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Abstract— A molecular algorithm is a set of molecular inter-
actions that carry out a particular task. We describe a molecular
algorithm for self-assembling a path between two stationary
points when the locations of these points are not known in
advance. While efficient path finding algorithms for electronic
robots exist, molecules lack the centralized memory or computing
power to implement them. The algorithm takes advantage of
the inherent physics at the molecular scale, and unlike other
biomimetic algorithms for path finding, is designed to work
in an unstructured environment and does not require complex
molecular components. Designed molecules self-assemble a DNA
nanotube starting from a “seed” molecule attached to the start
point. During growth, the DNA nanotube’s end diffuses through
space, and this diffusion is harnessed as a search process: when
the DNA nanotube’s end contacts the destination, it attaches to
it and stops growing, forming a stable path.

We use simulations and analysis to predict that paths of up
10 microns are formed with more than 99% probability if the
destination is larger than 500 nanometers in diameter, making it
practical. However, the probability of the DNA nanotube missing
the destination is highly dependent on destination distance and
size. It increases asexp
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, where r is the Euclidean
distance from the start point to the destination, and scales
approximately as exp [−Ω(d)], where d is the diameter of the
destination. A path finding algorithm that could work over
longer distances or with small destinations will likely require
new molecular components; we describe how new components
could be used to solve the molecular path finding problem using
a divide and conquer approach.

I. I NTRODUCTION

Bottom-up construction is an increasingly promising way
to inexpensively create materials with designed nanoscale
features [46, 21]. In a bottom-up construction process, de-
signed molecules autonomously assemble the desired device.
Molecules, unlike electronic devices, have almost no capacity
for computation or information storage. Instead, a series of
stochastic molecular attachments and detachments must col-
lectively converge on the desired structure. These collective
actions, i.e. molecular algorithms, are surprisingly powerful:
molecules can perform universal construction [43] and uni-
versal computation [32, 11]. Molecular algorithms are also
capable of error-correction and robust behavior [10]. Whilein
practice most are still fragile and scaling is difficult [40,2, 13],
simple algorithms have been demonstrated experimentally.For
example, designed molecules can self-assemble a Sierpinski
gasket [36], and 2- and 3-dimensional structures with arbitrary

features [34, 13], and can perform tasks such as walking [5,
30, 23] and cargo transfer [16].

One way to make a molecular algorithm robust is to make
it adaptive. Scaling is more feasible if individual construction
algorithms (i.e. modules) can respond to errors made in the
execution of a previous construction process. Environmentally
adaptive molecular algorithms would be useful in unstructured
environments such as cell cultures where the geometry may
be uncertain and algorithms that can deduce and respond to
these geometries would be required. Biological algorithmsfor
assembly are environmentally adaptive—cells use chemical
and mechanical signals to determine when and where to grow
and move. However, devising ways for synthetic molecules to
collectively sense the local environment and act on the results
of the information received can be difficult.

In this paper we describe a molecular algorithm for path
finding and characterize its performance. In the path finding
problem, the inputs are fixed start and destination points of
unknown location, and the desired output is a physical link
between them. An algorithm to solve the path finding problem
is inherently environmentally adaptive: the location of the
path that is formed depends on the locations of the start and
destination in the environment. Path finding is also a basic
primitive for bottom-up construction and could be used to
assemble wires such that they connect to both contacts when
the location of the contacts is uncertain, or to immobilize an
object by creating a physical tether between the object and a
surface.

Biology provides an example bottom-up path finding algo-
rithm, the separation of chromosomes during somatic animal
cell division [18] that occurs through the assembly of the
mitotic spindle. After a cell’s chromosomes are duplicated,
they remain grouped at thespindle equator. They then must
be separated such that the mother and daughter cells each
receive one set. A pair ofkinetochoresform on each pair
of chromosomes andcentromeresarise on either side of
the chromosomes. Microtubules, nanotubes assembled from
protein monomers, grow from the centromeres. If a growing
microtubule encounters a kinetochore, it stays put, forming
a permanent link. The kinetochores are oriented on pairs
of chromosomes such that the two attaching microtubules
come from different centromeres. The centromeres pull on the
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Fig. 1. The path finding algorithm. A stationary start marker attached to a
flat surface initiates DNA nanotube growth. A stationary destination marker
can bind the end of a growing DNA nanotube. As the DNA nanotubegrows
(1–2), its end diffuses rotationally, effectively searching for the destination.
The DNA nanotube either encounters and sticks to the destination (3a) or gets
too long to hit the destination (3b) before finding it.

attached microtubules, separating the chromosomes into two
complete sets.

The example of the mitotic spindle suggests that polymer
search and capture could be used to form synthetic links
between start and destination locations. The mitotic spindle
is complex and designed specifically for separating chromo-
somes, so we propose a simpler molecular algorithm in the
same spirit.

The molecules in the path finding algorithm are DNA
monomer components that can assemble to form rigid DNA
nanotubes (analogous to microtubules), a seed molecule which
attaches to the start point (analogous to the centromere),
and a capture molecule which attaches to the destination
point that growing DNA nanotubes stick to (analogous to the
kinetochore). DNA nanotube growth is initiated by a seed [2]
at the start point. If the DNA nanotube’s end encounters the
destination, it sticks and the DNA nanotube forms a path
between the start and destination (Figure 1).

Here we seek to understand how this algorithm’s perfor-
mance scales with the size of the destination and the distance
between the start and the destination. To do so, we analyze the
physics of DNA nanotube diffusion and derive an analytical
approximation for the probability that the DNA nanotube will
hit the destination. We then determine whether the algorithm
will perform well for destination sizes and distances of in-
terest. We use existing estimates for the physical parameters
that govern the diffusion and growth rates of DNA nanotubes
to numerically compute the probability of forming a path for
typical destination sizes and distances from the start point.

In Section II we describe prior work on path finding. In
Section III we more formally describe the problem and review
the physics of DNA nanotube growth and diffusion that will
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Fig. 2. Schematic for the molecular path finding problem.A start point
(black dot) can produce a single growing DNA nanotube (gray cylinder). If
the DNA nanotube end enters the destination region (r < l < r+d, θ < θc),
it sticks. The location of the DNA nanotube’s end is given using spherical
coordinates.

be required to analyze the algorithm’s performance. We use
this material in Section IV to give expressions for how the
algorithm’s performance scales with destination distanceand
size. We show that while path finding via diffusion is very
effective for relatively short distances and large destinations,
the probability of successful path finding drops exponentially
with increasing destination distance and decreasing destination
size. In Section V we therefore discuss some possible ways to
create algorithms that will perform better when the destination
is small and/or far from the start point.

II. BACKGROUND

The problem of directing an autonomous agent to find a path
through an environment is a classic problem in robotics. Any
mobile robot in an uncertain environment must solve some
instance of this problem [19]. However, algorithms designed
for a single autonomous agent with a large amount of memory
and the capacity for efficient, large-scale computation (e.g. [3,
20]) cannot generally be applied to molecular systems.

Path finding has also been studied in biomimetic systems,
where large numbers of very simple components with little
capacity for computation and memory storage work together
to accomplish a goal. In amorphous computing, a collection
of fixed, unreliable agents are arrayed randomly in space [1].
Each agent is capable of limited computation and commu-
nication with neighboring agents. Paths between specified
objects can be discovered in this system using a gradient of
morphogens: a destination emits a signal which is passed to
neighbors and a path forms in response to these signals [28].
The spatial computing framework, similar to the amorphous
computing architecture, provides a language in which path
finding can also be solved using gradients [6]. While gradient-
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Fig. 3. DAE-E DNA tiles are the building blocks of DAE-E DNA
nanotubes.(a) DAE-E DNA tiles consist of 5 short DNA strands that fold
into the structure shown on the right because of a preferencefor Watson-
Crick complementarity. (b) Complement sticky end regions hybridize, and
the sequences of tiles are designed to hybridize (attach) asshown. Repeated
hybridization produces a tile lattice. The particular geometry of DAE-E DNA
tiles leads to a slight curved lattice, which is stable as a closed tube [35].

following is efficient and finds paths with high probability,it
is still too complex for molecular components to execute.

It is possible to design molecular construction elements
with prescribed shape [41, 34] and prescribed affinity for
other elements [48, 25] using synthetic DNA. These construc-
tion elements stochastically attach to and detach from each
other and move through solution via Brownian motion. DNA-
based algorithms for computation and construction exploitthe
specific affinities of molecules and the fact that when two
elements are attached, their affinity for attaching and detaching
to certain types other elements can change, which serves as a
basic form of state [32, 47, 24].

One widely studied model of molecular construction is the
DNA tile self-assembly model [47, 37]. In this model, DNA
components called tiles are equipped with single-stranded
sticky ends, and tiles bind to other tiles by these sticky ends,
forming lattices (Figure 3). Because tiles can bind only to
locations where their sticky ends are complementary to those
available, the attachment of a tile to a location where it attaches
to two tiles at the same time can be viewed as an information
transfer step [47].

The DNA tile assembly model can be used to solve the path
finding problem on a 2-dimensional surface, even when obsta-
cles are present [7]. In this method, the start and destination
are molecules that interact with tiles. The tiles are designed
so that they assemble all possible paths from the start to the
destination. The possible paths are attached in a single lattice
that eventually integrates the destination molecule. Every tile
in the lattice that is part of a complete path is strongly
attached to other tiles on the path, while tiles not part of
a path are more weakly attached. When the temperature is
increased, all attachments are weakened and tiles that are not
part of a complete path melt away from the lattice. While this
path finding algorithm finds optimal paths using molecular
components, the algorithm is not robust to noise in molecular
information processing [2] and would be very difficult to
implement because it requires a highly structured environment
at the molecular scale. The algorithm we describe in this paper

Fig. 4. 3-dimensional models of a 7-tile wide DAE-E DNA nanotube.Each
tile is drawn in a different shade. Diagrams were prepared using NAMOT [8]
and PyMol [31] software.

is robust, implementable, and also forms 3-dimensional paths
in addition to 2-dimensional ones.

III. PRELIMINARIES

A. Problem Definition

Formally, the goal of a path-finding problem is to connect a
start locations with a destination regionD by self-assembling
a path between them.s is located at the origin and other points
are referred to in spherical coordinates, i.e.(r, θ, φ).

We will first consider anidealized version of the path
finding problem. In the idealized path finding problem, a DNA
nanotube grows froms and can diffuse in any angle in three
dimensions. Thedestination object, D of destination sized is
the set of pointsD = {(p, θ, φ) such thatr < p < (r+d), θ <
θc} whereθc = arctan d

r+d
.

In practice, the start and destination objects are attached
to large flat surfaces (Figure 1), and DNA nanotubes cannot
grow or diffuse through these surfaces. In theimplementation
version of the path finding problem, a DNA nanotube grows
from s and can diffuse only in the regionθ ≤ π/2.

B. DNA Nanotube Growth

In this section we describe the construction of DNA nan-
otubes and how DNA nanotube architecture and the physical
conditions for growth determine DNA nanotube growth rates.

We consider the growth of DAE-E DNA tile nanotubes.
DAE-E DNA tile nanotubes consist of DAE-E DNA tiles
(Figure 3) that assemble into a structure consisting of a
radial array of parallel DNA helices (Figure 4). A DAE-E
DNA tile consists of 5 short, synthetic DNA strands and is
14.3 nanometers long and about 4 nanometers wide. DAE-
E DNA tiles attach via the hybridization of the single strand
sticky ends on their four edges. A DAE-E DNA tile nanotube
with n helices hasn/2 tiles in each layer and in practice,
DAE-E DNA nanotubes with 8–24 helices are known to be
stable [35]. In this paper, DAE-E DNA tiles and DAE-E DNA
tile nanotubes will be henceforth referred to simply asDNA
tiles andDNA nanotubes.

Experiments with DNA tiles [36, 38, 29] support a model
where tile attachment and detachment rates are first order
chemical reactions [48]. The ratekon at which a tile attaches
at such a site is given by

kon = kf [t] (1)



wherekf is a diffusion controlled forward rate [45] and[t]
is the concentration of the tiles in the environment. This rate
means that tiles arrive at an attachment site at exponentially
distributed times, where the mean iskon. A tile attached to
a nanotube byn sticky end bonds detaches from the DNA
nanotube at ratekoff,n:

koff,n = kfe−
∆Gn
RT (2)

where∆Gn is the Gibbs free energy of attachment byn sticky
end bonds,R is the universal gas constant, andT is absolute
temperature. Sticky end binding is cooperative, so that∆Gn

increases withn [33, 9, 29].
Whenkoff,2 < kon ≪ koff,1, i.e. when the attachment of

a tile to a DNA nanotube is favorable only if the tile attaches
by at least 2 bonds, DNA nanotubes grow quickly from a
seed structure where tiles can attach by 2 bonds, but slowly in
free solution, where attachments by just 1 bond are requiredto
initiate the growth of a new DNA nanotube [14, 38, 39]. Under
these conditions, DNA nanotubes grow by the attachment of
tiles at the DNA nanotube’s distal end, and most attaching
tiles form two sticky end bonds.

We used a simple stochastic kinetic simulation of DNA
nanotube growth [15, 48] to estimate nanotube growth rates.
In the simulation, a tile could attach to a DNA nanotube
in a location where it formed two bonds and detach from
a DNA nanotube if it was attached by no more than two
bonds. We used experimentally measured values ofkf , ∆H
and ∆S in the simulation.kf for a similar type of DNA
tiles has been measured and is approximately 3,000,000 per
Molar per second, where Molar is moles per liter [17].∆G =
∆H − T∆S has been measured for similar DNA tiles, where
T is absolute temperature.∆H = −102.4 kilocalories / mol
and ∆S = −0.300 kilocalories / mol [38]. Our estimate for
the growth rate of a 12-tile-wide DNA nanotube in tile rows
per unit time was the average time it took to grow a row in
the simulated growth of about 2000 tiles. For experiments that
take place at around 305 Kelvin and 40 nM tile concentration,
we found that a 6-tile wide DNA nanotube grows 14.3 nm
(the length of 1 tile row) about every 94.2± 1.6 seconds (1.6
seconds is 2 standard deviations of the predicted time per row
in 100 iterations of this simulation). We used this value forthe
growth ratev in the next section. The fluctuations in length
due to the stochastic nature of growth should be on order the
square root of the DNA nanotube length (in tile rows) and were
ignored in our analysis. The growth rate can be made faster
or slower by increasing or decreasing the tile concentration.

C. Polymer Dynamics

Previous studies indicate that DAE-E DNA nanotube stiff-
ness and thus diffusion rates are consistent with existing
polymer physics models. This section describes the basic
components of these models that are used in the analysis of
the path finding algorithm in the next section.

Because a polymer’s repeating units are physically con-
nected, the directions of the units’ Brownian motion are
correlated, and the degree of correlation in this motion is

the polymer’s stiffness. The basic unit of polymer stiffness
is its persistence length, formally the length scale over which
correlations in the direction of the polymer’s tangent vector
are lost. The persistence length of a polymer is intrinsic to
its repeating structure, i.e. there is a persistence lengthfor
double-stranded DNA, which isphelix = 50 nanometers [42].
Assuming that the Young’s modulus of a DNA helix and a
DNA nanotube are the same, the persistence length of a DNA
nanotubes is predicted to be [35]:

ptube

phelix

= 2N

[

1 + 2

(

R

r

)2
]

(3)

where ptube is the persistence length of the nanotube,N is
the number of helices in the nanotube,R is the nanotube
radius andr ≈ 1 nanometer is the radius of a DNA double
helix. This equation predicts that 6-tile-wide to 12-tile-wide
nanotubes should have a persistence lengths from 10 to 80
µm respectively. These values are qualitatively consistent
with experimentally measured values of nanotube persistence
length [35, 14]. The width of the DNA nanotubes used in
the path finding algorithm can be controlled by designing the
seed for the DNA nanotube’s to grow DNA nanotubes of the
desired width [2]. It seems feasible to make DNA nanotubes
with a persistence length of up to 12 tiles around, or≈ 80
µm.

When a polymer is much shorter than its persistence length,
it is classified asrigid and behaves much like a straight rod.
Since in our path finding algorithm one end of the growing
nanotube is attached to the start point, a rigid nanotube diffuses
by rotation only. In this case, if a DNA nanotube has lengthl,
the end of the DNA nanotube is effectively diffusing around
the surface of a sphere with radiusl. The diffusion speed is
characterized by a rotational diffusion constant, which wewill
call Drot. If a nanotube has lengthl and the location of a
nanotube’s end point at timet is u(t), then

〈

(u(t) − u(0))2
〉

=
4Drotl

2t [12]. Here we consider tube lengths up to 25µm,
which is much less than the 80µm persistence length of some
DNA nanotubes, so we assume that the diffusing tube is rigid.

The rotational diffusion constant of an isolated polymer in
a fluid appears to be dependent mostly on the polymer’s size
rather than its molecular type [50], and enough information
about rotational diffusion constant exists to allow us to predict
the changes that DNA nanotubes will find their destination in
this regime.

IV. PATH FINDING EFFICIENCY

A. Analysis of Path Finding Efficiency in an Idealized Geom-
etry

We are interested in the question of whether a DNA
nanotube finds its destination via diffusion as it grows. When
a DNA nanotube length’sl is less than the length to the edge
of the destinationr, the probability of the DNA nanotube’s
end hitting the destination is 0 (Figure 2). Similarly, when
the DNA nanotube’s end is longer thanr + d, whered is the
destination size, the probability of the DNA nanotube’s end



hitting the destination is also 0. We are therefore interested in
the chance that the DNA nanotube finds the destination when
r ≤ l ≤ r + d. The time during which the DNA nanotube’s
length is in this regime ist = d/v, wherev is the growth
speed of the DNA nanotube.

If dtube is the DNA nanotube’s cross-sectional diameter,T
is absolute temperature,kb is Boltzmann’s constant andηs the
is viscosity of the solution the DNA nanotube is grown in, the
rotational diffusion constant (in distance squared per time) is
approximately [50]:

Drot = 3kbT
πηsl

(δ − ζ) (4)

δ = log
(

2l
dtube

)

(5)

ζ = 1.45 − 7.5
(

1
δ
− 0.27

)2
(6)

whereδ and ζ are hydrodynamic correction factors. When
l < r, the probability density that the DNA nanotube is
oriented at angles(θ, φ) is uniform, i.e.ρl(θ, φ) = 1

4πl2
. If

θ < θc = arctan d
r+d

when the DNA nanotube first grows
to a lengthl ≥ r, the DNA nanotube immediately attaches
to the destination and has succeeded in building a path. The
probability that the DNA nanotube hits immediately,P0 is

P0(r, θc) =
∫ 2π

0

∫ θc

0
r2 sin (θ) ρr(θ, φ) (7)

= 1
2 (1 − cos (θc)) (8)

If upon reaching lengthr the DNA nanotube does not
hit the destination immediately, the probability density of its
orientation is uniform over all pointsθ > θc. We can use
the diffusion equation over the probability distribution that a
DNA nanotube is located at some angle (i.e. the Smoluchowski
equation) to determine the fraction of DNA nanotubes that find
the destination by diffusing into it,Pdiff .

The diffusion equation in spherical coordinates is given by

∂ρ

∂t
=

D

r2

[

∂

∂r

(

r2 ∂ρ

∂r

)

+
1

sin2 θ

∂2ρ

∂φ2
+

1

sin θ

∂

∂θ

(

sin θ
∂ρ

∂θ

)]

(9)
Because we ignore the small fluctuations in DNA nanotube

length, there is no diffusion in thêr direction, and because
the destination is radially symmetric with respect toφ̂, ρ is
independent ofφ. The diffusion equation therefore simplifies
to:

∂ρ

∂t
=

Drot(r)

r2 sin (θ)

∂

∂θ

(

sin (θ)
∂ρ

∂θ

)

(10)

with boundary conditions

ρ = 0 at θ = θc (11)
∂ρ

∂θ
= 0 at θ = π (12)

The boundary conditions stipulate that if a DNA nanotube
hits the destination it is absorbed, and if it hits the pole
opposite the destination it continues to diffuse.

In the case wherer ≫ d, i.e. where the destination is
small and far away, the diffusion constant does not change
significantly over the time that the DNA nanotube could hit

it. In this case,Drot is approximately constant forr ≤ l ≤
r + d, and the time it takes before the DNA nanotube first
diffuses into the destination is approximately exponentially
distributed [44] with mean [22]:

〈thit〉 ≈ 2
r2

Drot

[

log 2
1−cos θc

1 + cos θc

− 1

]

(13)

The length of time during which a DNA nanotube can hit
the destination istmax = d/v. The probability that the DNA
nanotube diffuses into the destination,Pdiff , is therefore

Pdiff ≈ 1 − exp

[

tmax

〈thit〉

]

, (14)

so the total probability that the DNA nanotube successfully
finds the destination is

Phit ≈ P0 + (1 − P0) Pdiff . (15)

Combining Equations 14 and 13 gives

Pdiff ≈ 1 − exp







−d/v

2 r2

3kbT

πηsl
(δ−ζ)

[

log 2

1−cos θc

1+cos θc
− 1

]






(16)

Some algebra simplifies this equation to

Pdiff ≈ 1 − exp







−dC(δ − ζ)

vr2l
[

log 2

1−cos θc

1+cos θc
− 1

]






(17)

where C = 3kbT
2πηs

, a constant that does change with either
destination distance or size.

Figures 5 and 6 showPhit for the rotational diffusion
constant in Equation 4 and the DNA nanotube growth rate
given in Section III. The viscosity of the solution was as-
sumed to be the viscosity of water at 305K,7.98 × 10−4

Pa·s. Probabilities were computed via numerical integration
of Equation 10 and its approximate analytical solution given
in Equation 17. The results of numerical integration and of
the analytical approximation are similar and both methods
suggest that for short distances (< 10 µm), virtually all DNA
nanotubes should find a destination with a diameter of 500
nanometers. The probability of finding the destination drops
sharply as bothr increases andd decreases, however.

To quantitatively determine how the probability of finding
the destination scales with increasingr and decreasingd,

note that
(

log 2

1−cos θc

1+cos θc
− 1

)

increases asθc decreases.Pdiff

therefore decreases with decreasingθc. In contrast, the factor
δ − ζ increases withlog r.

Thus, asr increases for constantd, 1 − Pdiff increases as
exp

[

−1/Ω(r3)
]

. That is, as the destination becomes further
away, the probability of a DNA nanotube hitting the desti-
nation before growing too long to do so drops exponentially
as the cube of the distance! Asd decreases for a constant
destination distancer, 1 − Pdiff scales as approximately
exp [−Ω(d)]. SinceP0 ≪ Pdiff for all but the closest, largest
destinations,1 − Phit scales approximately as1 − Pdiff .
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While the chances of hitting the destination decrease
exponentially with increasing destination distance or de-
creasing destination size, decreasing the speed of DNA
nanotube growth can drastically improve the performance.
log (1 − Pdiff ) changes asΘ(1/v). That is, halving the speed
of growth roughly squares the probability of missing the
destination.

B. Simulation of Path Finding in an Implementation Geometry

In a path finding implementation, the start and destination
markers are attached to solid objects that prevent a growing
DNA nanotube from moving freely in every direction. Addi-
tionally, the geometry of the destination marker is unlikely to
have a shape, as shown in Figure 2, where for each length
l in the ranger < l < r + d, the extent of the destination
structure is described by the sameθc. These features of
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Fig. 7. Simulated probability of hitting a target in the implementation
geometry. The thick line shows the simulated probability of hitting a
destination, a half sphere of radius 100 nm located on the sameflat surface
as the start point. Error bars are two standard deviations. The dashed line
is the approximate analytical values ofPhit for the idealized geometry with
destination size 200 nm.

an implementation can change the rate and pattern of DNA
nanotube end diffusion, and therefore path finding efficiency.

We developed a stochastic simulation of DNA nanotube
diffusion to predict path finding efficiency in geometries
containing irregular environment and destination marker ge-
ometries. We tested this simulation on a particularly simple
implementation geometrywhere both the start and markers
are attached to a solid surface and where the DNA nanotube
is otherwise free to diffuse.

The destination in the implementation geometry is a half
sphere with radius 100 nm centered on the surface. The seed
size is 100 nm and DNA nanotubes were 12 tiles wide. DNA
nanotubes can diffuse in any direction that did not collide
with the surface to which the destination and surface markers
were attached. The temperature, tile concentration, and sample
viscosity in the simulation were the same as those used in
Section IV-A.

The stochastic kinetic attachment and detachment of tiles
governed DNA nanotube length as described in Section III-
B. Diffusion was modelled via a standard algorithm for
discretized Brownian dynamics on a sphere [12] where dif-
fusive motion vectors were generated by moving the DNA
nanotube a randomly angle on the plane tangent to the sphere
and projecting the final point back onto the surface of the
sphere. We used a time step of 10µs, or an average DNA
nanotube movement of 11-12 nm per time step forl = 3
microns. Approximately 100 DNA nanotubes were simulated
per destination distance.

The results of the simulations are given in Figure 7.Phit

in the implementation geometry scales similarly toPhit in the
idealized geometry, but the absolute probability is slightly less
in the simulated implementation geometry than in the idealized
geometry. Both of these results are to be expected. Unless
an obstacle prevents the DNA nanotube from reaching the
destination (in which case the probability of forming a path



is 0), the efficiency is related to the ratio of the volume that
the DNA nanotube’s end can diffuse through and the volume
covered by the destination. This ratio scales at the same rate for
both the idealized geometry and the implementation geometry.
In the implementation geometry, the probability of hittingthe
destination, a half sphere, changes significantly forr − d ≤
l ≤ r + d, whereas in the idealized geometry, the probability
of the tube hitting the target does not change over this length
interval. Because the overall volume of the destination in the
implementation geometry is smaller than the volume of the
destination in the idealized the geometry, the probabilityof
hitting is slightly less in the implementation geometry.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

We’ve described an algorithm for assembling a molecular
path between two points and used analysis and simulations to
determine how the algorithm’s probability of success scales
with the size of the destination and its distance from the
start point. The probability that the self-assembly process
will complete when the necessary path is short (less than
10 microns) and the destination is large (more than 500
nanometers in radius) are high, meaning that the algorithm
is practical for many situations.

However, we’ve also shown that the performance of the
algorithm falls off superexponentially as the distance to the
destination increases and at least exponentially as the desti-
nation size decreases. These performance drop-offs are not
optimal: a linear search for non-growing tubes would com-
plete successfully with probability 1 in a time that decreased
quadratically as the destination distance increased and asthe
destination size decreased. It is therefore worth considering
mechanisms that would improve the performance of the search
process. It may be difficult to do so with the existing capac-
ities of designed molecules, but an evaluation of the kinds
of information processing that would provide a qualitative
improvement in path finding performance could be used to
guide the development of new molecular components.

The current algorithm’s exponential performance decreases
are caused by the random search for the destination and the
limited time window during which a DNA nanotube can find
and attach to a destination. Speeding up or changing the
diffusion process would therefore simply change the exponent
of performance falloff by a constant factor. But if a DNA
nanotube could specifically growtoward the destination, per-
formance might be improved. This would be possible if the
destination could somehow communicate information to the
growing DNA nanotube about its location in advance of con-
tacting it. This type of communication occurs during growth
of the Xenopus laevismitotic spindle, where a gradient of
small molecules forms around the destination for microtubule
attachment [4]. One might be tempted to use such a gradient
to increase the DNA nanotube’s growth rate as it neared the
destination, but such a mechanism might actually decrease the
probability of finding the destination, because as the DNA
nanotube approached the destination it would grow faster and

Destination

Start

Tube is free to

grow and di!use.

Way station

Way station

After a way station is formed at a tube’s end,

both tube ends are "xed and cannot di!use.

A second generation

of tubes grows from a

way station, continuing to

search for the destination.

A second generation

of tubes grows from a

way station, continuing to

search for the destination.

Fig. 8. A divide and conquer approach to molecular path finding.
Instead of a single DNA nanotube growing and looking for the destination by
diffusion, an initial set of DNA nanotubes could each stop growing and create
fixed “way stations” from which a second set of DNA nanotubes could grow.
The arrangement of way stations would be distributed evenly in space if each
way station emitted a gradient preventing other way stationsfrom forming
nearby. This process could happen recursively, allowing DNA nanotubes to
locate faraway destinations efficiently.

faster, decreasing the time available for searching for the
destination.

In Xenopus laevis, the gradient directs microtubule growth
via a more subtle mechanism. Microtubules exhibitdynamic
instability—i.e. they grow with a constant rate for a period
of time, and then occasionally undergocatastrophes, periods
of abrupt shrinking [27]. By allowing length decreases as
well as increases, dynamic instability would improve the
chances that a DNA nanotube would find the destination
eventually, by giving the DNA nanotube more than one chance
to explore the area that is the right distance from the start
point. Dynamically unstable growth combined with a gradient
of molecules emanating from the destination that decreased
the frequency of catastrophe might create a qualitative im-
provement in the probability of finding the destination: a DNA
nanotube would remain short, diffusing quickly, until it found
the generally correct direction to hunt for the destinationwhere
the concentration of molecules that reduced the probability of
catastrophes was highest [49]. So long as the DNA nanotube
continued to diffuse in an area where the concentration of the
catastrophe-reducing molecule was high, it would continueto
grow. Further, if the DNA nanotube missed the destination,
it would undergo catastrophes that would shorten the DNA
nanotube until it became approximately a length that could
reach the destination.

Another possibility would be to consider parallel searching.
In one such approach, the DNA nanotubes could occasionally
attach to a nearby surface and stop growing, creating a “way
station” from which several new DNA nanotubes could begin
growing. If way stations emitted gradient signals discouraging
the creation of other way stations nearby, DNA nanotubes
might distribute such stations evenly in space (Figure 8). A
way station would have the effect of speeding up the search
because DNA nanotubes growing from the way stations would
be shorter than DNA nanotubes that had grown all the way
from the start point and therefore would diffuse more quickly.
However, this algorithm’s application would be limited to
environments where surfaces or other stationary structures
were available for way stations to attach to. Implementing a
clean-up process to remove way stations and DNA nanotubes



that are not part of a successful path would also be necessary.

REFERENCES

[1] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T. F.,
Nagpal, R., Rauch, E., Sussman, G. J., Weiss, R. “Amorphous Comput-
ing,” Communiciations of the ACM, vol. 43, iss. 5, pp 74–82, 2000.

[2] Barish, R., Schulman, R., Rothemund, P. W. K., Winfree E. “An
Information-Bearing Seed for Nucleating Algorithmic Self-Assembly,”
Proceedings of the National Academy of Sciences USA, vol. 106, no.
15, pp 6054–6059, 2009.

[3] Barraquand, J., Langlois, B., Latombe, J. “Numerical Potential Field
Techniques for Robot Path Planning,”IEEE Transactions on Systems,
Man and Cybernetics, vol. 22, no. 2, pp 224–241, 1992.

[4] Bastiaens, P., Caudron, M., Niethammer, P., Karsenti, E. “Gradients in
the self-organization of the mitotic spindle,”Trends in Cell Biology, vol.
16, no. 3, pp. 125–134, 2006.

[5] Bath, J., Green, S. J., Turberfield, A. J. “A free-runningDNA motor pow-
ered by a nicking enzyme,”Angewandte Chemie International Edition,
vol. 44, pp. 4358-4361, 2005.

[6] Beal, J., Bachrach, J., “Infrastructure for engineeredemergence on
sensor/actuator networks,”IEEE Intelligent Systems, vol 21, iss. 2, pp
10–19, Mar. 2006.

[7] Brun, Y. and Reichus, D. “Path finding in the tile assembly model,”
Theoretical Computer Science, vol. 410, pp 1461–1472, 2009.

[8] Carter, II, E. S., Tung, C.-S. “NAMOT2 – a redesigned nucleic acide
modelling tool: construction of non-canonical DNA structures,” Bioinfor-
matics, vol. 12, no. 1, pp 25–30, 1996.

[9] Chen, H.-L., Schulman, R., Goel, A., Winfree, E. “Preventing Facet
Nucleation During Algorithmic Self-Assembly,”Nano Letters, vol. 7, no.
9, pp. 2912–2919, 2007.

[10] Chen, H.-L., Goel, A. “Error Free Self-Assembly using Error Prone
Tiles,” DNA Computing 10, Milan, It., pp 62–75, Jun. 2004.

[11] Cook, M., Soloveichik, D., Winfree, E., Bruck, J. “Programmability of
Chemical Reaction Networks,”Algorithmic Bioprocesses, Berlin Heidel-
berg: Springer, 2009, pp 543–584.

[12] Doi, M. and Edwards, S. F.,The Theory of Polymer Dynamics. Oxford,
England: Oxford University Press, 1986.

[13] Douglas, S. M., Dietz, H., Liedl, T., Ḧogberg, B., Graf, F., Shih, W. M.
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