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Abstract—Autonomous applications of legged platforms will [IE] limit their utility for use with fully autonomous motsl
inevitably require accurate state estimation both for feedback platforms. Visual state estimation methods by themselfies o
control as well as mapping and planning. Even though kinematic 4, ot offer sufficient measurement bandwith and accuracy

models and low-bandwidth visual localization may be sufficient S .
for fully-actuated, statically stable legged robots, they are in- and when they do, they entail high computational loads treat a

adequate for dynamically dexterous, underactuated platforms NOt feaSib|? for autonomous Opel’{:ltim[lﬂ- As a conseqienc
where second order dynamics are dominant, noise levels are a combination of both proprioceptive and exteroceptivessen

high and sensory limitations are more severe. In this paper, we are often used within filter based sensor fusion framewarks t
introduce a model based state estimation method for dynamic combine the advantages of both approaches.

running behaviors with a simple spring-mass runner. By using an In thi h h h f Vi
approximate analytic solution to the dynamics of the model within n this paper, we show how the use of an accurate analytic
an Extended Kalman filter framework, the estimation accuracy of motion model and additional cues from intermittent kinemat
our model remains accurate even at low sampling frequencies. events can be utilized to achieve accurate state estimftion
We also propose two new event-based sensory modalities thatgynamic running even with a very limited sensory suite. To
further improve estimation performance in cases where even w,ic eng e work with the well-established Spring-Loaded
the internal kinematics of a robot cannot be fully observed, ) : )
such as when flexible materials are used for limb designs. INverted Pendulum (SLIP) model of running, illustrated in
We present comparative simulation results to establish that Fig.dl [19,[6]25], for which we consider a variety of diffeten
our method outperforms traditional approaches which rely on available sets of sensor inputs and characterize how rdduce
conztafmt acceleration mogon mo?els and that it leliminates the sensory information impacts performance and investigatesw
need for an extensive and unrealistic sensor suite. in which accurate motion models and event-based stateegpdat

| INTRODUCTION can be used to cope with sensory limitations.

The ability of a robot to move around and act on its envi- liftoff touchdown liftoff
ronment critically depends on its ability to sense the stdte A flight A stance A
both itself and its environment. Consequently, state egiom '
methods have been a crucial component of research on mobile
robotics with a wide variety of methods developed for plat-
forms with simple movement patterns such as wheeled robots
or kinematically observable designs such as fully actuatet
statically stable legged robots| [9] even while moving asros -
rough terrain|I|8]. However, numerous challenges still efas
accurate state estimation with robots capable of dynalyical T
dexterous mobility since such platforms are often underact
ated and rely on second-order dynamics with state compsnent
not fully observable through kinematics alone. For inséanc
most efficient dynamic legged gaits such as the bound, the
gallop, the trot and the pronk, all incorporate substartiigtht

phases during which there is no ground contact and man ectionT] describes related existing work in the literatur
l%ction[ﬂ] then describes our state estimation method we

components of the robot state cannot be observed thro followed b imulati its in S Y,
proprioceptive sensing. Moreover, the presence of flexi opose, followed by our simulation results in Sectiod IV.

materials and compliance in a mechanism may introdu§§
additional complications, requiring additional instrumtegion
and associated sources of uncertainty and unreliabil&. [1

A possible solution to this problem is the use of exterocep- The problem of reconstructing the unknown state of a
tive sensing methods such as vision or range-sensing bag thédynamical system from sensor measurements has a richyhistor
are often incapable of meeting the bandwidth and accuraayd associated literature_[27]. While this problem has well-
requirements of feedback controllers necessary to rglialdtudied and established solution for linear syste{fns [#heeo
stabilize dynamic behaviors. Limited workscapes assediatsponding methods for nonlinear systems are diverse aneldvari
with external motion tracking systerrE[l?] and the intetemt in applicability and performance. In this context, the Exted
nature of GPS-based measurements in certain environmdtadéman Filter (EKF) [Ez,l] has been widely used in the

Fig. 1. The Spring-Loaded Inverted Pendulum (SLIP) model

ctionY concludes the paper.

II. RELATED WORK



robotics community, closely followed by particle filter leals whereas stance dynamics in dimensionless polar coordinate
methodlelZ] for global localization and SLAM probler@[%]relative to the foot locatiory; can be written as

One of the distinguishing aspects of legged locomotion, - S
both from an estimation as well as a control perspective, is [ w } = { -g’QWH’mW” . )
the invariably hybrid nature of associated dynamic models. P pY7 —costp —k(p—1)
Consequently, a number of hybrid estimation methods hakgrther details of this model, its dynamics and their dimen-
been proposed for systems with multiple different phaséinless formulation can be found in related literatlire; [23.
with distinct dynamics [[20] such as different leg contags  Estimation Framework
configurationsﬁéﬂB] or surface conditioEJ[30]. In ang&a
the consideration of structurally different hybrid statéshe
system substantially improves performané [15, 16]. Mo
recent work addresses the problem of both identifying dffie
legged gaits and using appropriate estimation algorithnas

Following a similar approach to earlier work on hybrid
state estimation for legged behaviors, we will use an Exdédnd
Kalman Filter (EKF) to process sensor readings at a frequenc

, with the associated period definedZs= 1/f. In addition

) T 0 these periodic readings, we will also assume that event-
models for each to improve state estimation performand [2 « " : :
ased “asynchronous” readings are also available to detect

Not surprisingly, when accurate motion models are avaélal}ouchdown and liftoff events
for different modes of a hybrid dynamical system, they can Within this framework wé will rely on the presence of

be ;ncorporatl%cl‘iéatg th\i/ esu(;nattlon frgmlework to 'mﬁ r9\<Bl:“tr'fsufficiently accurate but possibly noisy, discrete motion a
periormance ]. We a opt a simiar approach In Mig.q,ciated sensor models for a single sampling period with
paper, and focus on the Spring-Loaded Inverted Pendulum

(SLIP) model that has been widely accepted and adopted both Xn = giXn_1,up 1) +Wip )
as a descriptive model and a control tardet [22] for running Z, = hjX,)+vVjn, (4)
%ﬁ%ﬁjkgfg \flsirdgIg:;%ggnscfiﬁi?gdagsr;?ﬁgaenil;%?o\svshere X reprgsTents either the .(dimensionless) flight state
this model, leading to recently proposed approximate aicaly”~/ *~ i Y% Z]" or the (dimensionless) stance stag :=
solutions to its dynamics [24] that are sufficiently acceral?:v,p;p] . The subscript indicates the presence of different
to support formal inquiries on the stability of associatefhotion models for different phases of the system gnd
behaviors as well as the design of locomotion controliets [2ndexes different choices of sensor sets. The vectos,

The state estimation method we propose in the present pap@f W;.» denote process and observation noises associated
also exploits the simplicity and accuracy of these anayticWith inaccuracies in each motion and sensor model. In the

solutions for improved performance. rest of the paper, we do not focus on how SLIP locomotion
is controlled, but assume that a suitable controller is ehos
Il. STATE ESTIMATION WITH THE SLIP MODEL to stabilize the gait through the regulation of touchdowd an

In the following sections, we will describe how continuoudftoff leg lengths together with the touchdown leg angle to
analytic models and event-based measurements can be yseld u,, in every steplﬂﬂﬂ%
to achieve accurate state estimation for running with thEPSL ~ Similar to earlier work on hybrid state estimation, we sWitc
model. In particular, Section II[HA briefly describes thelBL between different motion and sensor models as necessary. In
model and its dynamics, followed by a general overview of owur application of the Extended Kalman Filter, we linearize
estimation framework in Sectidn 1lIB and associated motioboth the motion and sensor models and use standard filter
and sensor models in Sectidns 1lI-C dnd TlI-D, respectively prediction and update equations|[27].

A. SLIP Model and Dynamics C. Motion Models for SLIP

The well-known Spring-Loaded Inverted Pendulum, shown A common tradition in inertial guidance literature is to use
in Fig.[d consists of a point mass connected to a passive,@ constant acceleration model during the motion prediction
massless leg with linear complianée Throughout locomo- phase of the Kalman filtef[5, 116]. In the present paper, we wil
tion, it transitions between stance and flight phases ard-altuse this model as a baseline for evaluating the performahce o
natingly experiences touchdown and liftoff events in betwe our much more accurate, model-based motion model derived
During flight, the body only experiences the gravitationdhrough approximate analytic solutions to the SLIP dynamic
acceleration whereas during stance, the leg exerts spnidg & this section, we present the details of both of these motio
damper forces on the body. In order to ensure general ap[ﬂlode|8 to be used throughout our simulation studies.
cability of our results, we adopt a dimensionless formaofati ~ Since flight dynamics induce simple ballistic body trajecto
of the system dynamics wherein we scale time variables (afi@s, we use only a single motion model for the flight phase,
derivatives with respect to time) with := |/py/g to yield denoted withg; and defined as

t :=t/) and scale all positional variables with the spring rest 1 T 0 0 0

length asy := 4/po and z := z/py. The flight dynamics in 01 0 0 0

these dimensionless coordinates take the form Xro=lo o1 7| 7| mp (®)
i, 2" =10, -1, (1) 000t T



1) Constant Acceleration Motion Model (CAMJhis com- to the dissipative model. The motion model takes the form

monly used motion model in the inertial navigation literatis O(T, Xp_1)
based on the assumption that accelerations in the systner, ei 1/5(T X 1)
measured through appropriate instrumentation, or predict Xs, = (T,Xn_ R (15)
through the use of system dynamic equations, remain cdnstan Z(T’ X:_i)

until the next sensor reading. In this paper, we evaluate ) . ] o
@) using the most recent state estimate to predict systéffjére velocity estimates are obtained through derivatfes
accelerations at the beginning of every update step. Werass) and [8). We then use straightforward analytic diffeient
that accelerations remain constant in polar coordinatgietd 10N to linearize this map around the current estimiie ,

the corresponding motion model for the stance phase as @nd obtain EKF covariance update equations. We omit the de-
tails of this straightforward derivation for space considions.

. )
é :f 8 8 (¥n—1T7)/2 D. Sensor Models

X,, = 00 1T s+ (..%‘j{;‘r)/? , (6) There are numerous practical challenges in the instrumen-
00 0 1 p "‘;T tation of dynamically dexterous, autonomous legged robots

particularly when compliant members are used within the
which is already affine in the initial system states and das rplatform designl[23]. Kinematic states of such flexible comp
need further linearization for use within the EKF frameworknents require the installation, calibration and readingtcdin

Not surprisingly, the performance of this motion modedauges, which are usually rather noisy and fragile, esfpecia
degrades as the state update frequency is decreased. On&hgn they are subject to harsh environmental conditionk suc
the major contributions of the present paper is to address tAS those experienced by legs on the platfoinj [15]. Conse-
problem using accurate analytic solutions to SLIP trajeeso duently, there is substantial practical benefit in decrepthe
with the motion model we describe next. number of required sensory components on such platforms. In

2) Approximate Analytic Motion Model (AAMYhe stance this sec.tion, we describe a number of different instruntena
dynamics of the SLIP model given ifl(2) do not admigltern.atlvgs for thg stance phase _of the S!_IP modgl. As psual
exact analytic solutions, making it impossible to constru¥€'Y little information can be obtained during the flight paa
a motion model based on analytically computed trajectorie¥ith only the leg angle measurable for the SLIP model.
Fortunately, a number of very accurate approximate saigtio 1) OptImI.StI.C 'Sensor Model (OSM)Ip this paper, we
have been proposed in the literatukel [10], with more receWt€ a@n optimistic sensor model with instrumented legs as
extensions to incorporate support for dampi@ [24]. a baselme_for evall_Jatlng the performance of more limited

The approximations proposed 24] were derived Consi}gnsory suites. In this model, we assume that the leg ahgle

ering the entire stance phase, combined with the flight ph42§ |69 léngthp and their derivatives and are all measured

to yield a return map to be used for controlling SLIP gait uring stance with an output vector defined as

and analyzing their stability. In our case, however, we need Z, =X, .

to support arbitrary initial conditions within the stancease We consider this alternative “optimistic” because of sahal

and use these approximations to predict the next state alon . .
. . . clrallenges in the reliable deployment of such sensors as
system trajectories at the end of the corresponding sagplin . Co . . .
: . . . evidenced by earlier implementation being constrained to
period. Consequently, we slightly modify solutions propas operation in primarily the indoorﬂhﬂm] Since the emtir
in [@] to support different initial conditions as P b y '

state vector is measurable for this sensor model, estimatio

6%, — g +YE+Z g performan_cg is expected to be better than other alterrs.;at_ive
W ) Yn-1 . /wolsin(9) 2 2) Realistic Sensor Model (RSMA much more realistic
= sin(¢ + wot)) , (") scenario would be when only the leg angle and its derivative
p(t,Xn—1) = M cos(wot +¢) + F/wy (8) are measurable. This can usually be accomplished through

accurate measurement of the body angle for a mobile robot

where we define [2d, (28], combined with optical encoder on hip joints. Even

I n 2/ 4 though flexible, composite leg designs may still introduce
Py = Pua¥nots wWo = \[RASP/pn, () complications, radial compliance is usually much more domi
F o= k—1+4p}/p) 1, (10) nant and orthogonal to the leg andle![19, 23, 14]. In any case,
A = pu_1—F/w?, B:=pu_1/wo, (11) the associated output vector is defined as
M = VA1 B2, ¢:=arctan(—B/A), (12) Z, = [y, 9]
Y = —2Fpy/(wipd_1) +3py/pi_1, (13) Since no information is supplied by the sensor about the
Z = 2Mpy/p>_, . (14) radial degree of freedom, this sensor model is expected to

yield low performance for the estimation of vertical degreé
Note that our derivations focus on the undamped SLIP modetedom under traditional motion models such as the cohstan
for simplicity of presentation but they can easily be extshd acceleration model.



3) Event-based Sensor Model (ESM)n addition to the Section[TV=Q then presents a comparative study of all four
periodic sensor measurements above, we will also introdusensor models, followed by an evaluation of the proposed
in this paper, a new, event-based sensor that can sub#tantiaotion model in Section TV=D under the sensor model found to
improve estimation performance by reintroducing limited | have the best performance while still being practicall\sfieke.
length measurements. In most legged robots, detection of | . ,
touchdown and liftoff for individual legs is relatively sight- A Simulation Environment
forward, either through motor armature current measurégnen Our characterization of the estimation performance with
or dedicated contact switch components. The latter optidifferent motion and sensor models focuses on steady-state
is also capable of asynchronously triggering related softw SLIP running gaits. To this end, we first generate a large
components, making it possible to decrease discretizationllection of SLIP trajectories with different dimensiesb
noise arising from the periodicity of sensor readings. spring constants: € [25,200] and steady-state apex states

The event-based sensor we introduced relies on the assump= [1.1,1.5] and g, eﬂ),Qb] under a deadbeat control
tion that the leg length is known to great accuracy at the tinsérategy as proposed in_[24]. These dimensionless gait and
of touchdown. The corresponding output vector is defined g@grameter ranges were selected to be consistent with both

P human running|]4] as well as existing small robotic platferm
Ze:=[v: 0], [@] In each case, the hybrid SLIP dynamics desdribe
extending the realistic sensor model with single, asyn- N Sectior(Il-A are integrated using the ode45 solver withi

chronous readindor the leg length at touchdown. Even thougtatlab until at least ten steady-state steps are completed.
a similar sensor reading can be obtained at liftoff, we orsly u€valuation of estimation performance exclusively focuses
this sensor at touchdown since damping may cause premaf{i@se last ten steps since this was found to be sufficient for
liftoff of the leg before it reaches full extension. convergence in all simulations except those where estmati
4) Time of Flight Sensor Model (ESMtEven though the diverges. From now on, we will use the tertmajectory for
ESM sensor model supports once-per-step corrections to ffiéh run to refer these ten steps starting from touchdown.
leg length estimates, it provides no additional informatio These “ground-truth” trajectories are then uniformly sam-
to correct for errors in the radial velocity component dgrinPl€d in time at a frequency for a realistic model of sen-
stance. Our simulation studies show that this leads toasea SOTY acquisition in physical robot platforms. We conside t
estimation errors and even divergence for low sampling fré@mPpling frequency to be an independent variable that will
guencies and inaccurate motion models. be shown to have substantial impact on filter performance.
In order to address this problem, we propose to augmenete: also, that smaller frequencies are much more desirabl
the ESM sensor model with time-of-flight measurements. TH@r Practical reasons since computational resourcesableito
sensor model also benefits from the relative ease in which f#éfonomous mobile robots are often inadequate to suppiart da

touchdown and liftoff events can be asynchronously detectgCduisition and processing at very high frequencies. Mango
in practice to yield the time-of-flight; := t — t,. In for smaller legged platforms with smaller mechanical time

contrast to the purely positional measurements provided Bgnstants associated with their locomotory motions (iffyc

the sensor models described above, the measurement of@hg-4Hz for dynamic running), maintaining filter perforncan
time of flight provides information on the vertical velociay for smaller sampling frequencies becomes even more crucial

touchdown under the assumption of a known ground profilfor Practical applicability.

The corresponding output vector is defined as Sensor reading; associated with each trajectory sample are
) then computed using ground-truth state components. Irr orde
Zy = [vV,0,p,t5], to ensure realistic conditions, we then add white, Gaussian

. . . . noise with a signal-to-noise ratio (SNR) of 40 on these senso
with the sensor map computing a prediction for the tlmeréadin s to yield the final sensory input to the state estimat
of-flight as a function of the (known but noisy) liftoff and 9 Y y np

. . .. Constant covariance matrices for each sensor model are then
touchdown heights and the touchdown vertical velogjtyby . : .
. o ) : ) chosen to be consistent with this SNR value. In contrast, we
applying ballistic flight equations in reverse to yield

compute the covariance matrix associated with the process
o 0 B noisew; ,, in (3) by computing prediction errors associated
by =—%at \/th 2(pta 008 i = P10 08 Yuo) - with the selected motion nﬁodel ((Fe)ither CAM or AAM) starting
Since this function depends on the vertical touchdown Vglocfrom a large set of initial stance states, applied to a sitigle
%14, its linearization can be used for an additional EKF updaggep of duratioril” = 1/f.
at touchdown. Once these uniformly sampled ground-truth data points and
associated noisy sensor readings are obtained, stateaestim
tion is initialized at the first touchdown statevith X, =
In this section, we present simulation studies for a compare,q, ¥+d, prd, [JO ], where we assume that initial estimates for
ative analysis of the proposed ESM and ESMt sensor mod#ie leg angle, angular velocity and length will be relatvel
as well as the AAM motion model. Sectibn TMA describes ousiccurate since they are directly measurable at touchdown,
simulation environment and introduces performance neetriavhereas the initial radial velocity may have large unceties

IV. ESTIMATION PERFORMANCE



due to the lack of its direct measurements. Consequently, Weis, in turn, yields a summary, mean square error measure
also consider the initial radial velocity at touchdowi, to for the entire duration of the 10 steady-state steps as
be an independent variable which will effect the perforneanc

n 1/2
of various estimation algorithms. We also initialize thatst 1 ! /
: : - Egi=—— Z EZ[n] (29)
covariance matrix at the initial touchdown state to be ng—mno+ 1 T ’
oy 0 0 0 e
P 0 o, 0 0 16 wheren, andn; are the sample indices for the beginning and
0-= 0 0 o, 0 (16) the end of the 10 step steady-state period. Finally, stetaig-
0 0 0 o errors normalized with respect to filter confidence are capitu

whereoy, o, ando, are chosen to be equal to the proceé%y the Negative Log Likelihood (NLL)neasure defined as

noise of the motion model and, in correspondence to the o ( . )
initial estimation error, — p, in the initial radial velocity. NLL[n] = —log N(C[n]’P[n])|C[n] ’ (20)

— where ' denotes the multivariate Gaussian probability distri-
-_esimaed|  bution function,c[n] is the true system state angh] andP[n]
denote the estimated mean and covariance, respectively.

It is difficult to directly use the instantaneous error measu
of (I8), the NLL or covariance estimates in determining
EKF convergence since they show fluctuations induced by the
alternating stance and flight phases. Consequently, piymar
for reporting purposes within this paper, we filter the etrar
J— ; ; ; ; ; ; ; ; — jectory with a}fourth order zero-phase forward and backward
& 0 W Butterworth filter with a cutoff frequency equal to quartdr o
T the stride frequency of the hopper to yield tfikered error

W4 s s 10 12 1 18 18 20 trajectory Ep[n]. Using this filtered error trajectory, we report
the estimator to have converged if one of the following two
Fig. 2. An example trajectory and estimation results for eattposition conditions are satisfied:

(top) and velocity (middle) under our state estimation frammbweith the : :
AAM motion model and the ESMt sensor model with a sampling peribd o 1) EF[nf] < 5, meaning that the last state estimate has

T = 0.03 (100Hz forpy = 1). Estimation starts with 50% error in the radial lower than 5% error.
velocity estimate (shown by a black diamond) once steadg-saeached at ~ 2) Ep[ns] < 100 and [Zrln=l=Frins=2l] ¢ o5

the end of the shaded region. States are in dimensionlesdicates and the - . Epny]
bottom plot shows the determinant of the estimated covariamateix P in meaning that the filtered error reached Steady'State and

logarithmic scale. the final error magnitude is not abnormally large.

Fig. [ il le SLIP trai heh _Note that the second condition is necessary for situations
h '9. I'l us_trate? an example Itra!ehctory,_ fgﬁt eAAWI\I/IRNhere the steady-state error is far from zero but still shows
the application of our estimation algorithm with the convergence. If neither of these conditions are satisfies, w

mh_otlcf)_n mod;luall:nd the ES.Mt sensor model. AsdeV|degt fro@)nsider the estimator to have diverged and do not incorpora
this figure, trajectories converge to steady-stataerat v, associated run in our average error results.

quickly (in three steps) under the deadbeat controller.hat t
third touchdown, around = 6.2, the estimator starts with a CAM Motion Model
relatively large, 50% error in the radial velocity and quyck

converges under the motion and sensor models proposedin thi

Gait Transient Gait Steady State

[ [ OSM | RSM [ ESM | ESMt |

. ) : Es (%) Mean || 2.63 | 27.61 | 18.62 | 12.49

paper, despite the relatively long flight phases where neaen Es (%) Std.Dev| 3.38 | 35.88 | 17.10 | 10.50
information is available. The corrective effect of the thoie [ MeanNLL | -5.06 | 327.3 | -4.32 | 6.35 |
flight update around = 8.8 is clearly visible in the bottom [ % Converged || 99.63 ] 33.77 | 98.87 | 99.42 |
plot, illustrating the determinant of the covariance matri AAM Motion Model
B. Convergence Criteria and Performance Metrics l %) [ OSM | RSM [ ESM | ESMI |

In order to assess the estimation performance of different Eg Mean 162 | 11.12] 4.08 | 3.83
motion and sensor model options, we define an instantaneous, Es Std.Dev || 1.04 | 22.18| 214 | 1.96

[MeanNLL || -4.79 | -0.63 | -4.90 | 6.43 |
[ % Converged[[ 99.91 | 86.69 [ 99.97 | 99.97 |
. TABLE |
Ee[n] :=100(¢[n] — ¢[n])/ max(c[n]) . (17)  CONVERGENCE PERCENTAGES AND STATISTICS FOR THE SUMMARY MEAN
" ) SQUARE ERRORE s AND NLL MEASURES COMPUTED ACROSS ALL
We then use a percentage error measure to characterize pe¥tTiAL CONDITIONS AND TRAJECTORY PARAMETERS FOR DIFFEREMN
formance, defined as MOTION AND SENSOR MODEL PAIRS(8750RUNS EACH).

Er[n] = (Byln]® + E.[n] + E:[n)*)'* . (18)

normalized estimation error associated with each compgonen
of the apex state; € {9, z, £}, as




L O 100% converged

w

Having defined relevant performance metrics, Table | s

— 35
marizes the convergence and estimation error perform g 397%,\ T
for both the CAM and AAM motion models and the fo gzse-,,°_~_~_éa_—‘g'"?_ff°"‘G~~-g__ L
sensor models described in SectionTll-D averaged overir > 2f Rl . S s
condition ranges given above, frequencfes [100, 1000] and S 15 P S
,L ‘ ‘ ‘ &

initial radial velocity errors(po — po)/po € [—0.2,0.2].

C. Comparison of Sensor Models

We begin evaluating the performance of our estima
method by a comparison of different sensor models.
mean error figures in Tablé | show that the optimistic set
model (OSM) naturally yields the best estimation perforoea
in general and provides an “optimal” baseline measure.
surprisingly, the transition to the realistic sensor mdgk$M) z
is accompanied by a sharp decrease in the convergence 61
centages and an associated increase in the mean estir
errors for convergent trajectories. Interestingly, hogrevthe
AAM motion model compensates for the deficiencies of the
RSM sensor by enforcing conservation of angular momentumig. 3. Average convergence time (top), estimation errorsdte)dand NLL
performing corrections on leg length based on angular itglocmeasures (bottom) for the OSM, RSM, ESM and ESMt sensor modelisr un
measurements. Nevertheless, additional state updatescit-t fazrfghiir;gst'g?em;gggﬁ;g'lg“ggn‘\’grgirﬂ‘iznsgfc'g?‘f‘;gzzf”p'"agmency'
down with the event-based sensor model (ESM) improves
performance by increasing convergence percentages umaler t
CAM motion model and improving estimation errors for th@erformance and eliminates the degradation in accurady wit
AAM motion model. Finally, the incorporation of additionaldecreasing sampling frequency.
time-of-flight measurements results in the best perforrmanc . :
gains, approaching the “optimal” performance of the OSIQ' Comparison of Motion Models
sensor model while maintaining accuracy and convergenceHaving established that using the touchdown event and time-
even for the inaccurate CAM motion model. The NLL measu@f-flight measurements for additional Kalman updates tssul
also supports these observations while also taking intowattc in substantial accuracy gains, we now focus on the motion
a covariance-normalized interpretation of the predickoror model itself. As evident from Tablg |, the adoption of the
at the last touchdown. AAM motion model results in considerable improvement in

Performances of sensor models under different sampling freerformance with the ESM and ESMt sensor models. In the
quencies is of particular interest since the choice of feeqy remainder of this section, we will investigate the depeiden
has substantial impact on computational feasibility aretfir of estimation accuracy on both sampling frequency and the
cal applicability. Fig[B illustrates the dependence oiiheation initial error in the radial velocity estimate for these two
performance on sampling frequency (plotted in dimensiondifferent motion models. As observed above, the use of the
coordinates withpy = 1m for intuitive clarity) using the AAM motion model even helps with convergence problems
CAM motion model for all sensor models. Top and bottorassociated with the RSM sensor model since it enforces
plots show average convergence time and estimation err@spnservation of angular momentum, making it possible to
respectively. These results show that the RSM sensor moudeé angular velocity measurements to correct for errors in
has the worst convergence percentages, and the ESMt selegiength. NLL measures for both models are close to each
model yields the best estimation accuracy and convergeruber, resulting from a somewhat larger covariance esgnate
percentages. The increase in estimation errors with deioigea associated with the AAM model.
sampling frequency is due to the gradual loss of accuracy inFig. [4 shows a comparison of estimation accuracy and
the CAM motion model. Once again, the NLL measures amonvergence time as a function of sampling frequency with
consistent with these observations and favor the ESMt senffite CAM and AAM models using ESMt sensors. The most
model. NLL figures for the RSM model fall outside the axistriking performance improvement is observed for lower fre
scale. guencies, where assuming constant acceleration between co

In summary, the convergence percentage and estimatggtutive samples produces increasingly inaccurate pieuic
performance of the ESMt sensor model approaches the based degraded estimation accuracy. In contrast, perforenanc
line performance exhibited by the optimistic yet unreaistunder the AAM motion model is independent of sampling
OSM sensor model, yielding a feasible way in which verfrequency, which allows lower, practically feasible saimgl
simple and easily deployed sensors can be used for robtest silequencies to be chosen. A slight improvement is also ob-
estimation. In the next section, we will show that the admpti served in convergence time across all frequencies.
of a more accurate motion model further improves estimationFinally, Fig.[3 illustrates the dependence of estimator per
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Fig. 4. Average convergence time (top), estimation errorsdte)dand NLL
measures (bottom) with the ESMt sensor model and two differerttomo
models as a function of sampling frequency. Marker sizes arpgtional to
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the ESMt sensor model under two different motion models as ai@mof

initial % estimation error inp. Marker sizes are proportional to convergence

percentages.

formance on the initial estimation error in the radial vépc

motion model. We also proposed two event-based, once-per-
touchdown sensor inputs that are relatively simple to imple
ment, but largely eliminate the need for complex and costly
measurement of leg length and compression velocity. Our new
motion model allows the filter to remain accurate even at very
low sampling frequencies, while the incorporation of thergv
based sensor inputs brings estimation performance clabe to
best possible pallet of sensors with a fully observablestat-

tor. In summary, the combination of our analytic motion mode
and the event-based sensor inputs result in average estimat
errors lower than %7 and filter convergence of more than %90
across a large range of steady state running speeds, hopping
heights, leg compliance and sampling frequency valuedgwhi
still relying on simple sensors that are very easy to deploy o
physical legged platforms.

The experimental verification of our performance results,
which currently rely on simulated trajectories of the spgrin
mass runner, is pending the completion of a planarized, one-
legged compliant runner platform and the extension of the
motion model to incorporate damping and active torque actu-
ation at the hip. Components necessary for these extensions
to the motion model already exist in the literature [2] anel ar
unlikely to introduce any difficulties, leaving only poskslalis-
crepancies between the SLIP model and the physical platform
as potential sources of practical problems.

In the long run, we hope to apply ideas presented in this
paper to the design of state estimators for more complex,
dynamically dexterous multi-legged mobile platforms. ¢&in
accurate and high-bandwidth measurements of the robet stat
are essential to implement model-based dynamic behawers,
expect generalizations of these ideas to be long-term ersbl
for achieving mobile autonomy for legged machines.
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