothqx
and q̇x.

(vi) The system has locally strong inertial coupling [1],i.e.,
rank(Msx(qs)) = n − m = m for all q in the neigh-
borhood of the origin, where origin is the unstable equi-
librium. A system satisfying the (local) strong inertial
coupling is also known asInternal/External Convertible
System[12].

(vii) ∂Gs(qs)/∂qs 6= 0 at qs = 0 and is invertible.
(viii) ∂(Msx(qs)

−1Gs(qs))/∂qs 6= 0 at qs = 0 and is invert-
ible.
The significance of properties (vi)-(viii) will be explained



in Sec. III, where they are used for the optimal shape
trajectory planner design.

(ix) rank(Mss(qs)) = m, i.e.,Mss(qs)
−1 exists.

(x) ∂(Mss(qs)
−1Gs(qs))/∂qs 6= 0 at qs = 0 and is invert-

ible.
(xi) Mss(qs)

−1Msx(qs) 6= 0 at qs = 0.
Properties (ix)-(xi) ensure that the Jacobian linearization
(A,B) of the system (Eq. 3) at origin is controllable
and its zero dynamics [10] is unstable at the origin.
According to [12], an underactuated system that satisfies
properties (ix)-(xi) is called abalance systemand in this
paper, we will refer to it as abalancing system.

The shape-accelerated underactuated balancing systems will
have equations of motion of the form:

[

Mxx Mxs(qs)
Msx(qs) Mss(qs)

] [

q̈x
q̈s

]

+

[

hx(qs, q̇s)
hs(qs, q̇s)

]

=

[

τ
0

]

, (5)

where,
[

hx(qs, q̇s)
hs(qs, q̇s)

]

=

[

0 Cxs(qs, q̇s)
0 Css(qs, q̇s)

] [

q̇x
q̇s

]

+

[

0
Gs(qs)

]

. (6)

We can see from Eq. 5 that the equations of motion of these
systems are such that any non-zero shape configuration will
result in acceleration of the external variables and in turn
acceleration of the entire system, hence the nameshape-
accelerated underactuated balancing systems.

Some examples of shape-accelerated underactuated bal-
ancing systems are planar and 3D cart-pole system with
unactuated lean angles, planar wheeled inverted pendulum
(e.g. Segway [2] in a plane) and 3D omnidirectional wheeled
inverted pendulum (e.g. the ballbot [13, 9]).

III. D YNAMIC CONSTRAINT-BASED OPTIMAL SHAPE

TRAJECTORYPLANNER

In this paper, our objective is to plan shape trajectories,
which when tracked will result in optimal tracking of desired
external configuration trajectories. The planning procedure
presented in this section exploits the special structure of
dynamic constraints of shape-accelerated underactuated bal-
ancing systems described in Sec. II-B. So, let’s first look at
the dynamic constraint, its structure and the information that
it provides.

A. Dynamic Constraint

The second set ofm equations of motion associated with
the unactuated shape variables in Eq. 5 given by

Msx(qs)q̈x +Mss(qs)q̈s + hs(qs, q̇s) = 0 (7)

can be written as:

Φ(qs, q̇s, q̈s, q̈x) = 0. (8)

Eq. 7 and Eq. 8 are calledsecond-order nonholonomic con-
straints, nonholonomic acceleration constraints, or dynamic
constraints because there exists no functionΨ such that
Ψ̈ = Φ(qs, q̇s, q̈s, q̈x). The dynamic constraint equations are
not even partially integrable,i.e., they cannot be converted

into first-order nonholonomic constraints. This is ensuredby
the fact that the gravitational vectorG(qs) is not a constant and
the inertia matrixM(qs) is dependent on the unactuated shape
variablesqs. For a detailed discussion of these conditions, refer
to [14].

Due to the properties listed in Sec. II-B, the dynamic
constraint equations for shape-accelerated underactuated bal-
ancing systems are independent of the position and velocity
of external variables. This special structure relates the ac-
celeration of external variables to the position, velocityand
acceleration of shape variables. In this section, we will attempt
at understanding this relationship.

Let’s consider the function

Φ′(qs, q̈x) = Φ(qs, 0, 0, q̈x)

= Msx(qs)q̈x + hs(qs, 0)

= Msx(qs)q̈x +Gs(qs). (9)

It follows from Eq. 8 that

Φ′(qs, q̈x) = 0. (10)

By implicit function theorem, if both∂Φ′/∂qs and∂Φ′/∂q̈x
at (qs, q̈x) = (0, 0) exist and are invertible, then there exists
an invertible mapΓ : qs → q̈x in the neighborhood of the
origin such thatΦ′(qs,Γ(qs)) = 0 andΦ′(Γ−1(q̈x), q̈x) = 0.
From Eq. 9, we get

∂Φ′

∂qs

∣

∣

∣

∣

(qs,q̈x)=(0,0)

=
∂Gs(qs)

∂qs

∣

∣

∣

∣

qs=0

, (11)

∂Φ′

∂q̈x

∣

∣

∣

∣

(qs,q̈x)=(0,0)

= Msx(qs)

∣

∣

∣

∣

qs=0

. (12)

From properties (vi) and (vii) in Sec. II-B, we can see that
the Jacobians in both Eq. 11 and Eq. 12 exist and are invertible
and hence, there exists an invertible mapΓ : qs → q̈x in the
neighborhood of the origin such thatΦ′(qs,Γ(qs)) = 0 and
Φ′(Γ−1(q̈x), q̈x) = 0. Γ can be derived directly from Eq. 9
and Eq. 10 as follows:

q̈x = −Msx(qs)
−1Gs(qs)

= Γ(qs) (13)

in the neighborhood of the origin.
Jacobian linearization of Eq. 13 w.r.t.qs at qs = 0 gives

∂q̈x
∂qs

∣

∣

∣

∣

qs=0

= −
∂(Msx(qs)

−1Gs(qs))

∂qs

∣

∣

∣

∣

qs=0

= K0
qs
. (14)

We know thatK0
qs

is invertible by property (viii) in Sec. II-B.
This implies, we have a linear mapK0

qx
= (K0

qs
)−1 such that

qs = K0
qx
q̈x, (15)

and
Φ′(K0

qx
q̈x, q̈x) = 0 (16)



in the neighborhood of the origin.
We can see thaẗqx is a constant if and only ifqs is a

constant. In order for the external configuration of the system
in Eq. 5 to have a constant desired accelerationq̈dx, the system
should stick to a constant shape configuration given byqds =
K0

qx
q̈dx.

When q̈x is not constant,̇qs and q̈s are non-zero. Let’s take
a = (qs, q̇s, q̈s) and b = q̈x and then Eq. 8 can be written as
Φ(a, b) = 0. Taking the Jacobian w.r.t.b at (a, b) = (0, 0), we
get

∂Φ(a, b)

∂b

∣

∣

∣

∣

(a,b)=(0,0)

= Msx(qs)

∣

∣

∣

∣

qs=0

(17)

From property (vi) in Sec. II-B, we can see that Eq. 17 exists
and is invertible. Hence, by implicit function theorem, there
exists a mapΓ′ : a → b such thatΦ(a,Γ′(a)) = 0. The map
Γ′ is not invertible since∂Φ(a, b)/∂a at (a, b) = (0, 0) exists
but is not invertible.

We can see that in order to track a non-constant, time-
varying q̈dx(t), there is no function that maps̈qdx(t) to
(qds (t), q̇

d
s (t), q̈

d
s (t)) such that the dynamic constraints in Eq. 8

are satisfied. In the following subsection, we propose an
optimal planner that ensures approximate tracking ofq̈dx(t).

B. Optimal Shape Trajectory Planner

In underactuated balancing systems, we are often interested
in tracking desired trajectories for the external configuration
variables without losing balance. Shape-accelerated underac-
tuated balancing systems in Sec. II-B have constraints on
the acceleration of these external variables w.r.t. the shape
variables’ position, velocity and acceleration as given below:

q̈x = −Msx(qs)
−1(Mss(qs)q̈s + hs(qs, q̇s))

= Γ′(qs, q̇s, q̈s) (18)

So, for a desired acceleration trajectory for the external
configurationq̈dx(t), we would like to plan shape configura-
tion trajectories(qps (t), q̇

p
s (t), q̈

p
s (t)), which when tracked will

result in q̈px(t) (from Eq. 18) such thaẗqpx(t) = q̈dx(t). But,
we have seen thatΓ′−1 : q̈x(t) → (qs(t), q̇s(t), q̈s(t)) that
satisfiesΦ(Γ′−1(q̈x(t)), q̈x(t)) = 0 does not exist. Hence,
we propose to find a mapΩ : q̈dx(t) → (qps (t), q̇

p
s (t), q̈

p
s (t))

such that ‖q̈px(t) − q̈dx(t)‖
2
2 is minimized. Here,q̈px(t) =

Γ′(qps (t), q̇
p
s (t), q̈

p
s (t)).

Inspired from Eq. 15, we propose to use a linear mapKqx :
q̈dx → qps such that

qps (t) = Kqx q̈
d
x(t), (19)

q̇ps (t) = Kqx

...
q d
x(t), (20)

q̈ps (t) = Kqx

....
q d

x(t). (21)

The shape trajectory planning procedure can now be formu-
lated as an optimization problem, where the elements ofKqx

are determined with the objective of minimizing the function

J = ‖q̈px(t)− q̈dx(t)‖
2
2, (22)

where, q̈px(t) = Γ′(Kqx q̈
d
x(t),Kqx

...
q d
x(t),Kqx

....
q d

x(t)). It is to
be noted that the parameter space ism2-dimensional and any
optimization algorithm that solves a nonlinear least-squares
problem can be used.

For a desired constant acceleration trajectory,Kqx = K0
qx

ensures optimality. For any generalq̈dx(t), Kqx = K0
qx

may
not necessarily ensure optimality but will act as a good initial
guess for the optimization process.

As one can see, the optimal shape trajectory planner de-
scribed above ensures thatq̈px(t) approximately tracks̈qdx(t)
but does not ensure thatqpx(t) approximately tracksqdx(t) or
q̇px(t) approximately trackṡqdx(t). This can be ensured only if
the initial conditions for the external variables are met,i.e.,
qpx(0) = qdx(0) and q̇px(0) = q̇dx(0).

Given below are the conditions to be met in order to use
the shape trajectory planner described above to trackqdx(t):

(i) qdx(t) must at least be ofclassC2, i.e., q̇dx(t) and q̈dx(t)
exist and are continuous. If̈qdx(t) does not exist then,
the planned shaped trajectoryqps (t) that is proportional
to q̈dx(t) will not exist as well.

(ii) qdx(t) is preferred to be ofclass C4, i.e., first four
derivatives exist and are continuous so as to ensure the
existence ofqps (t), q̇

p
s (t), q̈

p
s (t) that depend on them. This

condition also avoids discontinuities in the planned shape
trajectories and its first two derivatives.

(iii) Initial conditions for the external variables are met, i.e.,
qpx(0) = qdx(0) and q̇px(0) = q̇dx(0). The desired position
trajectoryqdx(t) can be tracked by approximate tracking
of q̈dx(t) only if the system starts at the correct initial
position and velocity for the external variables.

IV. EXAMPLE : 3D BALLBOT MODEL

As an example, we present here the results of the optimal
shape trajectory planner described in Sec. III-B for a 3D
ballbot model, which is a 3D omnidirectional wheeled inverted
pendulum. The ballbot (Fig. 1(a)) is modeled as a rigid
cylindrical body on top of a rigid spherical wheel/ball with
the following assumptions: (i) there is no slip between the
ball and the floor, and (ii) there is no yaw/spinning motion
for both the body and the ball,i.e., they have two degrees-of-
freedom each. It is to be noted that the results presented here
are that of simulation and are not experimental results.

The forced Euler-Lagrange equations of motion are given
by Eq. 1 with qx corresponding to the configuration of the
ball/wheel, andqs corresponding to the configuration of the
body (Euler angles). Here,qx = [θx, θy]

T andqs = [φx, φy]
T .

Planar versions of the ball and body configurations are shown
in Fig. 1(b).

The ball configurations,θx and θy, are chosen such that
the linear position of the ball/wheel (with radiusr) on the
XY ground plane is given byxw = rθx and yw = rθy. This
produces input coupling inF (q):

F (q) =









1 0
0 1
0 −1
−1 0









. (23)



r

mbody

( )b( )a

Fig. 1. (a) The ballbot balancing, (b) Planar ballbot model with ball and
body configurations shown.

By global change of coordinatesθ′x = θx − φy and θ′y =
θy + φx, the equations of motion with the new configuration
vectorq′ = [θ′x, θ

′

y, φx, φy]
T has no input coupling inF ′(q′):

F ′(q′) =









1 0
0 1
0 0
0 0









. (24)

The new forced Euler-Lagrange equations are:

M ′(q′)q̈′ + C ′(q′, q̇′)q̇′ +G′(q′) = F ′(q′)τ. (25)

It is to be noted that the underactuated system in Eq. 25
satisfies all the properties of shape-accelerated underactuated
systems and balancing systems listed in Sec. II-B. The expres-
sions forM ′, C ′, G′ are omitted here due to lack of space.

The last two equations of motion in Eq. 25 form the
dynamic constraint equations of the system and these equa-
tions are used for the optimal shape trajectory planner in
Sec. III-B. The optimization algorithm used here is Levenberg-
Marquardt algorithm (LMA), which is a widely used tool for
minimization problems in least-squares curve fitting and non-
linear programming. The dynamic equations were simulated
in MATLAB and the optimization was implemented using
MATLAB’s lsqnonlin function. Some of the planning results
are presented below.

A. Results of Optimal Shape Trajectory Planning

This section presents a variety of desiredxw(t) andyw(t)
that satisfy the conditions in Sec. III-B and the corresponding
planned optimal shape trajectories,φp

x(t) and φp
y(t), which

should be tracked to achieve them. It is important to note that
the desired trajectories,xw(t) andyw(t), are trajectories of the
center of the ball and not trajectories of the system’s center of
gravity. On a flat floor, these trajectories match the trajectories
of the ball’s contact point with the floor.

1) Straight Line Motion: Let’s start with the simplest of
trajectories that involve moving along a straight line between
static configurations,i.e., starting from rest at one point on
the floor and coming to rest at another point on the floor. The
desiredxw(t) andyw(t) are chosen to be nonic (9th degree)
polynomials int so that their first four derivatives satisfy the
boundary conditions.
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Fig. 2. Straight Line Motion - Linear XY (This figure is best viewed in
color.)

xw(t) =

9
∑

i=0

ait
i,

yw(t) =

9
∑

i=0

bit
i, (26)

where the coefficientsais and bis are determined based on
the initial and final desired configurations.
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In Fig. 2, we can see the planned XY motion approximately
tracking the desired XY motion. The planned shape trajectories
that produce such a motion are shown in Fig. 3. The trajecto-
ries for the planned XY motion are obtained from Eq. 18. The
tracking error statistics are: RMSE = 0.0147 m and Maximum
Error = 0.0238 m.
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Fig. 4. Circular Motion - Linear XY (This figure is best viewedin color.)

2) Circular Motion: Here, we would like the robot to move
along a circular path on the floor. The desiredxw(t) andyw(t)
are:

xw(t) = R sin(ωt),

yw(t) = R(1− cos(ωt)), (27)

where,R = 2 m andω = π/10 rad/s.
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Fig. 5. Circular Motion - Planned Shape Trajectories

In Fig. 4, we can see the planned XY motion approximately
tracking the desired XY motion. The planned shape trajectories
that produce such a motion are shown in Fig. 5. The trajecto-
ries for the planned XY motion are obtained from Eq. 18. It is

to be noted that the results presented here are observed only
when the appropriate initial conditions are met. The tracking
error statistics are: RMSE = 4.3x10−4 m and Maximum Error
= 5.6x10−4 m.
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Fig. 6. Figure-8 Motion - Linear XY (This figure is best viewedin color.)

3) Figure-8 Path: Here, we would like the robot to move
along a figure-8 path on the floor. The desiredxw(t) andyw(t)
are:

xw(t) = Ax sin(ωxt),

yw(t) = Ay sin(ωyt), (28)

where,Ax = 4 m, ωx = π/20 rad/s,Ay = 4 m, andωy =
π/10 rad/s.
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Fig. 7. Figure-8 Motion - Planned Shape Trajectories

In Fig. 6, we can see the planned XY motion approximately
tracking the desired XY motion. The planned shape trajectories
that produce such a motion are shown in Fig. 7. It is to be
noted that the results presented here are observed only when
the appropriate initial conditions are met. The trajectories for



the planned XY motion are obtained from Eq. 18. The tracking
error statistics are: RMSE = 0.0105 m and Maximum Error =
0.0177 m.
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Fig. 8. Join-Circle-Leave Motion - Linear XY (This figure is best viewed
in color.)

4) Join-Circle-Leave Motion:The tracking of a circle, sine
wave and figure-8 paths require that the appropriate initial
conditions are met. But in reality, we would like to start at
any random initial configuration and track a particular path
on the floor. Here, we present the result of starting from
rest, joining a circular path at a desired configuration, making
1.5 revolutions, leaving the circular path at a diametrically
opposite point and coming to rest. This motion consists of 3
different trajectories fused together. Thejoining andleaving
trajectories are nonic (9th degree) polynomials that satisfy the
initial and final configurations required to join and leave the
circular path respectively. The nonic polynomials ensure that
the first four derivatives of the fused trajectories are continuous
and not just piecewise continuous.
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Fig. 9. Join-Circle-Leave Motion - Planned Shape Trajectories

In Fig. 8, we can see the planned XY motion approximately
tracking the desired XY motion. The planned shape trajectories
that produce such a motion are shown in Fig. 9. The trajecto-
ries for the planned XY motion are obtained from Eq. 18. The
tracking error statistics are: RMSE = 0.0167 m and Maximum
Error = 0.0286 m.

B. Real-Time Planning

For all the results presented in Sec. IV-A, the optimization
tolerance values for both the residual norm and parameter
values were set to< 10−4. On a standard Intel Core-2
Duo processor, the optimization implementation in MATLAB
converges in< 1 second. This ensures that the optimal shape
trajectory planner presented in this paper can be used for real-
time planning on the robot.

V. BALANCING AND TRACKING CONTROL

The entire planning procedure presented in this paper as-
sumes that there exists a balancing controller, similar to the
one in [9], which has good shape trajectory tracking perfor-
mance. Given the balancing controller and the optimal shape
trajectory planner, we can achieve good approximate tracking
of the desired external configuration trajectories. But it is to
be noted that this tracking is open-loop and with wrong initial
conditions, we have no way to ensure approximate tracking of
the desired external configuration trajectories. Moreover, while
testing on the real robot, modeling uncertainties, unmodeled
dynamics, nonlinear friction effects and noise may prevent
good approximate tracking. Hence, we should have an external
trajectory tracking controller, similar to the one in [13],to
ensure better tracking.
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Fig. 10. Control Architecture

We propose to follow [13] in using the control architecture
shown in Fig. 10 for good approximate tracking of desired
external configuration trajectories (qdx) on the real robot. The
balancing controller tracks the desired shape trajectories (qds ),
which are a sum of planned (qps ) and compensation (qcs) shape
trajectories. The planned shape trajectories are given by the
optimal shape trajectory planner, whereas, the compensation
shape trajectories are provided by the tracking controller,
which tries to compensate for the deviation of the external
configuration trajectories from the desired ones.



In Fig. 11, we show the result of the control architecture
in Fig. 10 tracking the external configuration trajectories
corresponding to a circular motion starting with zero initial
conditions, i.e., there is no initial linear velocity in the x
direction, as in Fig. 4. We can see that the motion asymp-
totically converges to the circular motion, which shows the
effectiveness of the tracking controller in compensating for
the errors due to wrong initial conditions.
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Fig. 11. Tracking Circular Motion with Zero Initial Conditions (This figure
is best viewed in color.)

The contribution of this paper is the optimal shape trajectory
planner, whereas, the balancing and tracking controller designs
are borrowed from our previous work [13]. In [13], we have
shown that the control architecture in Fig. 10 is capable of
successfully tracking straight line motions on the real robot.
Based on these previous successful experimental results, we
strongly believe that this control architecture will enable the
real robot to track the motions presented in Sec. IV-A. It
is to be noted that the planner in [13] was designed based
on our intuition of how the robot should lean in order to
achieve a straight line motion, whereas, in this paper, we
have presented a generalized shape trajectory planner thatwill
enable the ballbot to approximately track any desired external
configuration trajectory.

VI. CONCLUSION

An algorithm to plan optimal shape trajectories for shape-
accelerated underactuated balancing systems was presented.
These shape trajectories, which when tracked will result in
approximate tracking of the desired external configuration
trajectories subject to conditions on differentiability of the
desired trajectory and correct initial conditions. The planning
procedure presented assumes that there exists a balancing
controller that can accurately track desired shape trajectories.
A feedback trajectory tracking controller used in combination

with the optimal shape planner can ensure better tracking when
the initial conditions are not met.

In the 3D ballbot example, we have seen that given
(xd

w(t), y
d
w(t)) ∈ C4, we can use the optimal shape trajectory

planner to obtain the desired shape trajectories, which when
tracked will result in the desired motion. In a general motion
planning setting, any standard path planning algorithm likeA∗

can be used to obtain a desired(xw(s), yw(s)) path. In order to
use the optimal shape trajectory planner discussed in this paper
as a tool for overall motion planning, we have to parametrize
this path in time. We propose that usingnonic splines, which
ensure that the first four derivatives for the overall trajectory
will be continuous throughout its domain, will help us achieve
this goal. Future work will include experimental testing of
the planned shape trajectories presented here and design ofa
global motion planner that provides desired external configu-
ration trajectories for the optimal shape trajectory planner.
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