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Abstract—A method for segmenting three-dimensional scans of
underwater unstructured terrains is presented. Individual terrain
scans are represented as an elevation map and analysed using fast
Fourier transform (FFT). The segmentation of the ground surface
is performed in the frequency domain. The lower frequency
components represent the slower varying undulations of the
underlying ground whose segmentation is similar to de-noising
/ low pass filtering. The cut-off frequency, below which ground
frequency components are selected, is automatically determined
using peak detection. The user can specify a maximum admissible
size of objects (relative to the extent of the scan) to drive the
automatic detection of the cut-off frequency. The points above the
estimated ground surface are clustered via standard proximity
clustering to form object segments. The approach is evaluated
using ground truth hand labelled data. It is also evaluated for
registration error when the segments are fed as features to an
alignment algorithm. In both sets of experiments, the approach
is compared to three other segmentation techniques. The results
show that the approach is applicable to a range of different
terrains and is able to generate features useful for navigation.

I. INTRODUCTION

This paper presents a method for segmenting 3D point
clouds representing unstructured/natural terrains. The ap-
proach is applied here to underwater bathymetric point cloud
data collected as successive range/angle scans using a down-
ward looking structured light laser system on a moving ve-
hicle [17]. Examples of such 3D scans are shown in Fig. 1.
Fig. 2 shows an overview of one of the data sets used here.
The obtained scan segments are used as key areas (by analogy
to key points) in a feature based alignment process to register
overlapping scans. The core of the segmentation method lies in
a novel ground extraction process. The terrain is represented as
an elevation map which is interpreted as a 2D (discrete) signal
and analysed using discrete Fourier transform (DFT). In the
frequency domain, the lower frequency components represent
the slower varying undulations of the underlying ground and
their extraction is similar to denoising/low pass filtering of
the overall signal. The cut-off frequency, below which the
frequency components associated with the ground are selected,
is automatically determined. This is done using peak detection
on the frequency signal together with the insight that a given
frequency directly maps to a feature size in the spatial domain.
A user can also specify a maximum admissible objects size
(relative to the extent of the scan or as a metric unit) to
drive the automatic detection of the cut-off frequency. The

(a) KnidosH sub-map 6 (b) KnidosH sub-map 16

(c) Pipewreck sub-map 13 (d) Pipewreck sub-map 41

Fig. 1. Sub-maps which were manually labelled for the evaluation (colours mapped to
height). The oblong shapes in the top row correspond to amphora on a shipwreck site.
The cylindrical shape in the bottom row correspond to pipe segments found on another
shipwreck site. The data sets are further detailed in Sec. V-A. The extent of the top
sub-maps are [4 m × 4 m]; the extent of the bottom sub-maps are [6 m × 1.5 m].

segmentation process is fast since a single DFT represents the
bulk of the calculation. It also does not require any training.
The output of the process is an estimated ground surface.
The notion of ground surface as used in this paper is to be
understood as the background terrain undulations. Segments
are formed from the non-ground points above this surface by
applying a standard voxel based clustering (i.e. clustering by
direct connectivity of non-empty voxels). These segments are
used as features (or key areas) for alignment.

Underwater platforms are increasingly being used for high-
resolution mapping tasks in scientific, archaeological, indus-
trial and defence applications. Accurate 3D scan registration is
critical to high resolution map building using dead reckoning
navigation measurements. The footprint/aperture and effective
range of underwater sensors is very limited relative to aerial
and terrestrial equivalents. In many cases the survey areas
contain a mix of man-made structures (e.g. shipwrecks, pipes)
and natural/unstructured seafloor (e.g. algae, corals, sand,
canyons) that do not satisfy typical assumptions such as the
presence, type or density of features in 3D data observed from
terrestrial and aerial robots.

This paper provides experimental evidence for the appli-
cability of the proposed DFT based segmentation method to
a range of underwater terrains and for its ability to produce
key areas that allow accurate 3D alignment. The segmentation



Fig. 2. Overview of the KindosH shipwreck. The site is approximately 16 meters long
and 10 meters wide. The dataset is further described in V-A.

is first validated using hand-labelled underwater scans. It
is then evaluated in the context of an alignment pipeline
and compared to three other segmentation techniques. The
proposed segmentation process has potentially a number of
applications in marine robotics.

II. RELATED WORK

Segmentation has been studied for several decades and in
particular in computer vision, where it is often formulated
as graph clustering, such as in Graph Cuts [4]. Graph-
Cuts segmentation has been extended to 3D point clouds by
Golovinskiy and Funkhouser [8] using k-nearest neighbours
(KNN) to build a 3D graph with edge weights assigned
according to an exponential decay in length. The method
requires prior knowledge on the location of the objects to be
segmented.

In ground robot applications, the recent segmentation al-
gorithm of P. Felzenszwalb [12] (FH) for natural images
has gained popularity due to its efficiency [19, 21, 22, 24].
Zhu et al. [24] build a 3D graph with KNN while assuming
the ground to be flat for removal during preprocessing. 3D
partitioning is then obtained with the FH algorithm. Under-
segmentation is corrected via a posterior classification that
includes the class “under-segmented”. Triebel et al. [22]
explore unsupervised probabilistic segmentation in which the
FH algorithm is modified for range images and provides an
over-segmentation during preprocessing. Segmentation is cast
into a probabilistic inference process both in the range image
and in feature space using Conditional Random Fields. Their
evaluation does not involve ground truth data. Schoenberg
et al. [19] and Strom et al. [21] have applied the FH algorithm
to coloured 3D data obtained from a co-registered camera/laser
pair. The weights on the image graph are computed based on
a number of features, including point distances, pixel intensity
differences and angles between surface normals estimated at
each 3D point. The FH algorithm is then run on a graph repre-
senting either the range image or the colour image. In practice
the evaluation is only done on road segments, or visually. On
the contrary, the evaluation presented here is performed on

scans with point-wise labels assigned manually. All of the
mentioned algorithms reason locally and attempt to identify
boundaries between objects in the scene while the approach
proposed here reasons globally across the whole depth image
by analysing its overall frequency content to find underlying
larger scale patterns. Three segmentation techniques for 3D
scans acquired in urban environments are proposed in [6].
This suite of algorithms is able to process point clouds of
different densities but the algorithms all assume the platform
to be located on a drivable surface so that ground seeds are
available; ground seeds are not always readily available in the
underwater scans processed here (for instance see Fig. 1(b)).

Segmentation of underwater terrain based on acoustic and
range data typically has focused on larger scale, lower res-
olution applications such as generating habitat maps of the
seafloor based on multi-beam sonar data [5]. The objective
in these cases is to group areas of the seafloor with similar
textures (derived from bathymetry or backscatter) as represent-
ing a common habitat, each segment representing hundreds
or thousands of square meters of seafloor. Another use for
segmentation is in acoustic side-scan sonar imagery as part
of mine-detection systems [15], where segmentation is used
to separate the returns into ground, target and shadow. While
the focus in these cases is the detection of particular man-
made structures, side-scan data usually has swaths of hundreds
of square meters in width and targets appear as clusters of
relatively few pixels. Segmentation is also used to aid object
detection and tracking for obstacle avoidance [13]. In this
case the segmentation is usually applied at the individual
sensor readings as a way of dealing with noise or reducing
computational demands further along the processing pipeline,
rather than considering 3D surfaces observed through multiple
scans. To our knowledge this paper is the first to address
segmentation of ground and non-ground objects in short-range,
high resolution 3D point clouds from underwater scenes.

The contribution of this work lies in the definition of a
novel ground extraction method for unstructured terrain. It is
based on DFTs and only requires the user to set one parameter
which specifies the maximum size of objects (relative to the
scan extents) beyond which objects are identified as part of
the underlying ground.

III. 3D ALIGNMENT

The segmentation process presented in this work is devel-
oped as a preprocessing step to allow accurate alignment of
underwater scans. The survey of 3D alignment techniques pre-
sented by Salvi et al. [18] shows that most approaches involve
two main steps: coarse alignment followed by fine alignment.
Coarse alignment is the step this study is concerned with since
fine alignment is usually addressed with the standard Iterative
Closest Point (ICP) algorithm [1]. While this particular paper
focuses on dense point clouds acquired with a structured light
sensor (sensors and data sets described in Sec. V-A), the long
term aim of the study is to develop methods also capable of
registering dense point clouds (i.e. obtained from structured
light or multi-beam sonar scans) to sparser point clouds (e.g.



shipborne acoustic surveys). Point feature based alignment
techniques may not be suitable since the underlying features
often require homogeneous sampling across the scan pair. The
Spin Image [10] and the NARF [20] features, for instance,
have this requirement. An alternative to point feature based
approaches are approaches which attempt to match segments
of the data [7]. This makes them more directly applicable to
scan pairs of different densities. The alignment method in [7]
is used here and will be be referred to as S-ICP (‘S’ for
segmentation-based).

IV. GROUND-OBJECT SEGMENTATION

This section describes the core contribution of the paper.
A mechanism to perform ground extraction in unstructured
terrains is introduced. The proposed segmentation approach
requires preprocessing of the point cloud to form an elevation
map aligned with the DC component (the zero frequency
term) of the elevation signal; this is described in Sec. IV-A.
The resulting elevation map is transformed into the frequency
domain via DFT and filtering operations are applied to its
frequency content to extract the underlying ground surface;
this is described in Sec. IV-B. Finally, ground and objects
above the ground are separated following the process described
in Sec. IV-C.

A. Generation of elevation maps

The aim of the preprocessing steps presented next is to
generate a discrete 2D signal on a regular grid whose DC
component is aligned with the horizontal plane. The obtained
2D discrete signal can then be transformed to the frequency
domain with fast Fourier Transform (FFT). Note that the
requirement of a regular grid is core to FFT [11]; this has
implications on the type of point clouds that can be processed
with the proposed approach. We consider alternative methods
for applying these techniques to irregular scans at the end of
this section.

To obtain a 2D discrete signal from the input point cloud,
the latter is first re-aligned so that the DC component of its
elevation is brought into the xy-plane. To do so, the sub-map
is moved to its centre of mass. It is then axis-aligned by using
a process equivalent to rotating the sub-map onto its eigen
vectors and ensuring that positive elevation is along the z-
axis.

In this adjusted reference frame, an elevation grid is formed
by voxelisation of the point cloud. The maximum height in
each column of the voxel grid is kept as the elevation. A
resolution of 2 cm is used in all the experiments reported here.
Some of the cells in the elevation grid may not contain any
points. The height in these cells is estimated via nearest neigh-
bour interpolation. Interpolation in the data sets processed here
is not likely to modify the frequency content of the original
elevation signal since empty cells represent at most 10% of
the elevation grid. However, this is not true in more sparse
scans, such as side-looking Velodyne scans [7] where the polar
pattern of the scans induces a significant number of empty cells
in a regular grid. Non-trivial interpolation mechanisms would

(a) KnidosH sub-map 6, ground surface (b) KnidosH sub-map 16, ground surface

(c) KnidosH sub-map 6, segmentation (d) KnidosH sub-map 16, segmentation

Fig. 3. Top row: examples of ground surfaces extracted with the proposed segmentation
method (colours are mapped to height). The two submaps used in this example are also
shown in Fig. 1; these have an extent of about [4 m × 4 m]. Bottom row: resulting
segmentation, grey indicates ground points, and blue non-ground points. The estimated
ground surfaces (top) are sparser than the point clouds (bottom) since they are built
on the elevation grid. In both cases most of the parts of the terrain belonging to the
underlying seafloor are correctly identified. This is further quantified in Sec. V-C.

be required to estimate the height in these cells. Alternatively,
non-uniform DFTs or Polar FFTs could be used [11]. This is
left as future work.

B. Ground surface extraction

The formulation of the ground extraction process presented
in this section is based on the observation that the ground
surface in a scene can be interpreted as the underlying lower
frequency undulations where smaller and higher frequency
shapes (e.g. objects on the ground) sit on. This “ground”
surface may not physically exist in all natural scenes. For
instance, larger objects such as rocks often merge with their
support at their boundary to form continuous surfaces. How-
ever, the estimation of a separation layer—which we refer
to as ground—defined as the lower frequency content of
the elevation signal (Figs. 3(a)-3(b)) allows us to identify
distinct segments above the “ground” (Figs. 3(c)-3(d)). These
segments are then used as landmarks for navigation (see
Sec. V-D). Intuitively, this segmentation process also relates to
a saliency detection mechanism (and thus information theory);
however, the definition of the theoretical relationships between
the two is beyond the scope of this paper. In the remainder
of this paper, the word “ground” will be used to refer to both
the separation layer estimated with the mechanisms described
below and the points below this layer.

1) Frequency domain filtering: The aim of performing
filtering in the frequency domain is to identify those lower
frequency components that form the ground surface. An ex-
ample of frequency response given by an elevation map is
shown in Fig. 4(a). In this section we assume that the cut-
off frequency (i.e. the frequency beyond which the frequency
components are considered to be objects) is given. The next
section explains how this cut-off frequency is automatically
determined.



Applying a hard threshold in the frequency domain creates
the well known ringing effect in the reconstructed spatial
signal [14]. To avoid this ringing effect a low-pass filter with
smooth cut-off is used to remove the higher frequency (i.e.
non-ground) components. We employ a linear phase frequency
domain filter with Butterworth-like magnitude response. An-
other advantage of this filter is that the magnitude in the
passband region is almost constant [14], hence the ratios of
the lower frequencies are maintained. The equation of this
Butterworth-like filter is:

|T (d)| = 1√
1−ε2·

(
d
dc

)2·n , n ≥ 1 (1)

where T is the filter response, ε =
√

10A/10 − 1 is the band
edge value with A being the passband variation. d is the
distance from DC, dc is the cut-off point and n is the filter
order. The filter order defines how sharp the damping is; n = 2
is used in our implementation.

The 2D frequency response of an image has the same di-
mensions as the image itself. The frequencies evaluated by the
FFT along one dimension of the image are [0, 1, 2, . . . , N2 ] · 1

N
where N is the number of pixels along that dimension. In
the case of non-square images (such as the elevation grids
processed here) the range of frequencies evaluated along each
dimension is different (as it depends on N ). Hence, the cut-
off frequency is here encoded as a ratio (a unitless number
between [0, 1]) of the range of frequencies. This implies that
consistent filtering of objects, independent of their orientation
and location in the image, can be obtained in non-square
images by modulating the cut-off frequency by an elliptical
gain.The extent of the major and minor axis of the ellipse is
given by: a = fc · w2 and b = fc · h2 , where fc ⊂ [0, 1] is the
cut-off frequency ratio and w/h the image width/height. The
2D filter with elliptical weighting is then obtained by replacing
the ratio d

dc
in (1) by:(
d

dc

)2

=

(
x− xo
a

)2

+

(
y − yo
b

)2

(2)

where (xo, yo) is the ellipse origin, which is the centre of
the shifted frequency response image (a shifted image is re-
arranged so that the DC is in the centre of the image). An
example of filtered frequency response image is shown in
Fig. 4(b).

2) Cut-off frequency estimation: dict The estimation of the
cut-off frequency is based on a peak detection process. Peaks
in the frequency domain result from periodic structures in the
original spatial-domain image and their radius and direction
correspond to the spacing and the orientation of a periodic
element [23]. A peak, Π, is found as a local maximum:

Π(j, i) =

{
1 if (Iω(j, i)− Iω(l, k)) > c

0 otherwise.
(3)

where Iω(j, i) indicates the (j, i)-th frequency image pixel,
l = {j−n, j−n+1, ..., j+n} and k = {i−n, i−n+1, ..., i+n}
are the indices of the local region. In an eight-connected region
n = 3. The constant c is a threshold defining how much larger
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Fig. 4. Bode magnitude plots of Knidos sub-map 16. (a) The original
frequency response image and (b) the filtered frequency response image. The
frequencies above the cut-off (here set to 7.99% and shown with a magenta
star) are suppressed by > 40 dB.

the peak has to be compared to the values in the neighboring
cells and is set to 0 in our implementation.

If the structure of the spatial domain is known [23] this
information can be used to select the correct peak and set the
cut-off frequency directly. Otherwise, the most salient peak has
to be searched for. The location of the closest peak to origin
is used as an initial estimate of the cut-off frequency. The
frequency components contained up to this peak may not be
enough to reconstruct the underlying ground surface. This is
for example the case when a sub-map contains slow undulating
patterns or a constant curvature. Fig. 1(a) illustrates the case
of an (approximately) constant curvature where the sub-map
is located on the base of a mound. To assess whether more
frequency components need to be included in the estimate of
the ground surface, we develop a mechanism that estimates the
maximum size of an object mc for a given cut-off frequency
and uses mc to refine the cut-off frequency. Beyond mc, an
object has frequency components below the cut-off frequency
and is identified as part of the ground.

The value mc is obtained by modelling an object in the
spatial domain as a step function. The frequency response of
a step function is a sinc function [14]. Correspondingly, the
response to a 2D step (a cube) is J1(z)/z, where J1(z) is
the first order Bessel function [9]. Knowing the size of the
cube τ , the location of the first zero crossing of the frequency
response is given by 2/τ . The wider the object, the closer
the location of the first zero crossing to the DC; which is
consistent with the analysis above identifying larger objects
with lower frequency components. The first zero crossing of
the first order Bessel function is followed by progressively
decreasing undulations. However, the range of frequencies up
to the first zero crossing contain more than 90% of the signal
energy. Therefore, we assume that the overall shape of the
object is maintained when applying a low-pass filter with a cut-
off frequency at the first zero crossing. Given this modelling,
a cut off frequency fc > 2

τ implies that an object of size τ is
included in the ground. On the other hand, if fc ≤ 2

τ , an object
of size τ is partly filtered out during ground extraction.This
implies that the maximum size of objects mc beyond which



objects are included in the ground surface can be approximated
as 2

fc
. Strictly speaking, objects smaller than 2

fc
are only partly

filtered out, the effect being stronger for smaller objects. The
latter equation transposed from the image space to the metric
world gives:

mc = 2/fc · resg, (4)

where resg is the resolution of the elevation grid.
This formula allows the ground extraction algorithm to

automatically adjust the detected cut-off frequency given a
maximum object size. The ground extraction algorithm is
formulated in such a way that the user provides a relative
value mu ⊂ [0, 1] which represents the maximum object size
with respect to the extent of the sub-map. The sub-map extent
e is obtained as the minimum of the extents in x and y.

Once the initial peak is identified, the corresponding maxi-
mum object size is obtained using (4). If mc > mu · e, fc
is set to the next closest peak from DC. This is repeated
until mc ≤ mu · e. The outcome of this process is a cut-
off frequency fc which is selected in such a way that the
maximum size of objects considered as non-ground is mu · e.
In our implementation mu = 0.5. As an example, in the case
of sub-map 6 from the KnidosH data set (shown in Fig. 3),
the ground extraction algorithm sets fc to the second closest
peak. Due to the overall constant upward curvature of this sub-
map, additional frequency components are required to model
the underlying ground. This means that the initial maximum
object size given by the first peak was beyond half the sub-map
extent (i.e. beyond mue).

3) Ground surface reconstruction: Once fc is defined,
and filtering is applied to the frequency domain image, the
estimate of the ground surface is built by applying the inverse
FFT. Examples of reconstructed ground surfaces are shown in
Fig. 3.

C. Ground/object separation

Given an estimated ground surface, the objects above this
surface are obtained by comparing the height of the points
in the original point cloud, to the height of the surface. If
a point is on or below the ground surface, it is labelled as
ground; if it is above it is labelled as non-ground. Once the
non-ground points are identified, they are clustered using a
standard proximity voxel based clustering: non-empty voxels
in contact of each other are gathered in the same cluster. The
resulting set of clusters form segments of non-ground points.
These can be used as landmarks for navigation as developed
in Sec. V-D.

V. EXPERIMENTS

This section presents two sets of experimental results. First,
an evaluation of the proposed ground extraction method is
performed using ground-truth hand labelled data (Sec. V-C).
Second, the proposed method is evaluated in terms of the
alignment it leads to when the segments are fed to the S-ICP
alignment algorithm (Sec. III). These results are presented in
Sec. V-D. In both sets of experiments, the proposed approach
is compared to three other techniques; these are described in

Sec. V-B. All experiments are repeated on two data sets which
are introduced in Sec. V-A.

A. Data sets

The 3D scans used here are produced by the structured
light laser profile imaging device described in [17]. The basic
concept consists of a green laser sheet projected on the sea
floor and a calibrated camera imaging the laser line. The
shipwreck sites were surveyed at approximately an altitude
of three meters with the vehicle traveling 10-15 cm/sec.
Once extracted from the collected images and projected, the
resulting point density is approximately 7 points per square
centimeter. The individual points have a range resolution better
than one centimeter. The two following data sets are processed:
(1) KnidosH, which contains 101 sub-maps; (2) Pipewreck,
which contains 42 sub-maps. In each set, sub-maps contain
around 600,000 points.

B. Benchmark segmentation techniques

This sections presents three ground segmentation methods
which will be used as benchmarks in the evaluation of the
proposed approach.

1) Naive ground extraction: In this first approach, the mean
height of the point cloud is averaged, and the ground is simply
defined as being the set of points below the mean height. This
approach will be referred to as the “Naive” method.

2) MLESAC-based plane extraction: In this second ap-
proach, a plane is fitted to the point cloud and the ground
is defined as the points below this plane. The Point Cloud
Library [2] implementation of a MLESAC (Maximum Likeli-
hood Estimation SAmple Consensus) based plane fitter is used
in the proposed experiments. This method will be referred to
as the “Planar” method.

3) Grid-based ground extraction: In this third approach, the
point cloud is voxelised, and the ground points are identified
as the ones contained in the bottom voxel of each column
of the voxel grid. The grid resolution relates, to some extent,
to the value of the cut-off frequency automatically estimated
by the proposed DFT-based method. A higher resolution (i.e.
a smaller grid separation) will result in finer details of the
terrain being included in the estimated ground surface, which,
to some extend, corresponds to larger cut-off frequency in the
context of the DFT-based method. However, as developed in
Sec. IV, the Fourier formalism allows the algorithm to reason
about the range of scales contained in the terrain relief, and,
given a maximum admissible object size, it allows to automate
the selection of the relief scales relevant to the definition of
the ground. Such reasoning is not readily applicable in a grid
based elevation segmentation and its resolution would have to
be manually adjusted as a function of the data set. The grid
resolution is set to 2cm in our experiments. This approach is
referred to as the “Grid” method.
C. Comparisons to hand labelled segmentation

1) Segmentation quality metric: The segmentation methods
are compared to hand labelled segmentation to determine
which points are correctly or incorrectly labelled as object



and ground. The evaluation is performed by quantifying the
True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN) rates in the binary classification task
of identifying the classes ground and object; where Positive
refers to the object class and Negative to the ground class.

2) Results: From each of the KnidosH and Pipewreck data
sets two sub-maps were chosen and manually labelled. For
each point the labels ground / non-ground were assigned.
These sub-maps (Fig. 1) were chosen since their content is
representative of the two data sets.

The results are presented in Table I. For each segmentation
method the true positive and true negative rates as well as the
F1 score are shown. The best results in terms of the F1 score
are indicated in bold.

From these results it is clear that the proposed method is
outperforming all the other approaches. The Planar method
generally produced the least proportion of FNs. However, this
came at the expensive of having the largest FPs. On the
contrary, our DFT method produced the lowest number of
FPs while having very low FNs too resulting in significantly
higher F1 score. These results shown that this method provides
the most consistent performance in identifying the underlying
ground surface compared to the tree benchmark techniques.

D. Comparisons of alignment results

This sections presents an evaluation of segmentation meth-
ods in terms of the quality of the alignment they lead to
when used in conjunction with the S-ICP alignment method
(Sec. III). The proposed segmentation approach plus the three
benchmark techniques detailed in Sec. V-B are run on each
sub-map of the two data sets. This allows to evaluate the
performance of each segmentation technique in an alignment
pipeline.

An initial odometry-based navigation solution is provided
using a Doppler Velocity Log, Fiber-Optic Gyrocompass,
and depth sensor. Sub-maps are broken before the accumu-
lated odometry error has become significant relative to the
bathymetry sensor resolution [16]. An Ultra-Short Baseline
acoustic positioning system is used to reference the survey to
a geodetic datum, but is otherwise too inaccurate to localize
the sub-maps or correct the navigation within a sub-map. The
aim of the experiments presented here is to show that pairwise
alignment through accurate terrain feature segmentation can
locally improve sub-map registration. The use of these local
pairwise registrations in a global scan alignment process (as
in [3]) or in the online navigation algorithm of [16] is left for
future work.

To define pairs of sub-maps for alignment, each sub-map
set is traversed as follows. The first sub-map s1 is paired up
with the closest neighbour sub-map (closest in terms of the
distance between their centroid); this sub-map then becomes
s2. s2 is paired up with the closest sub-maps amongst the
sub-maps not already in a pair. Each sub-map in a data set is
assigned to a pair by repeating this process.

1) Alignment quality metric: To evaluate the quality of the
alignment the metric used here attempts to capture the crisp-

ness of aligned scan pairs. This metric consists of voxelising
the aligned point cloud and returning the number of occupied
voxels. It will be referred to as Nx. The lower the value
produced by the metric, the crisper the point cloud and in
turn the more accurate the alignment. The rationale for using
this metric as opposed to the ICP residual is developped in [7].
The voxel resolution used in all the experiments presented here
is 2cm.

2) Results: The result of the alignments are summarised
in Table II. Naive, Planar and Grid refer to the techniques
described in Secs. V-B1-V-B3. FFT refers to the proposed
segmentation algorithm. A number of quantities are used to
evaluate the quality of the alignments associated to each
segmentation method. The first is the mean of the variation of
the Nx metric (∆Nx) before and after the alignment is applied.
This is reported as a percentage in column 1. The associated
standard deviation is given in column 2. A negative value of
∆Nx corresponds to an improvement of the crispness of the
point cloud. A positive value, on the contrary, corresponds
to the point cloud loosing in sharpness during the alignment.
This may, for instance, be due to segments being mismatched
across sub-maps (i.e. a data association failure). S-ICP only
computes an alignment if at least Nseg are matched across
sub-maps. Nseg is specified by the user and is set to 3 in
our experiments. If less than Nseg are associated during a
run of S-ICP, the alignment is not computed and ∆Nx is
set to 0. The number of sub-maps where the alignment has
degraded (∆Nx > 0), has not been calculated (∆Nx = 0),
and has improved (∆Nx < 0) is reported in columns 3-5,
respectively. The mean and the standard deviation provided
in columns 1 and 2 are computed using only the sub-map
pairs for which the alignment is computed (i.e. ∆Nx > 0
and ∆Nx < 0). In the case of rather flat terrains, only small
segments will be extracted which may not be large enough
to be accepted for processing. The minimum segment extent
is fixed to 2cm in our implementation. The absence of large
enough segments in any of the sub-maps in a pair results in the
pair not being processed. These cases are counted in the last
column of Table II. The results for each of the two data sets are
separated in each cell of the table by “/”: KnidosH/Pipewreck.
The best results in each column and for each data set are
indicated in bold.

The first column of Table II shows that for both data sets
the proposed method (last row) outperforms the benchmark
methods by providing on average the best improvement in
crispness when used in conjunction with S-ICP. The associ-
ated standard deviation (column 2) is of the same order of
magnitude as the mean, suggesting a non negligible range of
variations in ∆Nx. This is due to the quality of the initial
navigation solution which varies across the data set and which
is on average better in the KnidosH data set. In some cases, the
provided navigation is accurate (in particular along the linear
segments of the ROV’s trajectory) and little improvement is
obtained in terms of point cloud sharpness. In other cases,
in particular for areas re-visited from different transects (near
loop closures), the alignment provided by S-ICP leads to a



TABLE I
COMPARISON OF SEGMENTATION METHODS WITH GROUND TRUTH (TPR/TNR/F1).

KnidosH data set Pipewrech data set
Sub-map 6 Sub-map 16 Sub-map 13 Sub-map 41

Naive 0.57 0.79 0.70 0.60 0.60 0.58 0.77 0.83 0.82 0.74 0.87 0.82
Planar 0.48 0.99 0.64 0.21 0.84 0.31 0.68 0.92 0.78 0.76 0.89 0.83
Grid 0.82 0.83 0.87 0.65 0.80 0.68 0.82 0.77 0.84 0.69 0.86 0.78
FFT 0.90 0.85 0.92 0.94 0.76 0.82 0.98 0.95 0.97 0.96 0.88 0.95

TABLE II
DELTA CRISPNESS BEFORE/AFTER ALIGNMENT (KNIDOSH / PIPEWRECK DATA SETS)

µ (∆Nx) [%] σ (∆Nx) [%] #∆Nx > 0 #∆Nx = 0 #∆Nx < 0 #unprocessed
Naive 1.14 / Nan 2.37 / Nan 21 / 0 71 / 41 8 / 0 0 / 1
Planar 0.43 / -2.04 2.73 / 5.87 21 / 2 59 / 35 15 / 2 6 / 3
Grid -0.25 / -3.47 1.20 / 2.13 22 / 0 49 / 34 26 / 5 4 / 3
FFT -1.28 / -4.25 1.23 / 2.90 6 / 0 50 / 19 41 / 20 4 / 3

more significant improvement in the point cloud crispness.
Examples of alignment results are shown in Fig. 5. The
other indicators confirm the relative performance of the four
methods. For both data sets, the proposed approach leads to
the smallest number of incorrect alignments (column 3), to the
smallest number (modulo 1 sub-map pair) of non-aligned sub-
map pairs (column 4), and to the largest number of improving
alignments (column 5).

The percentages in the first column of Table II are small
(in terms of their absolute values) due to the following
reason. ∆Nx (expressed in %) is obtained as: ∆Nx =
Nxafter−Nxbefore

Nxafter
·100, where the indices “before” and “after”

refer to before and after applying the alignment. As can be
seen in Fig. 5, an alignment results in overlapping segments
being moved relative to one another compared with the
original, uncorrected alignment provided by the navigation
solution. The resulting change in the number of occupied
cells corresponds to a small number of points compared to
the number of points in the two sub-maps. Fig. 5 gives an
intuition on how ∆Nx values map to actual alignments.

The Naive segmentation method is not expected to provide
high performance but is used here to gage the merits of a
low complexity approach. The corresponding results show that
accurate alignment requires more terrain modelling than a
simple threshold based separation. The Pipewreck data set,
which, as can be seen in Figs. 5(a)-5(b), contains large sections
of flat terrain. The mean of the terrain height tends to be pulled
in the flat sections, implying that large sections of flat terrain
are identified as non-ground. These large segments cannot be
matched across sub-maps since their extent and shape is less
representative of the terrain itself than of the extents of the
sub-map they were extracted from. A similar behaviour can
be observed in the KnidosH data set.

The Planar segmentation method is well suited to the
Pipewreck data in which most of the sub-maps contain non-
negligible visible portions of rather flat ground (Figs. 5(a)-
5(b)). The extraction of a planar surface via a RANSAC
method is in this case appropriate and leads to an accurate
ground segmentation (see results in Sec. V-C). The application
of the same method to the KnidosH data set which contains
more diverse relief (Figs. 5(c)-5(d)) shows that simple plane
extraction is not general enough to provide accurate segmenta-
tion / alignment in a variety of terrains. This method provides

on average an improvement of the point cloud crispness in
the Pipewreck data set (∆Nx = −2.04), but tends to lead to
point clouds with a degraded sharpness in the KnidosH data
set (∆Nx = 0.43).

The next step up in terms of complexity of the terrain
model corresponds to the Grid method. A more accurate
modelling of the terrain relief obtained with the Grid method
allows improved performance with respect to the two previous
techniques. For both data sets, the Grid method leads to an
improvement of the point cloud crispness: ∆Nx = −0.25 for
the KnidosH data set and ∆Nx = −3.47 for the Pipewreck
data set. As explained in Sec. V-B3 however, automating the
definition of a grid resolution which allows the larger scales
of the relief defining the underlying ground to be captured is
not trivial without resorting to a spectral type of analysis.

The proposed FFT based segmentation method is able to
perform better than the methods making assumption of a (par-
tially) flat terrain (Naive and Planar) and methods requiring
a resolution to be fixed a priori (Grid). It can reconstruct
non-planar terrains (as illustrated in Fig. 3(c)) and reason
globally on the point cloud (modulo some formatting into
an elevation grid) as opposed to reasoning only locally in a
column of heights. The set of results presented in Table II
provide experimental evidence in favour of the applicability
of the proposed ground segmentation method to a range of
different terrains and its ability to generate features useful for
navigation.

VI. CONCLUSION

This paper has introduced a method for segmenting 3D
scans of underwater unstructured terrains. The method extracts
a ground surface by selecting the lower frequency components
in the frequency domain that define the slower varying undula-
tions of the terrain. The points above the estimated ground sur-
face are clustered via standard proximity clustering to form ob-
ject segments. The experimental results show that the approach
is applicable to a range of different terrains and is able to
generate segments which are useful landmarks for navigation.
Future work will integrate segmentation based registration to
a global scan alignment process, and to online navigation
algorithms. The DFT-based ground extraction mechanism will
also be extended to perform non-regular DFTs or polar FFTs to
process polar scans that generate irregular grids, which cannot
be directly processed with standard FFTs. Finally, we will



(a) before alignment (b) after alignment (c) before alignment (d) after alignment

Fig. 5. Examples of alignment results using the DFT ground segmentation method in conjunction with S-ICP. (a) and (c), pairs of sub-maps before alignment; (b) and (d), the
same sub-maps after alignment. In the two left plots, a pair of sub-maps from the Pipewreck data set. The reference sub-map (i.e. the sub-map not being aligned) is shown in blue
with the segments generated by the DFT-based method shown in turquoise. The sub-map being aligned is shown in red with the segments generated by the DFT-based method shown
in yellow. The black segments in the aligned pair indicate the segments matched by S-ICP across the two point clouds and used to compute the alignment. As can be seen in (b),
corresponding segments are brought right on top of each other after alignment. This alignment corresponds to ∆Nx = −5.4%. Note that if the alignment were to be performed
using standard (dense) ICP, the two sub-maps would be brought completely on top of each other due to the ground point dominating the cost function in the ICP optimisation.
(c)-(d) show a pair of sub-maps that belongs to the KnidosH data set. The same colour coding as (a) and (b) is used except that the ground points in the aligned map (in red in
(a) and (b)) are not shown for the sake of clarity. In (d) it can be seen that the corresponding segments are brought right on top of each other by the alignment. This alignment
corresponds to ∆Nx = −12.6%.

compare the proposed method to image segmentation based
approaches such as the GraphCut algorithm.
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