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Abstract— This paper presents an optimal shape trajectory robots, like Segway, have kinematic constraints restgcti
planner for shape-accelerated underactuated balancing systems, their direction of motion, whereas, single spherical-whée
which are destabilized by gravitational forces. These systems balancing robots, like ballbots, have omnidirectional iomot

have unactuated shape variables and fully actuated external . . . .
variables. They also have the same number of actuated and that make them more suitable for operation in constrained

unactuated degrees of freedom. Their equations of motion result SPaces. In this paper, such omnidirectional ba|an0in933!'$F
in nonholonomic acceleration/dynamic constraints, which relate are referred to ashape-accelerated underactuated balancing
the acceleration of external variables to the position, velocity and systemgdescribed in Sec. 1I-B).

acceleration of shape variables. This paper describes a procedure An interesting and troubling factor in control and plan-

to use the dynamic constraints for planning shape trajectories, . . .
which when tracked will result in optimal tracking of desired ”'”9 of suc?h undgractuated systems. is the constralnt. on
external configuration trajectories. Examples of planned optima their dynamics by virtue of underactuation. These conssai
shape trajectories for the 3D ballbot system, which is a 3D are second-order nonholonomic [8] constraints,., non-
omnidirectional wheeled inverted pendulum, are also presented. integrable acceleration/dynamic constraints. Thesetaints
restrict the family of trajectories that the configuratioren
follow. In control of balancing underactuated systems,ohlhi

Underactuated mechanical systems are systems with fewes destabilized by gravitational forces, it is importaat t
independent control inputs than the degrees of freedom [fjaintain balance. Maintaining balance makes it difficult to
Examples of underactuated systems can be found in roboticcurately track any desired configuration trajectories.
aerospace, marine and locomotive applications. Theseragst In this paper, we propose a planning procedure to ensure
are underactuated due to reasons like higher-order dynagood approximate tracking of desired trajectories for such
ics (e.g., spacecraft, helicopter, underwater vehicles, flexiblenderactuated balancing systems. For example, consider a
robots), actuator failuresef(y., a failed manipulator joint, 3D omnidirectional wheeled inverted pendulum robot like th
aircraft engine failure), and need for dynamic locomotioballbot [9]. We would like it to track some path on the floor,
platforms ¢.g., Segway [2], ballbots [3]). A set of intention- which could be a desired path from some global motion
ally designed underactuated systems used in controlsrobseglanning algorithm. The question to be answered herkas:
include Acrobot, Pendubot, Cart-Pole, Beam-Ball and Rugat can the wheel/ball be moved along this path while balancing
Pendulum [4]. the pendulum?The answer to this question is not trivial

In robotics, balancing (dynamically stable) mobile robotsecause of the dynamic coupling between the motion of the
form a special class of underactuated systems. They inclusidl and the pendulum. Now, consider a balancing controller
wheeled robots like Segway [2], ballbots [3] and legged teboas in [9], which ensures accurate tracking of desired lean
like BigDog [5], MABEL [6]. Balancing robots will play a trajectories for the pendulum, then the question, statedegb
vital role in realizing the dream of placing robot workers ircan be reformulated astow can the lean trajectories of the
human environments. Unlike statically stable mobile regbotpendulum be chosen so that the ball moves along the desired
balancing (dynamically stable) mobile robots cai): e tall path? This is the question that is addressed in this paper.
and skinny with high centers of gravity;i have smaller In order to answer the above question, we should look
footprints, and 4i:) accelerate or decelerate quickly [3]. Theynto the nonlinear dynamics of the system. Given an accurate
can also be very effective mobile manipulators [7] witmodel, there have been a variety of controllers designed
the ability to maintain postural stability, generate faaen in nonlinear control literature, which use partial feedbac
external objects and withstand greater impact forces. & hdmearization [10], to ensure approximate output tracKihd],
characteristics make them ideal for navigation and opmrati[12]. But in real robots, we have to deal with model un-
in cluttered human environments. Two-wheeled balancimgrtainties, higher-order dynamics, nonlinear frictidfees

I. INTRODUCTION



and disturbances. Controllers that cancel out nonlingange variables that do not appear in the inertia matrix are called
assuming their accurate knowledge, can fail miserably @xternal variableqq,), i.e., 9M(q)/dq, = 0.

real robots. Though the model in-hand may not be accurateSince the inertia matrix is independent of the external
it can often provide some useful information such as thariables, the kinetic energ¥(q,q) = %qTM(q)q is also
dynamic constraints. In [13], an offline trajectory plarminindependent of the external variablés,, 0K (q, ¢)/dq. = 0.
procedure that produces a class of parametric trajectorlasthis case, the Lagrangian system is said to have kinetic
for the unactuated shape variables to reach static desisythmetry [4].

configurations using the dynamic constraint was presentedEg. 2 can be re-written as:

This planning procedure combined with 2-DOF control, an

inner balancing control loop and an outer tracking contvopl Mao(qs) Mas(as)] [ ha(a,d)] [ Fulq)
[9], proved to be very successful on the real robot. But,aher Moo (qs) Mas(gs) | | ds he(g,d) | ~ | Filq) 7, (3)
are a few drawbacks with this approach): i was not easily )
generalizable to arbitrary motionsj) it was computationally where,h(q,q) = [h.(q,d), hs(q,§)]" is:
expensive; andi{i) it was an offline procedure.

In this paper, we presentagenerqlized gpproach to gener @0(q:0)] [ Conl(d:d) Casla:d)] [da G.(q) 4
shape trajectories:(g., lean angle trajectories in the ballbot), | j, (,9) | = | Cuulaed) Csslqid) | | ds + Go(q) | (4)
exploiting the structure of dynamic constraints for shape-
accelerated underactuated balancing systems, which whedhe underactuated systems can be classified based on
tracked will result in optimal tracking of the desired matio Whether the shape variables are fully actuated, partially
The advantages of this planning procedure adeit €an track actuated or unactuated and based on the presence or lack of
any desired trajectories satisfying certain conditiorisogssed NPut couplings in the force matri¥'(q) [4].
in Sec. IlI-B); @) it is computationally less expensive; an
(i14) it is fast and can be performed online on the real robot.” i ) )

This paper is organized as follows: Sec. Il presents the!n this paper, we are interested in shape-accelerated un-
properties of shape-accelerated underactuated balasysig deractuated balancing systgm; which form.a special glﬁass o]
tems; Sec. Il discusses the special structure of the dynarHideractuated systems satisfying the following propertie
constraint for such systems and explains the shape trajecto (i) The shape variables are unactuated and there is no input
planning procedure that ensures optimal tracking of desire  coupling,e.g., F;(q) = I, and Fs(q) = 0. A variety of

Shape-Accelerated Underactuated Balancing Systems

external configuration trajectories; Sec. IV presents #seilts underactuated systems can be transformednotinput

of the optimal shape trajectory planner for a 3D ballbot niode  coupling form with global change of coordinates [4].

and finally, Sec. VI presents the conclusion. (i) There are equal number of actuated and unactuated
variables,i.e., dim(q,) = dim(¢s) = m and hence

II. UNDERACTUATED MECHANICAL SYSTEMS

n = 2m.
The forced Euler-Lagrange equations of motion for a me-  In [4], underactuated systems satisfying propertiesiifi)-(
chanical system are: are referred to a€'lass — I1a underactuated systems.
10 0% (iii) The potential ener.gyX'/(q)' is independent ofy,, i.e'.,
%00 e = F(q), @) 0V (q)/0q. = 0. This implies thatG(q) = 0V (¢)/0q is
q 4 also independent of,. Since both kinetic and potential
where, ¢ € R"™ is the configuration vector,?(q,q) = energies are independentqf, the Lagrangian?’ is also
K(q,q) — V(q) is the Lagrangian with kinetic energi independent of,, i.e., £ is symmetric w.r.t.g,.
and potential energy’, 7 € R™ is the control input and (iv) M,.(qs) is constantj.e., M, (qs)/dqs = 0.
F(q) € R"*™ is the force matrix. (v) My.(¢s) has differentially symmetric rows,i.e.,
A mechanical system satisfying Eq. 1 is said to be an 9N, (q,)/d¢) = 3Mist(qs)/5qs, where M (q)
underactuated systerfi] if m < n, i.e., there are fewer refers to theit" row of M, (q,).
independent control inputs than configuration variables. Properties (iii)-(v) makeh(q, ¢) independent of botly,
Eg. 1 for an underactuated system can be written in matrix  andg,.
form as follows: (vi) The system has locally strong inertial coupling [1k.,
. N - B rank(Ms,(qs)) = n —m = m for all ¢ in the neigh-
M(q)i+Clg,0)q + Gla) = Fla)T, 2) borhfyod o(f t%)e origin, where origin is the unstable equi-
where,M (g) € R™*" is the inertia matrix(C'(q, ¢) € R"*™ is librium. A system satisfying the (local) strong inertial
the matrix of Coriolis and centrifugal terms attiq) € R™*! coupling is also known aiternal/External Convertible
is the vector of gravitational forces. System12].
) (vii) 0Gs(gs)/0qs # 0 atgs = 0 and is invertible.
A. External and Shape Variables (Vi) O(Mz(gs)~'Gs(gs))/0qs # 0 at g, = 0 and is invert-
The configuration variables that appear in the inertia matri ible.

are calledshape variablegqs), whereas, the configuration The significance of properties (vi)-(viii) will be explaide



in Sec. lll, where they are used for the optimal shapato first-order nonholonomic constraints. This is ensubgd

trajectory planner design. the fact that the gravitational vect6f(qg; ) is not a constant and
(iX) rank(Ms(qs)) = m,i.e., Ms(qs) ™! exists. the inertia matrix/ (¢, ) is dependent on the unactuated shape
(X) O(Mss(qs)"1Gs(qs))/0qs # 0 at qs = 0 and is invert- variablesy,. For a detailed discussion of these conditions, refer
ible. to [14].
(Xi) Mss(qs) P Mgi(qs) # 0 atgs = 0. Due to the properties listed in Sec. II-B, the dynamic

Properties (ix)-(xi) ensure that the Jacobian lineararati constraint equations for shape-accelerated underadtiate
(A, B) of the system (Eq. 3) at origin is controllableancing systems are independent of the position and velocity
and its zero dynamics [10] is unstable at the origirof external variables. This special structure relates the a
According to [12], an underactuated system that satisfiesleration of external variables to the position, velocityd
properties (ix)-(xi) is called ®dalance systerand in this acceleration of shape variables. In this section, we widirapt

paper, we will refer to it as &alancing system at understanding this relationship.
The shape-accelerated underactuated balancing systéims wi-et'’s consider the function
havi tions of motion of the form: . ..
ave equations of motion of the fo O (gsiis) = D(gs,0,0,d)

Msx(qs)dm + hs(QS7 0)
= Msx(Qs)(jx + Gs(Qs)~ (9)

It follows from Eqg. 8 that
hx(des) o 0 Cms(Qsads) qm 0 .
{hs(qs,qs) =10 Culgedn ] L] T[Cu@) ] @ (g5, 4x) = 0. (10)
We can see from Eq. 5 that the equations of motion of theB¥ implicit function theorem, if both)®’/dg, and 9&'/9q,
systems are such that any non-zero shape configuration #fll(¢s,d=) = (0,0) exist and are invertible, then there exists

result in acceleration of the external variables and in tu@! invertible mapl’ : g, — ¢, in the neighborhood of the
acceleration of the entire system, hence the nahape- origin such thatd’(gs,I'(¢s)) = 0 and @'(I'"*(g), ¢=) = 0.

il SN EF L))

where,

accelerated underactuated balancing systems From Eq. 9, we get
Some examples of shape-accelerated underactuated bal- p
( ) 0P 0G(qs)
ancing systems are planar and 3D cart-pole system with 3 =3 , (12)
unactuated lean angles, planar wheeled inverted pendulum s 1(g,iix)=(0,0) Is  lg.=0
(e.g. Segway [2] in a plane) and 3D omnidirectional wheeled o'
inverted pendulum (e.g. the ballbot [13, 9]). ER = Mz(gs) (12)
dz (45,42 )=(0,0) qs=0
HI. DYNAMIC CONSTRAINT-BASED OPTIMAL SHAPE From properties (vi) and (vii) in Sec. II-B, we can see that
TRAJECTORYPLANNER the Jacobians in both Eq. 11 and Eq. 12 exist and are invertibl

In this paper, our objective is to plan shape trajectorieand hence, there exists an invertible map ¢, — ¢, in the
which when tracked will result in optimal tracking of deslre neighborhood of the origin such thédt (¢s,T'(¢s)) = 0 and
external configuration trajectories. The planning procedud®’(I'~*(g,),G.) = 0. T' can be derived directly from Eq. 9
presented in this section exploits the special structure afid Eg. 10 as follows:
dynamic constraints of shape-accelerated underactuated b
ancing systems described in Sec. 1I-B. So, let’s first look at

. _ —1
the dynamic constraint, its structure and the informatiuat t e = —Miu(g:)7Gslgs)
it provides. = I'(gs) (13)
A. Dynamic Constraint in the neighborhood of the origin.

The second set ofn equations of motion associated with Jacobian linearization of Eq. 13 w.rd, atg, =0 gives

the unactuated shape variables in Eqg. 5 given by

M, i+ M, (00 =0 7 O4s _ O(Mi(gs)"'Gs(4s))
sac(@[s)qﬂﬂ + SS(qs)qS + s(Qsa QS) = ( ) aqs J— aqs B
can be written as: = K. (14)
D(qs, §s, s, Go:) = 0. (8) We know thatK is invertible by property (viii) in Sec. II-B.

_ This implies, we h l 0 — (K?)~! such that
Eq. 7 and Eq. 8 are callexkcond-order nonholonomic con- 's implies, we have a linear map,, = (K,)"" such tha

straints nonholonomic acceleration constrainter dynamic 0 .
. . . qs = K G, (15)

constraints because there exists no functioh such that e

U = ®(qs,4s, Js, G )- The dynamic constraint equations arend

not even partially integrablei.e., they cannot be converted @’(ng(jm,ijx) =0 (16)



in the neighborhood of the origin. where, ¢2(t) = T"(K,, §(t), K,, 7%(t), K,, '§%(t)). Itis to
We can see thatj, is a constant if and only if;, is a be noted that the parameter spaceni&dimensional and any

constant. In order for the external configuration of the exyst optimization algorithm that solves a nonlinear least-sgsia

in Eg. 5 to have a constant desired accelerajihrthe system problem can be used.

should stick to a constant shape configuration giveryby- For a desired constant acceleration trajectdfy, = K

K9 . ensures optimality. For any genergl(t), K,, = K_ may
Wheng, is not constantg, andg, are non-zero. Let’s take not necessarily ensure optimality but will act as a goodaihit

a = (¢s,4s,qs) andb = ¢, and then Eq. 8 can be written aggyuess for the optimization process.

®(a,b) = 0. Taking the Jacobian w.rb.at (a,b) = (0,0), we As one can see, the optimal shape trajectory planner de-

get scribed above ensures thit(t) approximately tracksjé(t)
but does not ensure thaf(t) approximately trackg(t) or

9®(a,b) = M, (gs) (17) P (t) approximately trackg?(¢). This can be ensured only if
b (4 )=(0,0) 4s=0 the initial conditions for the external variables are mit,,

— ,d . _ sd
From property (vi) in Sec. II-B, we can see that Eq. 17 exis%o(GO.) N qﬁ((l)) and qgt(r?) - qwcg(i) 10 be met in order t
and is invertible. Hence, by implicit function theorem, riae ven below are the conditions 1o be met in oreer _0 use
exists a maf” : a — b such thatd(a,T'(a)) = 0. The map the shape trajectory planner described above to tgéd¢K:
’ X ; d 2 -d sd

I" is not invertible sincé®(a, b)/da at (a,b) = (0,0) exists () ¢:(t) must at least be oflassC*, i.c., ¢3(t) and s (t)
but is not invertible. exist and are continuous. ¢(t) does not exist then,

We can see that in order to track a non-constant, time- (e planned shaped trajectog§f(¢) that is proportional

..d . B
varying ¢4(t), there is no function that mapg’(t) to tcc’l G (t) will not exist as well. P
(q(), (), ¢4(t)) such that the dynamic constraints in Eq. 8(i) ¢z(?) is preferred to be ofclass C*, i.c., first four
are satisfied. In the following subsection, we propose an derivatives exist and are continuous so as to ensure the

optimal planner that ensures approximate tracking‘gf). existence ofif (¢), ¢(t), ¢¢(¢) that depend on them. This
condition also avoids discontinuities in the planned shape

B. Optimal Shape Trajectory Planner trajectories and its first two derivatives.

In underactuated balancing systems, we are often interestdii) Initial conditions for the external variables are met.,
in tracking desired trajectories for the external confitjora q2(0) = ¢¢(0) and¢2(0) = ¢£(0). The desired position
variables without losing balance. Shape-acceleratedrande trajectory ¢ (¢) can be tracked by approximate tracking

tuated balancing systems in Sec. IIl-B have constraints on Of G (t) only if the system starts at the correct initial
the acceleration of these external variables w.rt. thepsha  Position and velocity for the external variables.

variables’ position, velocity and acceleration as givetowe IV. EXAMPLE: 3D BALLBOT MODEL
Go = —My(qs) ' (Mss(qs)ds + hs(gs, ds)) As an example, we present here the results of the optimal
= T(qs, s, dis) (18) shape trajectory planner described in Sec. IlI-B for a 3D

ballbot model, which is a 3D omnidirectional wheeled ineert
So, for a desired acceleration trajectory for the externpéndulum. The ballbot (Fig. &f) is modeled as a rigid
configurationg<(t), we would like to plan shape configura-cylindrical body on top of a rigid spherical wheel/ball with
tion trajectories(¢?(t), ¢2(¢), ¢2(t)), which when tracked will the following assumptions:i) there is no slip between the
result in ¢2(t) (from Eq. 18) such tha§?(t) = ¢¢(¢). But, ball and the floor, andi{) there is no yaw/spinning motion
we have seen thaf’~! : G,.(t) — (gs(t),ds(t),ds(t)) that for both the body and the balle., they have two degrees-of-
satisfies®(I"~1 (4, (t)), G- (t)) = 0 does not exist. Hence, freedom each. It is to be noted that the results presented her
we propose to find a mag : §4(t) — (¢?(t),4?(t),{?(t)) are that of simulation and are not experimental results.

such that||¢2(t) — ¢4(¢)||3 is minimized. Here,G2(t) = The forced Euler-Lagrange equations of motion are given
(g2 (1), G2 (t), g2 (t)). by Eg. 1 with ¢, corresponding to the configuration of the
Inspired from Eq. 15, we propose to use a linear Map : ball/wheel, andg, corresponding to the configuration of the
44 — qP such that body (Euler angles). Here,. = [0.,,0,]T andgs = [¢., ¢,]T.
Planar versions of the ball and body configurations are shown
pro v in Fig. 1().
2 (t) = Ko, G2 (1), (9) The ball configurationsg, and 6,, are chosen such that
qr(t) = Ko, 05(1), (20) the linear position of the ball/wheel (with radiug on the
) = K,, '?j'i(t). (21) XY ground plane is given by,, = r6, andy,, = rf,. This

) ) produces input coupling i#'(q):
The shape trajectory planning procedure can now be formu-

lated as an optimization problem, where the element& pf 10
are determined with the objective of minimizing the funatio F(q) = 8 11 . (23)

J = IG5 (t) — dq(t)l13, (22) -1 0



1) Straight Line Motion: Let’s start with the simplest of
trajectories that involve moving along a straight line bedw
static configurations;.e., starting from rest at one point on
the floor and coming to rest at another point on the floor. The
desiredz,,(t) andy,,(t) are chosen to be noni®'( degree)
polynomials int so that their first four derivatives satisfy the
boundary conditions.

Desired

= == == Planned

(@) ®)

Fig. 1. (@) The ballbot balancing,bj Planar ballbot model with ball and
body configurations shown.

Linear Y Position (m)
=

By global change of coordinate, = 0, — ¢, and 0; =
0, + ¢, the equations of motion with the new configuration
vectorg’ = [0;,9;,%,%? has no input coupling i (¢’):

0 . .
10 0 1 2
Linear X Position (m)
@)= 1 (24)
Fig. 2. Straight Line Motion - Linear XY (This figure is bestewed in
0 0 color.)
The new forced Euler-Lagrange equations are:
M(¢)i' +C'(d )i + G )= F'(d)r. (25) .
It is to be noted that the underactuated system in Eq. 25 2o (t) = Zaiti,
satisfies all the properties of shape-accelerated undeatack i=0
systems and balancing systems listed in Sec. II-B. The expre 9 _
sions forM’,C’, G’ are omitted here due to lack of space. Yu(t) = Z bit', (26)
The last two equations of motion in Eq. 25 form the i=0

dynamic constraint equations of the system and these eqiare the coefficients;s and b;s are determined based on
tions are used for the optimal shape trajectory planner e initial and final desired configurations.
Sec. llI-B. The optimization algorithm used here is Levagbe

Marquardt algorithm (LMA), which is a widely used tool for
minimization problems in least-squares curve fitting and-no 2 4 ¢z
linear programming. The dynamic equations were simulated - -
in MATLAB and the optimization was implemented using LN

MATLAB's [sqnonlin function. Some of the planning results | ’

are presented below.

A. Results of Optimal Shape Trajectory Planning

This section presents a variety of desired(t) and y,,(¢) \ y
that satisfy the conditions in Sec. IlI-B and the correspogd -1 N _ 7
planned optimal shape trajectories} () and ¢ (¢), which
should be tracked to achieve them. It is important to noté tha _9 , ,
the desired trajectories,, (t) andy,,(t), are trajectories of the 0 5 10
center of the ball and not trajectories of the system'’s ceofte Time (s)
gravity. On a flat floor, these trajectories match the trajées
of the ball's contact point with the floor. Fig. 3. Straight Line Motion - Planned Shape Trajectories

Angle (deg)
(]
\
-




In Fig. 2, we can see the planned XY motion approximatetp be noted that the results presented here are observed only
tracking the desired XY motion. The planned shape trajeztor when the appropriate initial conditions are met. The tnagki
that produce such a motion are shown in Fig. 3. The trajecterror statistics are: RMSE = 4.8%* m and Maximum Error
ries for the planned XY motion are obtained from Eq. 18. The 5.6x10~% m.
tracking error statistics are: RMSE = 0.0147 m and Maximum
Error = 0.0238 m.

6 A
Desired
5 4 | = === Planned
Desired
4 | = == == Planned g 5 |
c
= i)
E 3
- 3
c g o
2 >
[0} —
o @
o 2 g —9 |
> 5
g
£ 1 —4
-
01 —6 . . . . . .
—6 —4 —2 0 2 4 6
-1 . . . . . . Linear X Position (m)
-3 -2 -1 0 1 2 3
Linear X Position (m) Fig. 6. Figure-8 Motion - Linear XY (This figure is best viewéucolor.)

Fig. 4. Circular Motion - Linear XY (This figure is best viewéd color.) 3) Figure8 Path: Here, we would like the robot to move
along a figures path on the floor. The desired, (t) andy,,(t)
2) Circular Motion: Here, we would like the robot to moveare:

along a circular path on the floor. The desirgd(t) andy,, (t) () = A, sin(w,t)

" (t) = Aysin(ey) (29)
Yu(t) = sin(w,t),
Ty (t) = Rsin(wt), here. A /y dy/ " g
. B where, A, =4 m, w, = 7/20 rad/s, A, = 4 m, andw, =
yw (t) - R(]‘ COS(Wt))7 (27) 7T/10 rad/S
where,R = 2 m andw = 7/10 rad/s.
2 . e
g
= Z
3 Q@
° =4
2 <
c
<
9 , , , , 0 10 20 30 40
0 5 10 15 20 Time (s)

Time (s)
Fig. 7. Figure-8 Motion - Planned Shape Trajectories
Fig. 5. Circular Motion - Planned Shape Trajectories
In Fig. 6, we can see the planned XY motion approximately
In Fig. 4, we can see the planned XY motion approximatetyacking the desired XY motion. The planned shape trajextor

tracking the desired XY motion. The planned shape trajeetor that produce such a motion are shown in Fig. 7. It is to be
that produce such a motion are shown in Fig. 5. The trajectosted that the results presented here are observed only when
ries for the planned XY motion are obtained from Eq. 18. It ihe appropriate initial conditions are met. The trajee®rior



the planned XY motion are obtained from Eq. 18. The tracking In Fig. 8, we can see the planned XY motion approximately

error statistics are: RMSE = 0.0105 m and Maximum Error
0.0177 m.

Desired
5 | = = = Planned
E 4]
c
o
3
n_ 3
>
3
£ 21
.
1 4
0 : : : . - \
-3 —2 —1 0 1 2 3

Linear X Position (m)

Fig. 8. Join-Circle-Leave Motion - Linear XY (This figure ie&t viewed
in color.)

4) Join-Circle-Leave MotionThe tracking of a circle, sine

tracking the desired XY motion. The planned shape trajextor
that produce such a motion are shown in Fig. 9. The trajecto-
ries for the planned XY motion are obtained from Eg. 18. The
tracking error statistics are: RMSE = 0.0167 m and Maximum
Error = 0.0286 m.

B. Real-Time Planning

For all the results presented in Sec. IV-A, the optimization
tolerance values for both the residual norm and parameter
values were set to< 10~%. On a standard Intel Core-2
Duo processor, the optimization implementation in MATLAB
converges in< 1 second. This ensures that the optimal shape
trajectory planner presented in this paper can be used dibr re
time planning on the robot.

V. BALANCING AND TRACKING CONTROL

The entire planning procedure presented in this paper as-
sumes that there exists a balancing controller, similathéeo t
one in [9], which has good shape trajectory tracking perfor-
mance. Given the balancing controller and the optimal shape
trajectory planner, we can achieve good approximate tnacki
of the desired external configuration trajectories. Busitad
be noted that this tracking is open-loop and with wrong ahiti
conditions, we have no way to ensure approximate tracking of
the desired external configuration trajectories. Moreowéile

wave and figures paths require that the appropriate initiatesting on the real robot, modeling uncertainties, unnextlel
conditions are met. But in reality, we would like to start agynamics, nonlinear friction effects and noise may prevent
any random initial configuration and track a particular pat§ood approximate tracking. Hence, we should have an externa
on the floor. Here, we present the result of starting froffajectory tracking controller, similar to the one in [13h

rest, joining a circular path at a desired configuration, imgk
1.5 revolutions, leaving the circular path at a diamethcal

opposite point and coming to rest. This motion consists of 3

different trajectories fused together. Th@ning andleaving

trajectories are noni®(" degree) polynomials that satisfy the
initial and final configurations required to join and leave th

circular path respectively. The nonic polynomials ensina t
the first four derivatives of the fused trajectories are icmatus
and not just piecewise continuous.

Angle (deg)

0 10 20 30 40 50 60
Time (s)

Fig. 9. Join-Circle-Leave Motion - Planned Shape Trajéetor

ensure better tracking.

. - Shape-Accelerated »
s Balancing | T »|  Underactuated
Controller Balancing Systems o

R

Tracking ¢ C)'+ — g’
Controller

Optimal Shape
Trajectory Planner [~

Fig. 10. Control Architecture

We propose to follow [13] in using the control architecture
shown in Fig. 10 for good approximate tracking of desired
external configuration trajectorieg?) on the real robot. The
balancing controller tracks the desired shape trajectdgt®,
which are a sum of planned!) and compensationy{) shape
trajectories. The planned shape trajectories are giverhby t
optimal shape trajectory planner, whereas, the compemsati
shape trajectories are provided by the tracking controller
which tries to compensate for the deviation of the external
configuration trajectories from the desired ones.



In Fig. 11, we show the result of the control architecturaith the optimal shape planner can ensure better trackirepwh
in Fig. 10 tracking the external configuration trajectoriethe initial conditions are not met.

corresponding to a circular motion starting with zero aditi

In the 3D ballbot example, we have seen that given

conditions, i.e., there is no initial linear velocity in the x (z¢(t),y4(t)) € C*, we can use the optimal shape trajectory
direction, as in Fig. 4. We can see that the motion asymplanner to obtain the desired shape trajectories, whichnwhe
totically converges to the circular motion, which shows theacked will result in the desired motion. In a general mmotio
effectiveness of the tracking controller in compensating fplanning setting, any standard path planning algorithm MK

the errors due to wrong initial conditions.

Desired

4 = = == Actual

w

Linear Y Position (m)
— N

can be used to obtain a desired, (s), y.,(s)) path. In order to
use the optimal shape trajectory planner discussed in #psmp

as a tool for overall motion planning, we have to parametrize
this path in time. We propose that usingnic splineswhich
ensure that the first four derivatives for the overall tregec

will be continuous throughout its domain, will help us aciaie
this goal. Future work will include experimental testing of
the planned shape trajectories presented here and desagn of
global motion planner that provides desired external config
ration trajectories for the optimal shape trajectory pkmn
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Fig. 11. Tracking Circular Motion with Zero Initial Condiths (This figure
is best viewed in color.)

The contribution of this paper is the optimal shape trajgcto
planner, whereas, the balancing and tracking controllgsigds 5]
are borrowed from our previous work [13]. In [13], we have
shown that the control architecture in Fig. 10 is capable of
successfully tracking straight line motions on the realotob

; : 6]
Based on these previous successful experimental resudts, \Bv
strongly believe that this control architecture will eralbhe
real robot to track the motions presented in Sec. IV-A. I{7]
is to be noted that the planner in [13] was designed based
on our intuition of how the robot should lean in order to
achieve a straight line motion, whereas, in this paper, wél
have presented a generalized shape trajectory plannewithat [9]
enable the ballbot to approximately track any desired ezaler
configuration trajectory.

(10]

VI. CONCLUSION [11]

An algorithm to plan optimal shape trajectories for shape-
accelerated underactuated balancing systems was presemntél
These shape trajectories, which when tracked will result in
approximate tracking of the desired external configuratiqig
trajectories subject to conditions on differentiability the

desired trajectory and correct initial conditions. Thenpliag [14]
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