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Abstract—This paper studies assisted teleoperation techniques
for controlling a 6DOF robot arm using click-and-drag input
from a computer mouse. Experiments were conducted to investi-
gate how task performance and user preferences are affected
by low-level motion control strategies, which must deal with
collision avoidance, dynamics constraints, and erroneous input.
Five strategies were implemented and compared. As baseline
strategies we study direct joint control and Cartesian positioning
via inverse kinematics. We also implemented three obstacle
avoidance strategies, including a predictive safety filter, a reactive
potential field, and a real-time sample-based motion planner.
Blind experimental trials assigned 22 novice subjects to five
subgroups corresponding to each strategy and asked them to
control the arm in simulation on a variety of reaching tasks in
cluttered environments. Unsurprisingly, the obstacle avoidance
strategies achieve major safety improvements, although subjects
felt noticeably less in control of the robot than those using the
baseline methods. The motion planning strategy shows the most
promise; it completed tasks twice as fast as any other method
and received high ratings for perceived safety, cooperativeness,
and overall satisfaction.

I. INTRODUCTION

Assisted teleoperation allows a user to operate a robot
while offloading some of the work of motion control, which
allows the user to concentrate on more important high-level
tasks. Such systems may be more convenient, safe, and eas-
ier to use than direct teleoperation, and may enable novice
users to control robot arms successfully in applications such
as material handling, industrial assembly, household robots,
remotely operated vehicles, and security applications (e.g.,
bomb disposal). Assisted teleoperation is also needed to enable
robot control through nontraditional input devices, like brain-
machine interfaces and voice control, which can be used by
impaired users. But they inherently cause some loss of control
for the user, and there are major knowledge gaps about whether
users are willing to accept losses of control for increased
convenience or safety — and if so, which control strategies
provide greatest gain with least frustration.

This paper is an attempt to address some of these gaps in
the context of systems that offload low-level task achievement
and collision avoidance onto the robot. We consider a user
operating a 6DOF robot arm at high speed in a cluttered known
environment, using point-and-click input on a 2D display via
a computer mouse — essentially “click-dragging” points on
the robot to their desired positions. Assisted teleoperation
strategies are used to process these raw commands in real-
time in order to avoid unsafe motion and to deal with the

Fig. 1. The four scenarios in our user trials. Users are asked to touch the
targets (green) while avoiding obstacles. (This figure is best viewed in color)

significant dynamics of the robot. Although the user and
robot have a clear master-slave relationship, the user has
an active cognitive role in reacting, learning, and adapting
his/her input to the robot. We wish to identify analytical
properties of teleoperation strategies (e.g., collision avoidance,
response times, and controllability properties) that correspond
to empirical performance characteristics (e.g., target reaching
speed, safety, learning curves, and user perceptions) of the
human-robot system.

Our experiments compare three types of collision avoidance
techniques: inverse kinematics with a predictive safety filter
(IK+S); reactive potential fields (PF); and a real-time sample-
based motion planner (MP) based on the work of Frazzoli et al.
[9]. We also tested direct joint control (JC) and basic inverse
kinematics (IK), which do not perform collision avoidance.
Each technique allows the robot to maneuver aggressively
across the workspace by handling dynamic constraints. We
were particularly interested in the MP technique; it uses a
randomized motion planner that is probabilistically complete
and hence, theoretically allows the robot to access all feasible
configurations in its configuration space. But, it is nondeter-
ministic, less responsive, and leads to the least predictable
motions of all techniques.

We performed user trials with 22 novice operators, divided



into five groups each assigned an assisted teleoperation tech-
nique. Each user attempted four different task scenarios in a
simulation environment, in which the user is asked to reach
targets in 3D space (Figure 1). Our results demonstrate that
automating collision avoidance achieves statistically signifi-
cant improvements in robot safety, but causes users to feel
less in control of the robot. Surprisingly, the sample-based
motion planner performed well overall; it is safe, solved tasks
over 50% faster than any other technique, and received either
the highest or second-highest user ratings in the categories of
safety, cooperativeness, and overall satisfaction. These results
suggest that users are largely receptive to losses of control
as long as the system demonstrates large enough gains in
safety, completeness, and convenience. We suspect the motion
planner “abstracts out” the complexity of the configuration
space, allowing users to focus more on the positioning task
rather than constructing feasible paths.

II. RELATED WORK

Teleoperated robot arms are widely used in space robotics,
bomb disposal, remotely operated vehicles, and robotic
surgery, but are usually direct-controlled by the human op-
erator. Direct joint control is widely used but slow, tedious,
and unintuitive. Haptic input devices, such as those used in
robot surgery, are more intuitive, but are expensive, highly
specialized, and have limited workspaces. In both cases, the
user is completely responsible for guiding the robot’s motion,
which requires extensive training and constant attention. in
order to achieve low-level motions and to avoid collisions.
Nontraditional input devices such as voice [12] and ges-
ture [19] are of interest for novice robot control as well as
in assistive robotics for those who have lost function or fine
motor skills. Another technology under consideration is brain-
computer interfaces (BCIs). Invasive direct neural input has
been used for real-time robot control, starting from work that
enabled rats to control a 1D robot lever [4] and leading to
monkeys self-feeding with a SDOF robot arm [23]. Noninva-
sive BClISs, e.g., electroencephelography (EEG), have also been
used for robot control [2], but exhibit extremely noisy signals
that provide no more than a few bits of reliable information
per second. The major challenge in using any nontraditional
input device is that input signals are low-bandwidth, noisy,
and often systematically erroneous, and are therefore poor for
direct robot control. Hence, assisted teleoperation is needed.
Assisted teleoperation can provide multiple types of assis-
tance to a human user, such as collision avoidance, tremor
filtering, targeting precision, path tracking, orientation control,
dynamics compensation, and trajectory smoothing, and can
provide this assistance in multiple ways, such as autonomous
low-level control, information displays, and haptic feedback.
Several models of assistance have been proposed:
o Supervisory control assigns the user a managerial role
over the robot’s largely autonomous behavior [7].

e Collaborative control treats the user and robot as peers
that must resolve conflicts using negotiation and dia-
logue [8].

e Shared control gives the robot control of some known
dimensions of a task to be handled at a fast update
rate [3, 10]. Virtual fixtures are a common shared control
technique for manipulator arms that uses haptic feedback
to help users control end effectors along specified paths,
surfaces, or orientations [18].

o Adjustable autonomy addresses the issue of choosing
autonomy levels appropriate to preference, trust, skill
level, or the demands of a given situation [6, 15].

Most strategies considered in the current work fall within the
shared control model and respond to erroneous commands by
halting or resisting motion. The exception is the MP technique,
which can be viewed as a non-verbal collaborative control
scheme in which the robot has clear operational constraints and
independent reasoning processes that may cause it to disobey
the user’s direct commands in a nontrivial way.

As proposed by adjustable autonomy, it would be wise to
allow experienced users to choose automation strategies as
appropriate for the task at hand. For clarity of interpretation,
the experiments in this paper do not permit users to switch
between strategies; doing so requires more user training and
requires more complex safeguards against experimental bias
due to ordering effects (users’ choices may be affected by
subtle presentation factors such as order and naming).

III. PROBLEM DEFINITION

This paper considers user interfaces for commanding a robot
arm to rapidly reach targets in a cluttered three-dimensional
environment using a “point-and-click” interface from a 2D
input device (e.g., a computer mouse). The user views a 2D
display of the robot, and can translate, rotate, and scale the
view freely. To help judge depth we include a widget that
indicates the distance from the end effector to the goal position
(Figure 2). We provide visual collision cues in the form of
brightly-colored contact force vectors.

The user’s basic mode of input is a click-and-drag operation
in which the user clicks a point on the robot and then drags
the cursor to indicate a desired translation. For simplicity we
do not consider orientation control. Some processing of these
commands is necessary because direct translation could cause
the robot to perform unsafe movements; the cursor can travel
and accelerate faster than the robot, or could guide the robot
into collision.

The robot platform is a Staubli TX90L 6DOF industrial
robot. Its state includes both configuration ¢ and velocity g.
The control algorithms in this paper are given a CAD model
of the robot, its joint limits ¢in < ¢ < Gmaz, velocity bounds
|¢] < Gmaz, and conservative acceleration bounds |G| < Gmaz-
The robot can reach fairly high speeds; the velocity limits are
360°/s and higher. The acceleration constraints are expressed
as box-bounds primarily for computational convenience, rather
than because of an inherent limitation of our approach. This
formulation allows us to quickly compute dynamically-feasible
interpolating curves between states, using the method of
[11]. The values of ¢4, are chosen to be a conservative
approximation of the torque and power bounds that apply to



Right-click and drag any point on the robot to the place you want it to be
Time: 20s

Number of collisions: 0

Max collision force: 0

Number of goals left:1

Distance to goal on X-axis:

Distance to goal on Y-axis:

Distance to goal on Z-axis:

Fig. 2. Snapshot of the GUI. The spherical target (green) lies behind
the obstacle. Both the current (gray) and desired (yellow) configuration are
displayed to the user. (This figure is best viewed in color)

the actual robot arms. Obstacles in the environment are given
as a rigid CAD model.

All user studies are performed on a dynamic simulation
based on Open Dynamics Engine (ODE); experiments on the
physical robot in our lab are planned in the near future. To
approximate real-world conditions our experiments contain
several sources of uncertainty. Obstacle measurement uncer-
tainty is introduced by growing the simulation geometry by
2mm from the planner’s model. Also, the robot’s controller
produces tracking errors that are usually less than 0.5 mm but
can approach 4 mm at high speeds. Finally, numerical errors
in ODE’s integration scheme can approach 0.01 mm.

IV. ASSISTED TELEOPERATION STRATEGIES

To process click-and-drag input we implemented five as-
sisted teleoperation techniques that represent a range of rep-
resentative strategies in the literature:

1) Direct joint control (JC)

2) Inverse kinematics (IK)

3) Inverse kinematics with predictive safety filter (IK+S)

4) Reactive potential field (PF)

5) Sample-based motion planner (MP)

To summarize, the JC technique differs from the rest of
the in that it does not use Cartesian positioning. The latter
three strategies use different collision avoidance techniques:
IK+S disallows infeasible commands; PF pushes the arm
away from obstacles and joint limits; MP uses a configuration
space planning approach that explores the space of collision-
free motions. These differences have various implications as
discussed in Section I'V-F.

A. Direct Joint Control

In the basic direct joint control scheme (JC) the user controls
one joint at a time by a click-drag operation. The vertical
displacement of the mouse is linearly translated into the joint
displacement of the desired configuration g4. g4 is clamped to
joint limits and is drawn transparently on the display for visual

Fig. 3. The joint control strategy (JC) translates vertical mouse motion into
the desired angle of the selected joint (highlighted in red). Angles are clamped
within joint limits.

Fig. 4.  The inverse kinematics strategy (IK) translates a click-and-drag
operation into a Cartesian motion of the clicked point (highlighted in red).

feedback. A velocity- and acceleration-bounded interpolation
curve is constructed between the current configuration and
current velocity and g4 (with zero velocity). This approach is
taken because ¢4 can change faster than the robot can move.
Figure 3 illustrates this method.

B. Inverse Kinematics

Inverse kinematics (IK) is a classic technique in both

robotics and animation for controlling articulated robots and
characters in Cartesian space [22]. In the IK scheme, the user
drags the point on the robot parallel to the image plane to
a desired 3-D world space position (Figure 4). Prior work
has used a variety of techniques, e.g., resolved rate control,
in order to generate smooth robot trajectories from smooth
Cartesian motion [5, 17]. We use a slightly different approach
to deal with jerky mouse motions.
Define 20 € R® be the point originally clicked on the
robot and let x.(q) € R® be its new position viewed as
being attached to the robot as it moves to configuration q.
Let zf, € R3 be the desired position of the clicked point
at time ¢ obtained by displacing #0 by the mouse motion
vector parallel to the image plane. The IK technique uses a
numerical Newton-Raphson inverse kinematics solver (based
on the Jacobian pseudoinverse) to find a desired configuration
qa that solves ming, ||z.(gq) — 25||?. Joint limit constraints
are applied during the numerical procedure. The technique
then generates a trajectory to gg using the same dynamically-
feasible interpolation scheme described in IV-A.

C. Inverse Kinematics with Predictive Safety Filter

IK+S is a simple extension of the IK method that performs
a motion only if the generated trajectory is predicted to be
safe. This method incorporates a collision-checking step by



discretizing the trajectory (at a resolution of 0.5° in joint space
in our implementation) and checking for feasibility at each
state. Collision checks are the bottleneck in this process, but
the method is fast enough to compute and verify trajectories
in tens to hundreds of milliseconds.

D. Potential Field Collision Avoidance

Our fourth technique is a classic reactive potential-field
(PF). Potential fields have been widely used for mobile robot
obstacle-avoidance in real time [1] and have also been applied
to robot arms [13]. In the basic scheme, a scalar field is
constructed by summing an attractive potential with a min-
imum at the goal with repulsive obstacle avoidance potentials
(Figure 5). To prevent collisions, repulsive potentials grow as
the distance to an obstacle decreases to 0. The robot then
follows the negated gradient of the field. We believed the PF
method may be less tedious than IK+S to use in cluttered
environments because repulsive forces allow the robot to make
progress in the null space of a nearby obstacle rather than
preventing motion entirely.

The attractive term consists of a velocity x,4 to be applied
to the clicked point z.(¢q) in the direction of z%: Zay =
Catt(zl, — xc(q)) where Cyyy is a gain constant. The repulsive
force frep is applied to the point on the robot z,., that
minimizes the robot-obstacle distance, and has direction in
the direction of maximum distance increase. The magnitude
of frep increases with the inverse of the distance d, and
decays to zero at a distance dsqfe. In other words, || frep|| =
max(0, Crep(l/d — 1/dsqge)) where Chp is a gain constant.
We also set fr.., to O when the obstacle approach velocity d
is negative.

The Z44 and f¢, terms are combined to produce a desired
joint velocity ¢p as follows:

ip = Jhdar + Ty frep (1)

where J,y is the Jacobian of x., J,.., is the Jaco-
bian of z,,, and -* denotes the pseudoinverse. To pre-
vent violations of joint limits we clamp ¢p to the veloc-
ity bounds [_\/2(q — Gmin)dmaz \/2(Qma:r ~ q)4mazx] (com-
puted element-wise) such that the rest configuration attained
through maximum braking satisfies joint limits. We then cap
|dp| tO Gmaz, and define a desired acceleration §p using a
finite difference from the prior velocity. Finally, |Gp| is capped
to Gmaz and sent to the robot.

While there are ways to construct PFs to guarantee conver-
gence (e.g., [21]) they assume a fixed target and do not scale
well to many-DOF systems and complex obstacles. Thus, sig-
nificant tuning is needed to avoid pathological behavior when
a target is moved in real-time. It can indeed be challenging to
attain acceptable PF performance. Dynamic constraints induce
oscillations in steep-walled channels of the potential field [14].
Discontinuities in closest points between obstacles and robot
links cause discontinuous repulsion forces. One approach to
reduce, but not eliminate this problem is to add repulsive
forces at all robot links. We decided against this approach
because we found tuning to be more difficult. Finally, bounded

o

% xtz{ )

N ,
T/ 7777777777777/ /777777777777

Fig. 5. The potential field strategy (PF) combines an attractive field (green)
for the dragged point (highlighted in red) with a repulsive field (red) to avoid
obstacles. Repulsive forces are applied at the point (cyan) on the robot arm
that is closest to the obstacle.

accelerations or torques can cause collisions when a robot is
moving at high speed toward an obstacle because the repulsive
field does not have enough time to slow the robot down. So
to improve safety at high speeds we vary the safe radius
with velocity, dsqfe = do + % where dj is a constant
and a4, is the estimated maximum acceleration of 2,
computed from the Jacobian and joint acceleration bounds.
Our implementation sets Cty = 10 Crep = 5, and dg = 0.2m.

E. Real-Time Sample-Based Planner

Sample-based motion planners such as Rapidly-Exploring
Random Trees (RRTs) have been successful at planning
collision-free motion for high-dimensional robot systems [16].
Because they broadly explore configuration space we were
interested in their use to avoid the local minima problems of IK
and PF approaches. Motion planning is more computationally
expensive than the other approaches, and has traditionally
been considered too expensive for real-time use in dynamic
environments outside of relatively low-dimensional problems,
e.g. 2D helicopters [9] and ground vehicles [20]. But due to
advances in planning techniques and faster processors, sample-
based techniques are beginning to show promise for real-time
control of larger systems.

The MP control scheme is largely based on the RRT-like
methods of [9, 20], with some modifications to account for
the time-varying goals defined by the user and for real-time
use. Like in the IK and PF approaches, the mouse motion
defines a potential field function V'(g,t) which measures the
distance from the clicked point z.(g) to the target point z.
At each time step, the planner attempts to plan a dynamically
feasible, collision free path that ends in zero velocity and also
has a lower value of V(g,t) than the endpoint of the current
trajectory. Planning continues for a finite time interval A. After
this time has elapsed, the new trajectory is taken if planning
is successful, and the planner begins anew on the next step.

Our underlying planner is a variant of the RRT motion
planner. The planner grows a tree of states, connected by
local collision-free trajectories, forward in time. In order for
the path to be applicable once planning is complete, the root
of the tree is not the current state but rather the predicted
state (q(A),¢(A)) along the current trajectory, propagated
forward in time by A. We made the following performance
enhancements to the basic RRT algorithm:
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Fig. 6. The motion planning technique (MP) performs a sample-based

exploration of state space starting from the current state (go, ¢o) and picks
the path that minimizes the user-controlled potential field V.

TABLE I
OBJECTIVE CHARACTERISTICS OF STRATEGIES
Strategy | Cartesian  Obst. avoid.  Controllable Resp. time (ms)

JC No None STLC ~0

IK Yes None STLC 0.2 (04) <2
IK+S Yes Filter STLC 7 (24) <180
PF Yes Repulsion No 50 (42) <150
MP Yes Planning PC 168 (323) <1,900

o« We extend the search tree by sampling extensions to
stationary configurations sampled at random. The lo-
cal planner constructs dynamically feasible interpolants
between states and stationary configurations (a similar
strategy was used in [9]). For every randomly generated
sample, we generate a second configuration using a few
steps of an inverse kinematics solver in order to get closer
to the target.

o We use a lazy collision checking mechanism that delays
expensive edge feasibility checks until the planner finds
a path whose endpoint improves V' (g, t).

o To improve motion fluidity we devote 20% of each time
step to trajectory smoothing. We used the shortcutting
heuristic described in [11] that repeatedly picks two
random states on the trajectory, constructs a dynami-
cally feasible interpolating segment between them, and
replaces the intermediate portion of the trajectory if the
segment is collision free.

o We adapt the time step A by increasing it if the planner
failed on the prior time step (which indicates a hard plan),
or reducing it if the planner succeeded on the prior time
step (which indicates an easy plan). We also reduce it
in proportion to the magnitude of the cursor movement
in order to respond faster when the user changes goals.
More precisely, we scale the time step by e~°” where D
is the cursor travel distance and c is a scaling coefficient.

F. Comparison and Discussion

Some intrinsic characteristics of these strategies are sum-
marized in Table I. The Controllable column lists whether
the strategy gives the user the ability to achieve any robot
configuration with a sequence of click-and-drag commands.
JC and IK are small-time-locally controllable (STLC) in that
any coordinated joint space motion can be composed of several
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Fig. 7. A simulated command that drives the end effector in a straight line
toward a target through an obstacle (top). Target distance over time for the
four Cartesian techniques (bottom). Collisions are indicated as open circles.
The IK+S and PF techniques avoid collision, but get stuck in local minima
on the left side of the obstacle. At 2s the MP technique begins to escape the
minimum after ~1.5s planning delay.

user commands (with JC, at most 6; 6 also holds for IK away
from singularities). IK+S is STLC in the interior of the free
space. PF is not controllable because large repulsive forces
prevent passing close to obstacles. MP uses a probabilistically
complete (PC) motion planner and can theoretically access all
configurations in the configuration space given enough time for
planning. In practice the planner is given a time limit, which
limits the ability of the robot to pass through narrow passages
in the feasible space. The final column lists mean, standard
deviation in parentheses, and maximum command response
times of each strategy on a typical run of Scenario 2 in Figure 1
tested on a 2.8 Ghz PC. All obstacle avoidance techniques
incur a loss of responsiveness, and MP is the slowest.

Controllability may be a major factor in determining the
flexibility of assisted teleoperation techniques. STLC methods
allow a user to control the robot along any feasible path
with arbitrary precision. PF and MP, on the other hand, do
not give users control at the path level. This makes it more
difficult for the robot to perform tasks that are not built-in
to the implementation, for example, orientation control. This
does not mean, however, that all STLC techniques are equally
convenient; for example, orientation control is difficult using
only Cartesian positioning.

Users may also be affected by other ways in which a tech-
nique conflicts with intuition. The robot may appear vaguely
anthropomorphic to users because it consists of two shoulder
joints, one elbow, and three wrist joints, but its joint axes and
ranges of motion are actuall quite different from a human arm.
This makes it somewhat unintuitive to control. For example,
during Cartesian positioning, IK, IK+S, and PF can get trapped
in local minima caused either by the robot kinematics or its
joint limits. Obstacles also produce minima for the IK+S and
PF methods (Figure 7). This may have significant effects for
the performance of the user-robot system because user must in
some sense learn the potential landscape and plan commands
to escape minima.

Because the MP strategy can escape minima automatically it
may offload the need for users to understand the complexities
of the configuration space. On the other hand, the MP method



has a peculiar characteristic in that it leads to unpredictable,
jerky motions that may be viewed as unnatural (despite some
smoothing performed in the planner). Our experiments inves-
tigate whether users can learn and adapt to such behavior.

V. USER TRIAL EXPERIMENTS

Our user trials were designed to capture dimensions of
task performance that would be broadly characteristic of
teleoperation scenarios in cluttered environments. In addition
to quantitative measures of performance we also studied
qualitative responses such as feelings of intuitiveness and user
friendliness.

A. Experimental Procedure

22 subjects from the university with different backgrounds
were recruited from mailing lists and flyers. Pre-trial surveys
indicated 18 males, 4 females; 12 subjects aged 18-25, 7 aged
26-30, 3 aged 31 and above; 11 computer science majors, 11
other majors; all had 5 or more years of computer experience.
All but 2 played video games at least once a month; 10 played
video games at least once a month but not more than once a
week, and 10 played at least once a week.

Subjects were assigned one of the methods at random, with
5 subjects in the JC and IK+S groups and 4 subjects in the IK,
PF, and MP groups. Assignment was blind; subjects were not
given the technique name or even knowledge that multiple
techniques were being compared. Each subject was given a
step-by-step tutorial on the GUI and were then given five
minutes to test the controls in an obstacle-free environment.

We tested users on four different task scenarios presented in
random order, each consisting of a set of obstacles and one or
more goal points (Figure 1). They were chosen to be roughly
representative of various challenging end-effector positioning
tasks expected of teleoperated robot arms:

1) Track a series of six goals in open space, where collision
is not a major concern.

2) Reach a goal that is set deep between two blocks. The
opening between the two blocks is narrow, giving little
room for the robot to maneuver.

3) Reach a goal over a low wall which requires simultane-
ous, precise positioning of the robot’s wrist joints and
joints near the base of the robot.

4) Reach a goal near an obstacle in a highly restrictive
environment, consisting of a ceiling and a wall.

Although scenarios 2-4 all involve maneuvering around clut-
tered obstacles, the motions that are needed to avoid obstacles
are highly different.

The user is instructed to command the robot to touch all the
goals in the environment with the robot’s end effector. Goals
are presented in sequence; when one goal is reached the next
appears. Five minutes were given for each scenario, at which
point the user could opt to skip to the next scenario.

B. Task Performance Results

Performance data for each treatment group is shown in
Table II. Results include the fraction of completed tasks,

TABLE I
PERFORMANCE RESULTS. STANDARD DEVIATIONS IN PARENTHESES.

Strategy | Completed Coll. free  Time comp. (s)  Time coll. (s)
IC 16/20 7/16 52.7 (48.4) 7.88 (19.8)
IK 15/16 3/15 36.5 (28.8) 1.71 (1.85)

IK+S 13/20 11/13 50.2 (38.3) 0.04 (0.11)
PF 4/16 3/4 36.6 (9.35) 0.34 (0.69)
MP 15/16 10/15 18.7 (12.4) 0.16 (0.31)

Fig. 8. Close-up of end effector traces for two completed trials in scenario
2 generated by using JC (left) and MP (right). Open dots indicate passage
of time. Red dots indicate points in time at which the robot is in collision
(collisions may be caused by links other than the end effector).

fraction of tasks completed without collision, completion time
(only over completed tasks), and duration of collision. A task
is defined as completed when the user reaches all goals in
the scenario, and a task is incomplete when the user quits
the scenario after at least five minutes of trying. Bold entries
indicate the best in each column.

The JC method is the slowest among the five, while IK
is fast and has a high completion rate. This agrees with our
intuition that Cartesian control is more intuitive for novice
users. Both methods collided in over 55% of cases. The
incidence of collision for the JC method was lower than for
IK, although individual collisions were more severe (Figure 8,
left). Collision rate and duration were greatly reduced by all
collision avoidance techniques, but only MP conferred a major
improvement in completion time.

Results of statistical significance testing at the 95% confi-
dence level are summarized as follows:

o Considered as a group, collision avoidance techniques
reduce the incidence of collision during a trial from 65%
to 25% and collision rate over time by 96%. Collision
incidence differences are signficant at p = 0.0011 as de-
termined through a Pearson’s chi-squared test. Assuming
that collision rates over time Ay and A, respectively of the
baseline and collision avoidance techniques are Poisson,
an exact conditional test shows that Ag/\. > 12.62 with
95% confidence.

o MP leads to a reduction in completion time over all other
techniques (p = 0.008, one-way ANOVA), averaging
59% faster.

o PFis by far the least successful in cluttered environments,
with only 25% of scenarios completed. Only one of the
four successes is in a cluttered scenario.

o Performance is not significantly correlated with demo-



graphic characteristics.

C. Post-trial Survey Results

Post-trial surveys asked users to reflect upon their experi-
ences in the trial. Users were asked to rate on a scale from 1
(worst) to 10 (best) the following items:

o Overal quality of the visual display (Visual quality)

e Opverall quality of the control interface (Control quality)

o Predictability of the control interface (Predictable)

o Safety of the control interface (Safe)

o Cooperativeness of the control interface in completing the
task (Cooperative)

o Opverall experience interacting with the arm (Experience)

Subject were also asked for open-ended comments about
both the display and the control interface. Results are plotted
in Figure 9. Group-wise tests using one-way ANOVA and
pairwise tests using the Holm-Bonferroni method yielded the
following results above an 85% confidence level:

« Differences in user response for overall experience are
somewhat significant (p = 0.124), with between-group
variation accounting for 67% of total variation. MP and
IK both offer significantly better experience than PF (p =
0.001).

o Safety ratings for MP are higher than JC by 3.3 points
with significance (p = 0.014). (Note that under the
Bonferroni correction for multiple hypothesis testing this
passes an 85% but not a 90% confidence threshold.)

e« MP and IK have the highest ratings in cooperativeness;
IK is rated more cooperative than PF (p = 0.002) by an
average of 2.5 points, and MP is rated more cooperative
than PF (p = 0.005) by an average of 3 points.

o No signficant results are obtained for user ratings in
quality of visual display (p = 0.652), quality of control
interface (p = 0.576), and predictability (p = 0.734).

D. Interpretation and Discussion

Overall, the MP technique conferred a major reduction in
collision rate and completion time over direct teleoperation.
Users did not seem to mind the loss of control, planning
delays, and suboptimal motions produced by the planner.
Cartesian control enables users to solve tasks faster and is
preferred overall to joint space control.

The poor performance of the PF technique may be due
to being tuned to prioritize obstacle avoidance. One user’s
frustration was expressed in a comment: “It would be helpful
if I can have more control over the robot arm. Time by time,
the robot arm will not follow my orders and that bothers a lot.”
To follow up on this hypothesis, we repeated our experiments
using a less conservative set of parameters (Cr., = 1,
dy = 0.1) on 6 subjects who were previously assigned to
a non-PF technique. We found a large increase in success rate
(24/24 trials) along with a large decrease in safety. Collisions
occurred in 12/24 trials and time in collision (3.09 s, std. dev.
4.58s) was high, second only to the JC method. Solution
times were statistically indistinguishable the original PF. We

suspect that further tuning might yield additional points along
a control-safety tradeoff curve.

Another user found the IK+S technique frustrating; he inter-
preted that the robot remained still because it was performing
a long computation, whereas it had actually rejected his infea-
sible command. Others may have had similar interpretations
given the relatively high failure rate of 35%. Another user
commented “[The MP technique] should give a sign indicating
that the program is trying to calculating out a solution.” This
suggests that conveying internal status would help users form
mental models of the robot’s behavior more quickly.

Although IK+S and MP could be hypothetically 100% safe,
they encountered minor grazing collisions (Figure 8, right).
Approximately 3% of these collisions are an implementation
artifact in that our collision-checker discretizes trajectories at
a 0.5° resolution and may miss collisions between samples.
Exact collision checking would help, but usually is more
computationally expensive. The remaining 97% are caused by
the sensing and actuation errors introduced into the simulation
as described in Section III. To further reduce risk in practice
the obstacle CAD models might be conservatively expanded.
An interesting question for future work would be to study
how such an approach would conflict with tasks that require
manipulation or tool use.

Finally, we note that a limitation of simulation studies is that
the perceived risks of crashing a simulated robot are less than
those of crashing a physical robot. This may explain the high
collision rate for the JC and IK techniques; in fact, many users
found that forcefully sliding the robot across obstacles was
a successful strategy. Nevertheless we expect similar effects
will occur when users teleoperate physical robots that do not
belong to them (due to moral hazard), are perceived as durable
(due to a lower perception of risk), or perform imperfect
autonomous collision avoidance (due to shifting of blame onto
the robot). We expect that users with greater perception of
crash risk will be more careful but substantially slower.

VI. CONCLUSION

This paper implemented and compared five assisted tele-
operation strategies for controlling a 6DOF robot arm using
click-and-drag input from a computer mouse. Results from
a user study (N = 22) on reaching tasks in cluttered envi-
ronments suggests that a real-time motion planning strategy
improves safety and reduces task completion time compared
to direct control technique, and is rated favorably by users.
Interestingly, collision avoidance strategies that filter out or
resist infeasible motion were not rated as highly and were
generally viewed as uncooperative. This suggests that users
are willing to tolerate loss of control, slower reaction times,
and less predictable motions only for significant improvements
in performance and convenience.

Based on these results, we hypothesize that assisted ex-
ploration of complex configuration spaces provides robust
performance benefits. Future work should study whether this
hypothesis generalizes to other input devices, such as gestures,
and other robots, such as in multi-handed manipulation and
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multi-robot systems. We have also gathered detailed user
input, camera viewpoint, and robot motion data from our
experiments, and we hope to use this data to study how users
respond, learn, and plan in conjunction with the robot. Finally,
we are currently implementing and testing the motion planning
assisted teleoperation strategy on the real robot arm in our lab.
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