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Abstract—Autonomous applications of legged platforms will
inevitably require accurate state estimation both for feedback
control as well as mapping and planning. Even though kinematic
models and low-bandwidth visual localization may be sufficient
for fully-actuated, statically stable legged robots, they are in-
adequate for dynamically dexterous, underactuated platforms
where second order dynamics are dominant, noise levels are
high and sensory limitations are more severe. In this paper, we
introduce a model based state estimation method for dynamic
running behaviors with a simple spring-mass runner. By using an
approximate analytic solution to the dynamics of the model within
an Extended Kalman filter framework, the estimation accuracy of
our model remains accurate even at low sampling frequencies.
We also propose two new event-based sensory modalities that
further improve estimation performance in cases where even
the internal kinematics of a robot cannot be fully observed,
such as when flexible materials are used for limb designs.
We present comparative simulation results to establish that
our method outperforms traditional approaches which rely on
constant acceleration motion models and that it 1eliminates the
need for an extensive and unrealistic sensor suite.

I. I NTRODUCTION

The ability of a robot to move around and act on its envi-
ronment critically depends on its ability to sense the stateof
both itself and its environment. Consequently, state estimation
methods have been a crucial component of research on mobile
robotics with a wide variety of methods developed for plat-
forms with simple movement patterns such as wheeled robots
or kinematically observable designs such as fully actuatedand
statically stable legged robots [9] even while moving across
rough terrain [8]. However, numerous challenges still exist for
accurate state estimation with robots capable of dynamically
dexterous mobility since such platforms are often underactu-
ated and rely on second-order dynamics with state components
not fully observable through kinematics alone. For instance,
most efficient dynamic legged gaits such as the bound, the
gallop, the trot and the pronk, all incorporate substantialflight
phases during which there is no ground contact and many
components of the robot state cannot be observed through
proprioceptive sensing. Moreover, the presence of flexible
materials and compliance in a mechanism may introduce
additional complications, requiring additional instrumentation
and associated sources of uncertainty and unreliability [15].

A possible solution to this problem is the use of exterocep-
tive sensing methods such as vision or range-sensing but these
are often incapable of meeting the bandwidth and accuracy
requirements of feedback controllers necessary to reliably
stabilize dynamic behaviors. Limited workscapes associated
with external motion tracking systems [17] and the intermittent
nature of GPS-based measurements in certain environments

[18] limit their utility for use with fully autonomous mobile
platforms. Visual state estimation methods by themselves often
do not offer sufficient measurement bandwith and accuracy
and when they do, they entail high computational loads that are
not feasible for autonomous operation [17]. As a consequence,
a combination of both proprioceptive and exteroceptive sensors
are often used within filter based sensor fusion frameworks to
combine the advantages of both approaches.

In this paper, we show how the use of an accurate analytic
motion model and additional cues from intermittent kinematic
events can be utilized to achieve accurate state estimationfor
dynamic running even with a very limited sensory suite. To
this end, we work with the well-established Spring-Loaded
Inverted Pendulum (SLIP) model of running, illustrated in
Fig. 1 [19, 6, 26], for which we consider a variety of different
available sets of sensor inputs and characterize how reduced
sensory information impacts performance and investigate ways
in which accurate motion models and event-based state updates
can be used to cope with sensory limitations.
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Fig. 1. The Spring-Loaded Inverted Pendulum (SLIP) model

Section II describes related existing work in the literature.
Section III then describes our state estimation method we
propose, followed by our simulation results in Section IV.
Section V concludes the paper.

II. RELATED WORK

The problem of reconstructing the unknown state of a
dynamical system from sensor measurements has a rich history
and associated literature [27]. While this problem has well-
studied and established solution for linear systems [7], corre-
sponding methods for nonlinear systems are diverse and varied
in applicability and performance. In this context, the Extended
Kalman Filter (EKF) [12, 21] has been widely used in the



robotics community, closely followed by particle filter based
methods [32] for global localization and SLAM problems [33].

One of the distinguishing aspects of legged locomotion,
both from an estimation as well as a control perspective, is
the invariably hybrid nature of associated dynamic models.
Consequently, a number of hybrid estimation methods have
been proposed for systems with multiple different phases
with distinct dynamics [20] such as different leg contact
configurations [31, 28] or surface conditions [30]. In any case,
the consideration of structurally different hybrid statesof the
system substantially improves performance [15, 16]. More
recent work addresses the problem of both identifying different
legged gaits and using appropriate estimation algorithms and
models for each to improve state estimation performance [29].

Not surprisingly, when accurate motion models are available
for different modes of a hybrid dynamical system, they can
be incorporated into the estimation framework to improve its
performance [13, 3]. We adopt a similar approach in this
paper, and focus on the Spring-Loaded Inverted Pendulum
(SLIP) model that has been widely accepted and adopted both
as a descriptive model and a control target [22] for running
behaviors both for biological systems [6] and legged robots
[19, 11, 1]. This wide acceptance motivated careful analysis of
this model, leading to recently proposed approximate analytic
solutions to its dynamics [24] that are sufficiently accurate
to support formal inquiries on the stability of associated
behaviors as well as the design of locomotion controllers [2].
The state estimation method we propose in the present paper
also exploits the simplicity and accuracy of these analytical
solutions for improved performance.

III. STATE ESTIMATION WITH THE SLIP MODEL

In the following sections, we will describe how continuous
analytic models and event-based measurements can be used
to achieve accurate state estimation for running with the SLIP
model. In particular, Section III-A briefly describes the SLIP
model and its dynamics, followed by a general overview of our
estimation framework in Section III-B and associated motion
and sensor models in Sections III-C and III-D, respectively.

A. SLIP Model and Dynamics

The well-known Spring-Loaded Inverted Pendulum, shown
in Fig. 1 consists of a point massm connected to a passive,
massless leg with linear compliancek. Throughout locomo-
tion, it transitions between stance and flight phases and alter-
natingly experiences touchdown and liftoff events in between.
During flight, the body only experiences the gravitational
acceleration whereas during stance, the leg exerts spring and
damper forces on the body. In order to ensure general appli-
cability of our results, we adopt a dimensionless formulation
of the system dynamics wherein we scale time variables (and
derivatives with respect to time) withλ :=

√

ρ̄0/g to yield
t := t̄/λ and scale all positional variables with the spring rest
length asy := ȳ/ρ̄0 and z := z̄/ρ̄0. The flight dynamics in
these dimensionless coordinates take the form

[ÿ, z̈]T = [0, −1]T , (1)

whereas stance dynamics in dimensionless polar coordinates
relative to the foot locationyf can be written as

[

ψ̈
ρ̈

]

=

[

(−2ρ̇ψ̇ + sinψ)/ρ

ρψ̇2 − cosψ − κ(ρ− 1)

]

. (2)

Further details of this model, its dynamics and their dimen-
sionless formulation can be found in related literature [26, 24].

B. Estimation Framework

Following a similar approach to earlier work on hybrid
state estimation for legged behaviors, we will use an Extended
Kalman Filter (EKF) to process sensor readings at a frequency
f , with the associated period defined asT = 1/f . In addition
to these periodic readings, we will also assume that event-
based “asynchronous” readings are also available to detect
touchdown and liftoff events.

Within this framework, we will rely on the presence of
sufficiently accurate but possibly noisy, discrete motion and
associated sensor models for a single sampling period with

Xn = gi(Xn−1,un−1) +wi,n (3)

Zn = hj(Xn) + vj,n , (4)

where X represents either the (dimensionless) flight state
Xf := [y, ẏ, z, ż]

T or the (dimensionless) stance stateXs :=

[ψ, ψ̇, ρ, ρ̇]
T

. The subscripti indicates the presence of different
motion models for different phases of the system andj
indexes different choices of sensor sets. The vectorswi,n

and wj,n denote process and observation noises associated
with inaccuracies in each motion and sensor model. In the
rest of the paper, we do not focus on how SLIP locomotion
is controlled, but assume that a suitable controller is chosen
to stabilize the gait through the regulation of touchdown and
liftoff leg lengths together with the touchdown leg angle to
yield un in every step [19, 10, 24].

Similar to earlier work on hybrid state estimation, we switch
between different motion and sensor models as necessary. In
our application of the Extended Kalman Filter, we linearize
both the motion and sensor models and use standard filter
prediction and update equations [27].

C. Motion Models for SLIP

A common tradition in inertial guidance literature is to use
a constant acceleration model during the motion prediction
phase of the Kalman filter [5, 16]. In the present paper, we will
use this model as a baseline for evaluating the performance of
our much more accurate, model-based motion model derived
through approximate analytic solutions to the SLIP dynamics.
In this section, we present the details of both of these motion
models to be used throughout our simulation studies.

Since flight dynamics induce simple ballistic body trajecto-
ries, we use only a single motion model for the flight phase,
denoted withgf and defined as

Xf
n
=









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









Xf
n−1

−









0
0

T 2/2
T









(5)



1) Constant Acceleration Motion Model (CAM):This com-
monly used motion model in the inertial navigation literature is
based on the assumption that accelerations in the system, either
measured through appropriate instrumentation, or predicted
through the use of system dynamic equations, remain constant
until the next sensor reading. In this paper, we evaluate
(2) using the most recent state estimate to predict system
accelerations at the beginning of every update step. We assume
that accelerations remain constant in polar coordinates toyield
the corresponding motion model for the stance phase as

Xsn =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









Xsn−1
+









(ψ̈n−1T
2)/2

ψ̈n−1T
(ρ̈n−1T

2)/2
ρ̈T









, (6)

which is already affine in the initial system states and does not
need further linearization for use within the EKF framework.

Not surprisingly, the performance of this motion model
degrades as the state update frequency is decreased. One of
the major contributions of the present paper is to address this
problem using accurate analytic solutions to SLIP trajectories
with the motion model we describe next.

2) Approximate Analytic Motion Model (AAM):The stance
dynamics of the SLIP model given in (2) do not admit
exact analytic solutions, making it impossible to construct
a motion model based on analytically computed trajectories.
Fortunately, a number of very accurate approximate solutions
have been proposed in the literature [10], with more recent
extensions to incorporate support for damping [24].

The approximations proposed in [24] were derived consid-
ering the entire stance phase, combined with the flight phase
to yield a return map to be used for controlling SLIP gaits
and analyzing their stability. In our case, however, we need
to support arbitrary initial conditions within the stance phase
and use these approximations to predict the next state along
system trajectories at the end of the corresponding sampling
period. Consequently, we slightly modify solutions proposed
in [24] to support different initial conditions as

ψ(t,Xn−1) = ψn−1 + Y t+ Z/ω0(sin(φ)

− sin(φ+ ω0t)) (7)

ρ(t,Xn−1) = M cos (ω0t+ φ) + F/w2
0 (8)

where we define

pψ := ρ2n−1ψ̇n−1, ω0 :=
√

κ+ 3p2ψ/ρ
4
n−1, (9)

F := k − 1 + 4p2ψ/ρ
3
n−1, (10)

A := ρn−1 − F/ω2
0 , B := ρ̇n−1/ω0, (11)

M :=
√

A2 +B2, φ := arctan(−B/A), (12)

Y := −2Fpψ/(ω
2
0ρ

3
n−1) + 3pψ/ρ

2
n−1, (13)

Z := 2Mpψ/ρ
3
n−1 . (14)

Note that our derivations focus on the undamped SLIP model
for simplicity of presentation but they can easily be extended

to the dissipative model. The motion model takes the form

Xsn =









ψ(T,Xn−1)

ψ̇(T,Xn−1)
ρ(T,Xn−1)
ρ̇(T,Xn−1)









, (15)

where velocity estimates are obtained through derivativesof
(7) and (8). We then use straightforward analytic differentia-
tion to linearize this map around the current estimateXn−1

and obtain EKF covariance update equations. We omit the de-
tails of this straightforward derivation for space considerations.

D. Sensor Models

There are numerous practical challenges in the instrumen-
tation of dynamically dexterous, autonomous legged robots
particularly when compliant members are used within the
platform design [23]. Kinematic states of such flexible compo-
nents require the installation, calibration and reading ofstrain
gauges, which are usually rather noisy and fragile, especially
when they are subject to harsh environmental conditions such
as those experienced by legs on the platform [15]. Conse-
quently, there is substantial practical benefit in decreasing the
number of required sensory components on such platforms. In
this section, we describe a number of different instrumentation
alternatives for the stance phase of the SLIP model. As usual,
very little information can be obtained during the flight phase,
with only the leg angle measurable for the SLIP model.

1) Optimistic Sensor Model (OSM):In this paper, we
use an optimistic sensor model with instrumented legs as
a baseline for evaluating the performance of more limited
sensory suites. In this model, we assume that the leg angleψ,
the leg lengthρ and their derivativeṡψ andρ̇ are all measured
during stance with an output vector defined as

Zo := Xs .

We consider this alternative “optimistic” because of substantial
challenges in the reliable deployment of such sensors as
evidenced by earlier implementation being constrained to
operation in primarily the indoors [15, 16]. Since the entire
state vector is measurable for this sensor model, estimation
performance is expected to be better than other alternatives.

2) Realistic Sensor Model (RSM):A much more realistic
scenario would be when only the leg angle and its derivative
are measurable. This can usually be accomplished through
accurate measurement of the body angle for a mobile robot
[20, 28], combined with optical encoder on hip joints. Even
though flexible, composite leg designs may still introduce
complications, radial compliance is usually much more domi-
nant and orthogonal to the leg angle [19, 23, 14]. In any case,
the associated output vector is defined as

Zr := [ ψ, ψ̇ ]T .

Since no information is supplied by the sensor about the
radial degree of freedom, this sensor model is expected to
yield low performance for the estimation of vertical degrees of
freedom under traditional motion models such as the constant
acceleration model.



3) Event-based Sensor Model (ESM) :In addition to the
periodic sensor measurements above, we will also introduce
in this paper, a new, event-based sensor that can substantially
improve estimation performance by reintroducing limited leg
length measurements. In most legged robots, detection of
touchdown and liftoff for individual legs is relatively straight-
forward, either through motor armature current measurements
or dedicated contact switch components. The latter option
is also capable of asynchronously triggering related software
components, making it possible to decrease discretization
noise arising from the periodicity of sensor readings.

The event-based sensor we introduced relies on the assump-
tion that the leg length is known to great accuracy at the time
of touchdown. The corresponding output vector is defined as

Ze := [ ψ, ψ̇, ρ ]T ,

extending the realistic sensor model with asingle, asyn-
chronous readingfor the leg length at touchdown. Even though
a similar sensor reading can be obtained at liftoff, we only use
this sensor at touchdown since damping may cause premature
liftoff of the leg before it reaches full extension.

4) Time of Flight Sensor Model (ESMt):Even though the
ESM sensor model supports once-per-step corrections to the
leg length estimates, it provides no additional information
to correct for errors in the radial velocity component during
stance. Our simulation studies show that this leads to increased
estimation errors and even divergence for low sampling fre-
quencies and inaccurate motion models.

In order to address this problem, we propose to augment
the ESM sensor model with time-of-flight measurements. This
sensor model also benefits from the relative ease in which the
touchdown and liftoff events can be asynchronously detected
in practice to yield the time-of-flighttf := ttd − tlo. In
contrast to the purely positional measurements provided by
the sensor models described above, the measurement of the
time of flight provides information on the vertical velocityat
touchdown under the assumption of a known ground profile.
The corresponding output vector is defined as

Zt := [ ψ, ψ̇, ρ, tf ] ,

with the sensor map computing a prediction for the time-
of-flight as a function of the (known but noisy) liftoff and
touchdown heights and the touchdown vertical velocityżtd by
applying ballistic flight equations in reverse to yield

tf = −żtd +
√

ż2td − 2(ρtd cosψtd − ρlo cosψlo) .

Since this function depends on the vertical touchdown velocity
żtd, its linearization can be used for an additional EKF update
at touchdown.

IV. ESTIMATION PERFORMANCE

In this section, we present simulation studies for a compar-
ative analysis of the proposed ESM and ESMt sensor models
as well as the AAM motion model. Section IV-A describes our
simulation environment and introduces performance metrics.

Section IV-C then presents a comparative study of all four
sensor models, followed by an evaluation of the proposed
motion model in Section IV-D under the sensor model found to
have the best performance while still being practically feasible.

A. Simulation Environment

Our characterization of the estimation performance with
different motion and sensor models focuses on steady-state
SLIP running gaits. To this end, we first generate a large
collection of SLIP trajectories with different dimensionless
spring constantsk ∈ [25, 200] and steady-state apex states
z ∈ [1.1, 1.5] and ẏa ∈ [0, 2.5] under a deadbeat control
strategy as proposed in [24]. These dimensionless gait and
parameter ranges were selected to be consistent with both
human running [4] as well as existing small robotic platforms
[34, 23, 25]. In each case, the hybrid SLIP dynamics described
in Section III-A are integrated using the ode45 solver within
Matlab until at least ten steady-state steps are completed.Our
evaluation of estimation performance exclusively focuseson
these last ten steps since this was found to be sufficient for
convergence in all simulations except those where estimation
diverges. From now on, we will use the termtrajectory for
each run to refer these ten steps starting from touchdown.

These “ground-truth” trajectories are then uniformly sam-
pled in time at a frequencyf for a realistic model of sen-
sory acquisition in physical robot platforms. We consider the
sampling frequencyf to be an independent variable that will
be shown to have substantial impact on filter performance.
Note, also, that smaller frequencies are much more desirable
for practical reasons since computational resources available to
autonomous mobile robots are often inadequate to support data
acquisition and processing at very high frequencies. Moreover,
for smaller legged platforms with smaller mechanical time
constants associated with their locomotory motions (typically
at 3-4Hz for dynamic running), maintaining filter performance
for smaller sampling frequencies becomes even more crucial
for practical applicability.

Sensor readings associated with each trajectory sample are
then computed using ground-truth state components. In order
to ensure realistic conditions, we then add white, Gaussian
noise with a signal-to-noise ratio (SNR) of 40 on these sensor
readings to yield the final sensory input to the state estimator.
Constant covariance matrices for each sensor model are then
chosen to be consistent with this SNR value. In contrast, we
compute the covariance matrix associated with the process
noisewi,n in (3) by computing prediction errors associated
with the selected motion model (either CAM or AAM) starting
from a large set of initial stance states, applied to a singletime
step of durationT = 1/f .

Once these uniformly sampled ground-truth data points and
associated noisy sensor readings are obtained, state estima-
tion is initialized at the first touchdown statewith X̂0 =
[ ψtd, ψ̇td, ρtd, ˆ̇ρ0 ], where we assume that initial estimates for
the leg angle, angular velocity and length will be relatively
accurate since they are directly measurable at touchdown,
whereas the initial radial velocity may have large uncertainties



due to the lack of its direct measurements. Consequently, we
also consider the initial radial velocity at touchdown,ˆ̇ρ0 to
be an independent variable which will effect the performance
of various estimation algorithms. We also initialize the state
covariance matrix at the initial touchdown state to be

P0 :=









σψ 0 0 0
0 σψ̇ 0 0

0 0 σρ 0
0 0 0 σρ̇









(16)

whereσψ, σψ̇ and σρ are chosen to be equal to the process
noise of the motion model andσρ̇ in correspondence to the
initial estimation error̂ρ̇0 − ρ̇o in the initial radial velocity.
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Fig. 2. An example trajectory and estimation results for vertical position
(top) and velocity (middle) under our state estimation framework with the
AAM motion model and the ESMt sensor model with a sampling period of
T = 0.03 (100Hz for ρ̄0 = 1). Estimation starts with 50% error in the radial
velocity estimate (shown by a black diamond) once steady-state is reached at
the end of the shaded region. States are in dimensionless coordinates and the
bottom plot shows the determinant of the estimated covariancematrix P in
logarithmic scale.

Fig. 2 illustrates an example SLIP trajectory, together with
the application of our estimation algorithm with the AAM
motion model and the ESMt sensor model. As evident from
this figure, SLIP trajectories converge to steady-state rather
quickly (in three steps) under the deadbeat controller. At the
third touchdown, aroundt = 6.2, the estimator starts with a
relatively large, 50% error in the radial velocity and quickly
converges under the motion and sensor models proposed in this
paper, despite the relatively long flight phases where no sensor
information is available. The corrective effect of the time-of-
flight update aroundt = 8.8 is clearly visible in the bottom
plot, illustrating the determinant of the covariance matrix.

B. Convergence Criteria and Performance Metrics

In order to assess the estimation performance of different
motion and sensor model options, we define an instantaneous,
normalized estimation error associated with each component
of the apex state,c ∈ {ẏ, z, ż}, as

Ec[n] := 100(ĉ[n]− c[n])/max
n

(c[n]) . (17)

We then use a percentage error measure to characterize per-
formance, defined as

ET [n] := (Eẏ[n]
2 + Ez[n]

2 + Eż[n]
2)1/2 . (18)

This, in turn, yields a summary, mean square error measure
for the entire duration of the 10 steady-state steps as

ES :=

(

1

nf − n0 + 1

nf
∑

n=n0

E2
T [n]

)1/2

, (19)

wheren0 andnf are the sample indices for the beginning and
the end of the 10 step steady-state period. Finally, steady-state
errors normalized with respect to filter confidence are captured
by theNegative Log Likelihood (NLL)measure defined as

NLL [n] := − log
(

N
(

ĉ[n],P[n]
)∣

∣

c[n]

)

, (20)

whereN denotes the multivariate Gaussian probability distri-
bution function,c[n] is the true system state andĉ[n] andP[n]
denote the estimated mean and covariance, respectively.

It is difficult to directly use the instantaneous error measure
of (18), the NLL or covariance estimates in determining
EKF convergence since they show fluctuations induced by the
alternating stance and flight phases. Consequently, primarily
for reporting purposes within this paper, we filter the errortra-
jectory with a fourth order zero-phase forward and backward
Butterworth filter with a cutoff frequency equal to quarter of
the stride frequency of the hopper to yield thefiltered error
trajectoryEF [n]. Using this filtered error trajectory, we report
the estimator to have converged if one of the following two
conditions are satisfied:

1) EF [nf ] < 5, meaning that the last state estimate has
lower than 5% error.

2) EF [nf ] < 100 and | EF [nf−1]−EF [nf−2] |
EF [nf ]

< 0.05,
meaning that the filtered error reached steady-state and
the final error magnitude is not abnormally large.

Note that the second condition is necessary for situations
where the steady-state error is far from zero but still shows
convergence. If neither of these conditions are satisfied, we
consider the estimator to have diverged and do not incorporate
the associated run in our average error results.

CAM Motion Model

OSM RSM ESM ESMt

ES (%) Mean 2.63 27.61 18.62 12.49
ES (%) Std.Dev 3.38 35.88 17.10 10.50

MeanNLL -5.06 327.3 -4.32 -6.35

% Converged 99.63 33.77 98.87 99.42

AAM Motion Model

(%) OSM RSM ESM ESMt

ES Mean 1.62 11.12 4.08 3.83
ES Std.Dev 1.04 22.18 2.14 1.96
MeanNLL -4.79 -0.63 -4.90 -6.43
% Converged 99.91 86.69 99.97 99.97

TABLE I
CONVERGENCE PERCENTAGES AND STATISTICS FOR THE SUMMARY MEAN

SQUARE ERRORES AND NLL MEASURES COMPUTED ACROSS ALL

INITIAL CONDITIONS AND TRAJECTORY PARAMETERS FOR DIFFERENT

MOTION AND SENSOR MODEL PAIRS(8750RUNS EACH).



Having defined relevant performance metrics, Table I sum-
marizes the convergence and estimation error performance
for both the CAM and AAM motion models and the four
sensor models described in Section III-D averaged over initial
condition ranges given above, frequenciesf ∈ [100, 1000] and
initial radial velocity errors(ˆ̇ρ0 − ρ̇o)/ρ̇o ∈ [−0.2, 0.2].

C. Comparison of Sensor Models

We begin evaluating the performance of our estimation
method by a comparison of different sensor models. The
mean error figures in Table I show that the optimistic sensor
model (OSM) naturally yields the best estimation performance
in general and provides an “optimal” baseline measure. Not
surprisingly, the transition to the realistic sensor model(RSM)
is accompanied by a sharp decrease in the convergence per-
centages and an associated increase in the mean estimation
errors for convergent trajectories. Interestingly, however, the
AAM motion model compensates for the deficiencies of the
RSM sensor by enforcing conservation of angular momentum,
performing corrections on leg length based on angular velocity
measurements. Nevertheless, additional state updates at touch-
down with the event-based sensor model (ESM) improves
performance by increasing convergence percentages under the
CAM motion model and improving estimation errors for the
AAM motion model. Finally, the incorporation of additional
time-of-flight measurements results in the best performance
gains, approaching the “optimal” performance of the OSM
sensor model while maintaining accuracy and convergence
even for the inaccurate CAM motion model. The NLL measure
also supports these observations while also taking into account
a covariance-normalized interpretation of the predictionerror
at the last touchdown.

Performances of sensor models under different sampling fre-
quencies is of particular interest since the choice of frequency
has substantial impact on computational feasibility and practi-
cal applicability. Fig. 3 illustrates the dependence of estimation
performance on sampling frequency (plotted in dimensional
coordinates withρ̄0 = 1m for intuitive clarity) using the
CAM motion model for all sensor models. Top and bottom
plots show average convergence time and estimation errors,
respectively. These results show that the RSM sensor model
has the worst convergence percentages, and the ESMt sensor
model yields the best estimation accuracy and convergence
percentages. The increase in estimation errors with decreasing
sampling frequency is due to the gradual loss of accuracy in
the CAM motion model. Once again, the NLL measures are
consistent with these observations and favor the ESMt sensor
model. NLL figures for the RSM model fall outside the axis
scale.

In summary, the convergence percentage and estimation
performance of the ESMt sensor model approaches the base-
line performance exhibited by the optimistic yet unrealistic
OSM sensor model, yielding a feasible way in which very
simple and easily deployed sensors can be used for robust state
estimation. In the next section, we will show that the adoption
of a more accurate motion model further improves estimation
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Fig. 3. Average convergence time (top), estimation errors (middle) and NLL
measures (bottom) for the OSM, RSM, ESM and ESMt sensor models under
the CAM motion model as a function of the (dimensional) sampling frequency.
Marker sizes are proportional to convergence percentages.

performance and eliminates the degradation in accuracy with
decreasing sampling frequency.

D. Comparison of Motion Models

Having established that using the touchdown event and time-
of-flight measurements for additional Kalman updates results
in substantial accuracy gains, we now focus on the motion
model itself. As evident from Table I, the adoption of the
AAM motion model results in considerable improvement in
performance with the ESM and ESMt sensor models. In the
remainder of this section, we will investigate the dependence
of estimation accuracy on both sampling frequency and the
initial error in the radial velocity estimate for these two
different motion models. As observed above, the use of the
AAM motion model even helps with convergence problems
associated with the RSM sensor model since it enforces
conservation of angular momentum, making it possible to
use angular velocity measurements to correct for errors in
leg length. NLL measures for both models are close to each
other, resulting from a somewhat larger covariance esimates
associated with the AAM model.

Fig. 4 shows a comparison of estimation accuracy and
convergence time as a function of sampling frequency with
the CAM and AAM models using ESMt sensors. The most
striking performance improvement is observed for lower fre-
quencies, where assuming constant acceleration between con-
secutive samples produces increasingly inaccurate prediction
and degraded estimation accuracy. In contrast, performance
under the AAM motion model is independent of sampling
frequency, which allows lower, practically feasible sampling
frequencies to be chosen. A slight improvement is also ob-
served in convergence time across all frequencies.

Finally, Fig. 5 illustrates the dependence of estimator per-
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formance on the initial estimation error in the radial velocity.
The initial error magnitude has a small impact on steady-state
estimation error, but its effect is much more pronounced on the
convergence time. Once again, the AAM model consistently
has better accuracy than the traditional CAM motion model
and hence provides a much better state estimator design for
running behaviors with the SLIP model.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we addressed the problem of accurate state
estimation for a planar spring-mass runner, a widely accepted
model for running behaviors. We proposed an Extended
Kalman Filter framework in which we used analytic approx-
imations to system trajectories as to construct an accurate

motion model. We also proposed two event-based, once-per-
touchdown sensor inputs that are relatively simple to imple-
ment, but largely eliminate the need for complex and costly
measurement of leg length and compression velocity. Our new
motion model allows the filter to remain accurate even at very
low sampling frequencies, while the incorporation of the event-
based sensor inputs brings estimation performance close tothe
best possible pallet of sensors with a fully observable state vec-
tor. In summary, the combination of our analytic motion model
and the event-based sensor inputs result in average estimation
errors lower than %7 and filter convergence of more than %90
across a large range of steady state running speeds, hopping
heights, leg compliance and sampling frequency values, while
still relying on simple sensors that are very easy to deploy on
physical legged platforms.

The experimental verification of our performance results,
which currently rely on simulated trajectories of the spring-
mass runner, is pending the completion of a planarized, one-
legged compliant runner platform and the extension of the
motion model to incorporate damping and active torque actu-
ation at the hip. Components necessary for these extensions
to the motion model already exist in the literature [2] and are
unlikely to introduce any difficulties, leaving only possible dis-
crepancies between the SLIP model and the physical platform
as potential sources of practical problems.

In the long run, we hope to apply ideas presented in this
paper to the design of state estimators for more complex,
dynamically dexterous multi-legged mobile platforms. Since
accurate and high-bandwidth measurements of the robot state
are essential to implement model-based dynamic behaviors,we
expect generalizations of these ideas to be long-term enablers
for achieving mobile autonomy for legged machines.
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