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Abstract—We propose a new method to smoothly deform
trajectories of redundant manipulators in order to deal with un-
foreseen perturbations or to retarget captured motions into new
environments. This method is based on the recently-developed
affine deformation framework, which offers such advantages as
closed-form solutions, one-step computation and no trajectory
re-integration. Satisfaction of inequality constraints and dynam-
ics optimization are seamlessly integrated into the framework.
Applications of the method to interactive motion editing and
motion transfer to humanoid robots are presented. Building on
these developments, we offer a brief discussion of the concept of
redundancy from the viewpoint of group theory.

I. INTRODUCTION

Planning trajectories for highly redundant manipulators is
challenging and time-consuming because of the large number
of degrees of freedom associated with these systems [7]. As a
consequence, in order to deal with unforeseen obstacles or per-
turbations of the target or of the system state, it is sometimes
more advantageous to deform a previously planned trajectory
rather than to re-compute entirely a new one. In motion-
capture-based applications, deforming captured trajectories –
e.g. to adapt them to a different environment, to retarget them
to a different character [10, 2, 6], or to transfer them to a
humanoid robot [16, 14] – is the only viable option, as one
cannot reasonably record beforehand all the motions with the
desired kinematic and dynamic properties.

A. Some desirable properties of the deformations

Our aim in the present article is to design a trajectory
deformation algorithm that satisfy the three following re-
quirements : accuracy, smoothness and optimality. “Accuracy”
simply means that the deformed trajectory should attain the
objective for which the deformation has been conceived : for
instance, to reach exactly a new configuration, with a specified
velocity, acceleration, etc.

By “smoothness”, we mean that the deformed trajectory
should conserve the regularity properties (such as being C1,
C2 or more generally Cp) of the original trajectory. This is
particularly critical for instance in the context of computer
graphics to avoid motion jerkiness or, in the context of robot
control, to avoid infinite torques.

By “optimality”, we mean that one should have the pos-
sibility to choose a deformation that optimizes certain cri-
teria, so long as this optimization does not interfere with
the previous requirements of accuracy and smoothness. One
typical objective can be for instance to minimize the distance
between the deformed trajectory and the original one. This is
obviously desirable in the case of motion retargeting [10, 2, 6]

or motion transfer to humanoid robots [16, 14]. In the context
of robot control, the original trajectory is often obtained
through extensive computations (in order e.g. to minimize
energy consumption, to avoid obstacles, to respect joint limits,
etc.), therefore, if the deformed trajectory is “close” to the
original one, one can expect the former to keep the good
properties of the latter. The deformation algorithm should also
leave the possibility for specifying explicitly other optimization
objectives, such as integrated torque, energy consumption,
distance to obstacles, etc.

B. Existing approaches

Two main approaches exist in the literature for handling
trajectory deformations. In spline-based approaches, a defor-
mation is made by altering the coefficients multiplying the
basis splines [13] or by adding to the original trajectory
a displacement map – which is a sum of splines [2, 6].
These modifications can furthermore be done in a coarse-to-
fine manner using wavelet bases [13] or through hierarchical
approximations [6].

Another approach is based on the encoding of the orig-
inal trajectory by an autonomous nonlinear dynamical sys-
tem [3, 14]. A deformation is then made by altering the
coefficients multiplying the basis functions that appear in
the definition of the dynamical system. This approach yields
a robust execution-time behavior thanks to the autonomous
nature of the dynamical system. At the same time, because of
this dynamical-system representation, inequality (such as joint
limits, obstacle avoidance) and equality (such as specified final
velocity, acceleration, etc.) constraints at specific time instants
cannot be taken into account without integrating the whole
trajectory up to these time instants, which can be very costly.

The above two approaches are similar in that they make
use of exogenous basis functions : splines in the spline-based
approach, and Gaussian kernel functions in the dynamical-
system-based approach. A first, pervasive, difficulty then con-
sists of choosing the appropriate bases for a particular task.
Second, adding artificial functions to a natural movement can
produce undesirable behaviors, such as large undulations in
the case of splines [6, 13], lack of smoothness, etc. – which
call for supplementary and often costly efforts to correct.

C. Our approach

Unlike the spline-based and the dynamical-system-based
approaches, the method we propose makes use of no exoge-
nous basis function. Indeed, inspired by the recent finding that
human movements are – to some extent – invariant under



affine transformations [1], we deform a given trajectory by
applying affine transformations on parts of it. Thus, the only
“basis functions” are the original joint angle time series and,
as a consequence, any deformed trajectory under this scheme
automatically preserves some properties of the original one.
Such invariant properties may include for instance smoothness,
periodicity, absence of large undulations, etc. or more qualita-
tively, motion “naturalness” [18], which is a desirable feature
in motion retargeting applications, yet difficult to quantify.
We shall show that, despite this small functions basis, it
is still possible to satisfy the requirements of “accuracy”,
“smoothness” and “optimality” stated earlier by leveraging the
extra redundancy offered by the affine transformations.

More precisely, our approach is based on the affine trajec-
tory deformation framework first developed for nonholonomic
mobile robots [8, 9]. In contrast with previous trajectory de-
formation methods for mobile robots [5, 11], affine-geometry-
based algorithms are exact (given by closed-form expressions),
can be executed in one step, and do not require any trajectory
re-integration. The present manuscript focuses on manipulators
with many degrees of freedom, but some of the new devel-
opments presented here (about e.g. inequality constraints or
dynamics optimization) should benefit all classes of system
for which affine deformations are applicable.

In section II, we present the main algorithms of affine tra-
jectory deformation for redundant manipulators. Closed-form
expressions of the deformations that optimize the closeness
between the original and the deformed trajectories are given,
and explicit bounds on the dissimilarity between the original
and the deformed trajectories or between their derivatives are
presented. Inequality constraints, dynamics optimization, and
kinematics filtering are integrated into the affine deformation
framework. In section III, we illustrate these results with
two simple concrete examples : interactive motion editing
and motion transfer to humanoid robots. In section IV, we
give a characterization of trajectory redundancy by the group
of admissible deformations, revisiting thereby the concept
of kinematic redundancy and suggesting a new theoretical
approach to motion planning.

II. AFFINE TRAJECTORY DEFORMATIONS

A. Affine spaces and affine transformations

An affine space is a set A together with a group action of a
vector space W. An element w ∈ W transforms a point θ ∈ A
into another point θ′ by θ′ = θ+w, which can also be noted
θ′ − θ = w or

−→
θθ′ = w.

Given a point θ0 ∈ A (the origin), an affine transformation
F of the affine space can be defined by a couple (w,M)
where w ∈ W and M is a non-singular linear map W → W.
The transformation F acts on A by

∀θ ∈ A F(θ) = θ0 +M(
−−→
θ0θ) +w.

Note that, if θ0 is a fixed-point of F , then F can be written
in the form

∀θ ∈ A F(θ) = θ0 +M(
−−→
θ0θ).

B. Equality constraints on the deformations

1) Smoothness constraints at the deformation time instant:
Consider a Cp trajectory θ(t)t∈[0,T ] and an affine transfor-
mation F that deforms θ(t)t∈[0,T ] into θ′(t)t∈[0,T ] at a time
instant τ , i.e.

∀t < τ θ′(t) = θ(t)
∀t ≥ τ θ′(t) = F(θ(t)).

We say that F is Cp-preserving if the resulting θ′(t)t∈[0,T ]

is also Cp. From [8], we know that F is Cp-preserving if
and only if (i) θ(τ) is a fixed-point of F and (ii) the first p
derivatives of θ′ are continuous at τ . Condition (i) implies that
F is of the form

∀φ F(φ) = θ(τ) +M(φ− θ(τ)), (1)

where M is a non-singular linear map A → A.
Next, for i = 1 . . . p, let us note ui = diθ

dti (τ) (u1 is the
velocity vector at time τ , u2 is the acceleration vector, etc.)
Then condition (ii) can be formulated as

∀i = 1 . . . p M(ui) = ui. (2)

Let us now consider the non-degenerate case when u1, . . . ,up
are linearly independent. In this case, it is possible to construct
an orthonormal basis B whose first p vectors form a basis of
U = Span(u1, . . . ,up), for instance using a Gram-Schmidt
orthonormalization procedure. From equation (2), the matrix
of M in this basis is of the form

M =



1 m1,p+1 · · · m1,n

. . .
...

...
...

1 mp,p+1 · · · mp,n

0 . . . 0 1 +mp+1,p+1 · · · mp+1,n

...
...

...
...

...
...

0 . . . 0 mn,p+1 · · · 1 +mn,n


,

which shows that the space of Cp-preserving affine transfor-
mations at τ forms a Lie subgroup of the General Affine group
GAn of dimension n(n− p) = n2− pn, parameterized by the
mi,j .

2) Constraints on the final configuration: Regarding the
“accuracy” requirement, let us now characterize, within the
space of Cp-preserving deformations, those that allow at-
taining a desired final position θd, i.e., such that θ′(T ) =
F(θ(T )) = θd.

Let (λ1, . . . , λn) and (µ1, . . . , µn) denote respectively the
coordinates of θ(T )− θ(τ) and of θd − θ(τ) in the basis B.
Then, the condition for the deformed trajectory to reach the
desired configuration θd at time T is (see Fig. 1A for an
illustration)

M (λ1 . . . λn)
> = (µ1 . . . µn)

>. (3)

Equation (3) can actually be transformed into

Vm = δ, (4)

where V is the n× n(n− p) matrix defined by

V =

 λp+1 · · · λn 0 · · · 0

0 · · · 0
. . . 0 · · · 0

0 · · · 0 λp+1 · · · λn

 , (5)



n : number of generalized coordinates
p : required degree of smoothness
k : number of final constraints
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Fig. 1. A : Illustration for the case n = 2 (system of dimension 2) and p = 1
(C1 continuity, i.e. continuity of the velocity, is required). B : Flowchart of
the deformation algorithm.

and m and δ are the vectors of sizes n(n− p)× 1 and n× 1
defined by

m =



m1,p+1

...
m1,n

...
mn,p+1

...
mn,n


and δ =

 µ1 − λ1

...
µn − λn

 =

 δ1
...
δn

 .

Note from the above definition that δ represents in fact the
coordinates of θd − θ(T ) in the basis B.

3) Constraints on the final derivatives: Assume for instance
that one wishes to arrive at the final configuration with a
desired velocity vd. Then, the matrix of the transformation
must satisfy, in addition to equation (3), the following equation

M

 λv
1
...

λv
n

 =

 µv
1
...

µv
n

 , (6)

where (λv
1, . . . , λ

v
n) and (µv

1, . . . , µ
v
n) denote respectively the

coordinates of θ̇(T ) and of vd in the basis B.
Next equation (4) becomes

Vgm = δg, (7)

where Vg is a 2n × n(n − p) matrix constructed by adding
below V a n×n(n−p) matrix similar to V but containing the
λv
i s instead of the λi, and where δg is a 2n×1 vector defined

by δg = (µ1 − λ1, . . . , µn − λn, µ
v
1 − λv

1, . . . , µ
v
n − λv

n)
>.

More generally, satisfying k final constraints (k = 3 for
instance if one wants to constraint the final position, velocity,
and acceleration) will give rise to a matrix Vg of size kn ×
n(n − p). From the dimensions of the matrices of the linear
system (7), one can thus draw the following conclusions

• If n2 − pn ≥ kn (i.e. n ≥ k + p), then it is possible to
deform θ into a θ′ that satisfies k final constraints while
guaranteeing Cp continuity.

• Furthermore, if n > k + p, then such a θ′ is not unique.
In fact, the space of affine transformations that satisfy the
above conditions constitutes a Lie subgroup of GAn of

dimension n2− (k+p)n. Within this space, one can then
choose the deformations that optimize certain criteria,
as detailed in the following sections and summarized in
Fig. 1B.

C. Minimum-norm deformations

1) Closed-form solution: As stated in the Introduction, one
important optimization objective for the deformed trajectory
can consist of being the “closest” possible to the original
trajectory. One way to achieve this is to minimize the distance
between the transformation F and the identity transformation,
which in turn can be quantified by the Frobenius distance
between the matrix M and I. The Frobenius distance between
M and I is given by ‖M−I‖F =

√∑
i,j m

2
ij = ‖m‖2, where

‖ · ‖2 denotes the 2-norm of vectors.
On the other hand, the m of minimum 2-norm that satisfies

equation (4) is given by

m = V+δ,

where V+ denotes the Moore-Penrose pseudo-inverse of V
(for simplicity, we treat the case when only the final configu-
ration is constrained).

Observe next that, since the rows of V are linearly inde-
pendent, one can in fact compute explicitly V+ by

V+ = V>(VV>)−1 =
1

S
V>,

with S =
∑n

i=p+1 λ
2
i = ‖θ̃proj(T )‖22, where θ̃proj(T ) is the

orthogonal projection of θ(T )− θ(τ) on U⊥ (see Fig.1A for
an illustration). One can thus compute m by

m = V+δ =
1

S
V>δ

=
1

S
(λp+1δ1, . . . , λnδ1, . . . , λp+1δn, . . . , λnδn)

>,

which leads to the explicit form of M as M = I + 1
SW,

where

W =

 0 · · · 0 λp+1δ1 · · · λnδ1
...

...
...

...
...

...
0 · · · 0 λp+1δn · · · λnδn

 . (8)

2) Bound on the dissimilarity of the trajectories: Let us
now compute the distance between the deformed and the
original trajectories. First, observe from the form of F [cf.
equation (1)] that, for all t ≥ τ

θ′(t)− θ(t) = (M−I)(θ(t)− θ(τ))

= (M−I)θ̃proj(t). (9)

Letting ‖·‖2 also denote the induced 2-norm of linear maps
and matrices, one has, from the explicit form (8) of M

‖M− I‖2 =
1

S
‖W‖2 ≤

1

S
‖W‖F =

1

S

√√√√√( n∑
i=1

δ2i

) n∑
i=p+1

λ2
i



=
‖δ‖2

√
S

S
=

‖θd − θ(T )‖2√
S

. (10)



Next, from equation (9), one has

‖θ′(t)− θ(t)‖2 ≤ ‖M− I‖2 · ‖θ̃proj(t)‖2

=
‖θd − θ(T )‖2√

S
‖θ̃proj(t)‖2

= ‖θd − θ(T )‖2
‖θ̃proj(t)‖2
‖θ̃proj(T )‖2

. (11)

Note that inequality (11) is in fact an equality for t = T .
This inequality provides a bound on the distance between the
deformed and the original trajectories at each time instant.
Since θ̃proj(t) and θ̃proj(T ) do not depend on θd, one can in
fact write

max
t∈[τ,T ]

‖θ′(t)− θ(t)‖2 ≤ K‖θd − θ(T )‖2,

where K is a constant independent of θd (for instance, K = 1
in Fig. 1A). In particular, this shows a desirable “continuity”
property of our deformation algorithm : when θd → θ(T ), one
has θ′(t)t∈[0,T ] → θ(t)t∈[0,T ] in L2.

3) Bounds on the dissimilarity of the derivatives: One can
also compute the distance between the derivatives (velocity,
acceleration, etc.) of the deformed and the original trajectories
in a similar way as above. One has indeed, for all levels q of
differentiation

∀t ∈ [τ, T ]
dqθ′

dtq
(t)− dqθ

dtq
(t) = (M−I)

(
dqθ

dtq
(t)

)
,

which, together with (10), allows obtaining the following
bound for all t ∈ [τ, T ]∥∥∥∥ dqθ′

dtq
(t)− dqθ

dtq
(t)

∥∥∥∥
2

≤ ‖θd − θ(T )‖2
‖θ̃proj(T )‖2

∥∥∥∥ dqθ

dtq
(t)

∥∥∥∥
2

.

D. Inequality constraints

In addition to the equality constraints of section II-B, most
applications also require the satisfaction of inequality con-
straints, such as joint limits, upper-bounds on the velocities,
accelerations or torques, avoidance of obstacles, etc. In many
cases, these constraints can be expressed by

Aiθ
′
Can(ti) ≤ bi, (12)

where ti ∈ [τ, T ] is a specific time instant, Ai is a c×n matrix,
bi is a c×1 vector and θCan(ti) is the n×1 vector containing
the coordinates of θ(ti) in the canonical basis. To enforce
joints limits, one can for example choose several ti that sample
the region where the joint values are expected to be large. Note
also that constraints on higher-order derivatives such as θ̇, θ̈,
etc. can be treated using the formulae of section II-B3.

Next, let P denote the basis matrix of B (cf. section II-B1).
Equation (4) can then be equivalently written as

Vm = P−1(θ′
Can(ti)− θCan(ti)),

which yields

θ′
Can(ti) = θCan(ti) +PVim,

where Vi has been constructed as in equation (5). Equa-

tion (12) is then equivalent to

AiPVim ≤ bi −AiθCan(ti).

One can finally construct a matrix Ag and a vector bg by
piling vertically all the AiPVi on one hand and all the bi −
AiθCan(ti) on the other hand.

Now, to find the deformation of minimum-norm (cf. sec-
tion II-C) while satisfying the inequalities (11), it suffices to
solve the Quadratic Program

min
1

2
‖m‖22

with the equality and inequality constraints

Vgm = δg, Agm ≤ bg. (13)

Note finally that the system of equality and inequality
constraints can be fully prioritized and solved efficiently using
recent algorithms [4].

As an illustration, consider a planar 3-link manipulator.
The original trajectory of the end-effector is a straight line
between the initial position and the final position. However,
the corresponding joint angle trajectory violates several joint
limit constraints. A deformed C1 trajectory is then computed
that connects the initial and final positions while respecting
the constraints and staying the closest possible to the original
trajectory, see Fig. 2.
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Fig. 2. Deformation under inequality constraints. The original trajectory
(red) is deformed into the blue one in order to respect the constraints θ1 ≥ 0
and θ2 + θ3 ≤ 2.8 rad (black lines in the bottom plots). The red dots
correspond to the time instant of the deformation. Note that the deformed
trajectory remains C1. The time instants when the constraint are enforced
(black dots in the bottom plots) were chosen near the minimum of θ1 and
the maximum of θ2 + θ3 in the original trajectory.

E. Optimization of dynamic quantities
As stated in the Introduction, it is sometimes necessary to

specify explicitly the objective of the optimization, such as
energy consumption or integrated square torque. However, in
contrast with the minimum-norm deformation case, closed-
form solutions cannot, in general, be obtained for such opti-
mizations. One must then resort to iterative methods.



Typically, consider a cost function of the type

C(θ) =

∫ T

0

c(θ(t), θ̇(t), θ̈(t)) dt.

Then the optimization problem can be formulated as

min
M

∫ T

τ

c(θ(τ) +M(θ(t)− θ(τ)),M(θ̇(t)),M(θ̈(t))) dt

(14)
subject to the linear equality and inequality constraints of
equation (13).

Note that, if an iterative method is used, a very convenient
candidate for an initial guess is the M of minimum norm,
which can be computed very quickly following sections II-C
and II-D

As an illustration, consider again the 3-link planar manipu-
lator of the previous section. The deformation was made here
in order to minimize the integrated squared torque

C(θ) =

∫ T

0

ρ21(t) + ρ22(t) + ρ23(t) dt,

where ρj is the torque applied at joint j. Note that the above
equation can be easily put in the form of equation (14) by
expressing the ρj as functions of θ, θ̇, θ̈ and the geometric
and inertial parameters of the system. An example is given in
Fig. 3.
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Fig. 3. Minimization of squared torque. The original trajectory (red) is
deformed into a new trajectory (blue) whose integrated squared torque is
smaller. The red dots correspond to the time instant of the deformation. Note
that the deformed joint angle trajectories are C1 but not C2. Note also that, in
agreement with classical results (see e.g. [15]), the torque-optimal trajectory
of the end-effector in Cartesian space is not straight but slightly curved.

F. Fine-grained kinematics filtering

In the previous sections, we have presented a method to
find trajectory deformations that suit global, coarse-grained,
objectives, such as reaching a desired final configuration,
avoiding obstacles at specific time instants or optimizing a
global trajectory cost. However, a trajectory obtained from
such deformations may not satisfy local, fine-grained, con-
straints. For instance, when modifying a walking pattern, one

needs to make sure that the stance foot neither leaves the
ground nor slips. This is expressed by maintaining the foot
position constant throughout a continuous time interval. It is
clear that a single affine transformation cannot satisfy such
a constraint that applies on a continuous time interval. Thus,
to take into account this type of fine-grained constraints, we
propose to subsequently “filter” the deformed trajectory. More
precisely, consider for instance the following constraint

g(θ(t)) = 0, ∀t ∈ [t0, t1]. (15)

Let us denote by Jg the Jacobian matrix of g and Ng(φ)
the nullspace of Jg at point φ. One first needs to make sure
that the deformed trajectory θ′ satisfies the constraint at t0
by requiring g(θ′(t0)) = 0 (and θ̇′(t0) ∈ Ng(θ

′(t0)) if one
needs C1 continuity). This can be done by using the affine de-
formation method presented earlier. Next, differentiating (15)
yields the constraint Jg(θ)θ̇ = 0, ∀t ∈ [t0, t1].

Let us now consider the filtered trajectory θ′′ defined by

∀t ≤ t0 θ′′(t) = θ′(t)

∀t ∈ [t0, t1] θ̇′′(t) = projNg(θ′′(t))θ̇
′(t), (16)

where proj is the operator of orthogonal projection. Equa-
tion (16) is a differential equation very simple to integrate and
whose solution θ′′ satisfies the constraint g for all t ∈ [t0, t1].
While in general there is no guarantee that θ′′ will stay close
to θ′, in practice, for highly redundant manipulators and short
constraint time intervals, this procedure can yield satisfying
results, as illustrated in Figure 4. Finally, if needed, one can
make a final affine deformation to reconnect θ′(t)t∈(t1,T ] with
θ′′(t)t∈[t0,t1] at time t1.
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Fig. 4. Kinematics filtering to fulfill fine-grained constraints. The original
trajectory (red) allows connecting the initial and final end-effector positions
by a straight line in the end-effector space. The joint angle trajectory is next
deformed in order to reach the final end-effector position but using a different
joint angle configuration (blue trajectory, top plot). However the blue end-
effector trajectory (blue thick line in the top plot) is no longer a straight
line. The blue joint angle trajectory is then “kinematically filtered” into the
green one whose end-effector trajectory is a straight line in Cartesian space,
similarly to the original red trajectory, but whose joint angle trajectory is
close to the blue one (see bottom plots). In particular, the final blue and
green configurations are almost identical.

The previous development constitutes in some sense a
“kinematics filter”. A more sophisticate approach – the “dy-



namics filter” – allows filtering a non-dynamically-consistent
trajectory into a dynamically-consistent one by using a fast dy-
namics computation algorithm for structure-varying kinematic
chains [16].

III. EXAMPLES OF APPLICATIONS

A. Interactive motion editing

In typical computer graphics applications, the system under
study is so complicated that interactive manipulations are the
only way to modify the motion to suit one’s needs. In this
perspective, a pin-and-drag algorithm that allows interactively
altering a particular configuration while respecting kinematic
and contact constraints using differential inverse kinematics
was designed in [17]. Based on the previous development,
we propose here a way to extend this algorithm to handle
interactive modifications of the entire trajectory.

Assume that a joint angle trajectory θ(t)t∈[0,T ] is given, and
that we are interested in modifying the position of a certain
landmark point r = f(θ). For instance, if θ represents the
joint angles of a human leg, r can represent the position of
the right toe, and we want to modify r so that the toe passes
above an obstacle at a time instant tobs. This can be done as
follows

1) First, “drag” the position of r(tobs) towards a higher
position rd and compute the corresponding θd using the
pin-and-drag algorithm [17] ;

2) Next, choose an appropriate τ < tobs and deform
θ(t)t∈[0,T ] at τ to obtain θ′(t)t∈[0,T ] with θ′(tobs) =
θd ;

3) Finally, choose an appropriate τ ′ ≥ tobs and deform
θ′(t)t∈[0,T ] at τ ′ to obtain θ′′(t)t∈[0,T ] with θ′′(T ) =
θ(T ).

Note that, at steps 2 and 3, one may also impose velocity,
acceleration, etc. constraints to guarantee C1, C2, etc. conti-
nuity.

The new trajectory θ′′(t)t∈[0,T ] can be computed very
quickly, even for systems with large numbers of degrees of
freedom, thanks to the efficiency of the pin-and-drag and affine
deformation algorithms. One can thus visualize the whole
deformed trajectory in real-time as one drags the landmark
point, which greatly enhances the editing experience. This is
illustrated in Fig. 5.

B. Motion transfer to humanoid robots

We first recorded a hand waving movement (four degrees
of freedom : elbow flexion, shoulder pitch, roll, yaw) of a
human subject (see the first row of snapshots in Fig. 6).
Optical markers were placed on the subject’s shoulder, elbow
and wrist, which allow reconstructing the joint angles by
inverse kinematics. These joint angles were then transferred
to a humanoid robot (second row of snapshots in Fig. 6).
Another robot movement was obtained by smoothly deforming
the joint angle trajectories in order to reach a new final
arm configuration corresponding to : elbow angle − 0.2rad,
shoulder pitch + 0.2rad, roll + 0.2rad, yaw − 0.2rad (third
row of snapshots in Fig. 6).
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Fig. 5. Interactive editing of a human walking pattern. The original
trajectory is reconstructed from motion-capture data and is plotted in red.
The intermediate configuration at time tobs is highlighted by bold red sticks
(top plot) and the landmark point is represented by a black dot. First,
differential inverse kinematics is performed to compute a desired configuration
θd (highlighted by bold magenta in the top plot) corresponding to a higher
position rd of the landmark point (black dot). Then a first deformation
(blue) is made to bring the configuration at time tobs towards the desired
configuration θd. Finally a second deformation (green) is made to bring the
configuration at T back to that of the original trajectory, with the original
velocity, ensuring thereby C1 continuity with the final part of the trajectory.
Note that the time instant T corresponds here to the time instant of the first
heel strike after tobs.

The smoothness of the deformed robot joint angles and of
the velocity profiles can be observed in the plots of Fig. 6. Note
also that, although noisy (because of motor and sensor noises),
the accelerations remained small at the global scale thanks
to the C1 continuity guaranteed by the affine deformation
algorithm. Finally, note that it is possible to implement online
feedback control by applying this algorithm in a reactive
manner [9].

IV. A CHARACTERIZATION OF TRAJECTORY REDUNDANCY
BY THE GROUP OF ADMISSIBLE DEFORMATIONS

Building from the previous development, we now discuss
the concept of redundancy from the viewpoint of group theory.

A. Configuration and velocity redundancies

A manipulator is said to be kinematically redundant with
respect to a task when more degrees of freedom than the
minimum number required to execute that task are available,
see e.g. [7, 12]. As in section III-A, consider the system

r = f(θ), (17)

where r is a vector of dimension m representing the config-
uration of the end-effector and θ is a vector of dimension
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Fig. 6. Transferring a human hand waving motion to a humanoid robot.
Top row: the original human movement (snapshots taken every 500ms).
Second row (condition NORMAL) : the joint angles obtained from inverse
kinematics are transferred on the humanoid robot after making one affine
deformation at t = 1s to align the initial posture of the motion with the
standard initial posture of the robot (snapshots taken every 2s). Third row
(condition MODIFIED) : a second affine deformation is made at t = 1.5s to
alter the final posture of the robot. In the last three snapshots, the robot’s right
arm in condition NORMAL was superimposed for comparison. Note that the
robot movement speed was reduced to 1/4th of the original human speed to
comply with the hardware limitations. The graphics show the joint angles and
their derivatives for the original human movement (red), and for the scaled
robot movements (NORMAL in blue and MODIFIED in green).

n representing the joint angles. If n > m, then there gen-
erally exists infinitely many θ that correspond to a given r,
which constitutes the notion of configuration redundancy, see
Fig. 7A.

A B

Fig. 7. Configuration redundancy (A) and trajectory redundancy (B). For
simplicity, we have sketched in plot B the end-effector trajectory redundancy,
but this notion applies more generally to the joint angle trajectories.

Redundancy can also be studied from a differential view-

point, which we call velocity redundancy. Differentiating (17)
indeed yields ṙ = Jf (θ)θ̇, where Jf = ∂f

∂θ is the Jacobian
matrix of f , of dimension m × n. If n > m and Jf (θ(t)) is
non-singular, then a given desired instantaneous velocity vd

r of
the end-effector can be achieved by infinitely many different
instantaneous velocities vθ of the joint angles (for notational
simplicity, we have dropped the time index t). More precisely,
let S represent the null-space of Jf (θ) and v∗

θ = Jf (θ)
+vd

r .
Then any joint angle velocity in the affine subspace {v∗

θ +S}
will achieve the desired end-effector velocity vd

r [7, 12].
From a group-theoretic viewpoint, which will be convenient

later on, let TS denote the space of the translations whose
vectors belong to S. This set can actually be viewed as a
Lie subgroup of dimension n−m of the general affine group
GAn. The space of all joint angle velocities vθ corresponding
to a single end-effector velocity vd

r described above can then
be seen as the orbit of v∗

θ under the action of TS , and the
“degree of velocity redundancy” of the system at θ as the
dimension of TS as a Lie subgroup of GAn.

B. Trajectory redundancy

The developments of sections II and III have highlighted
another type of redundancy, namely trajectory redundancy :
once a particular joint configuration θd has been chosen from
the many possible joint configurations that achieve a given
end-effector configuration, there still exists infinitely many
joint angle trajectories that can bring the manipulator from the
initial configuration θ0 towards θd with a specified velocity,
acceleration, etc. while respecting the system kinematic and
dynamic constraints, see Fig. 7B.

Unlike configuration/velocity redundancies, trajectory re-
dundancy is generally of infinite dimension. Finding a conve-
nient way to parameterize a subset of admissible trajectories is
then of particular interest. We have seen, from the development
of section II that, given a time instant τ , the set of admissible
trajectories that can be obtained by affinely deforming an
original trajectory θ(t)t∈[0,T ] is – roughly – the orbit of
that trajectory under the action of a subgroup of dimension
n2−(k+p)n of GAn. To obtain a more convenient description,
we now propose a construction that removes the dependance
upon τ , allowing thereby the composition of deformations at
different time instants.

For a given τ , let G(τ) denote the group of admissible affine
transformations at time τ . As we remarked previously, G(τ)
is of dimension n2 − (k + p)n if θ is not singular at τ .

Consider now two finite sequences τ̂ = {τ1, . . . , τl} (with
0 ≤ τ1 < . . . < τl < T ) and ĝ = {g1, . . . , gl} ∈ G(τ1) ×
. . .×G(τl) = Ĝ(τ̂). We define the deformation fτ̂,ĝ of θ by

∀t ∈ [0, τ1], fτ̂,ĝ(θ)(t) = θ(t)

∀i ∈ [1, l], ∀t ∈ (τi, τi+1], fτ̂,ĝ(θ)(t) = (g1 ◦ . . . ◦ gi)(θ(t)),

with the convention τl+1 = T .
Given two sequences τ̂ and ĝ ∈ Ĝ(τ̂), we define the inverse

of fτ̂,ĝ , denoted f−1
τ̂,ĝ , by the deformation associated with the

sequences τ̂ and ĝ−1 = {g−1
1 , . . . , g−1

l }.



Given τ̂ , τ̂ ′, ĝ ∈ Ĝ(τ̂) and ĝ′ ∈ Ĝ(τ̂ ′), we define the product
fτ̂,ĝ ? fτ̂ ′,ĝ′ by the deformation associated with the sequences
τ̂ ∪ τ̂ ′ and ĝ t ĝ′ where the latter sequence is constructed as
follow

• For all τi ∈ τ̂ \ τ̂ ′, put gi into ĝ t ĝ′ at the position
corresponding to τi ;

• For all τ ′i ∈ τ̂ ′ \ τ̂ , put g′i into ĝ t ĝ′ at the position
corresponding to τ ′i ;

• For all σ ∈ τ̂ ′∩ τ̂ , say σ = τi = τ ′j , put gi ◦g′j into ĝt ĝ′

at the position corresponding to σ.
We can now state the following proposition
Proposition 1 The set of all fτ̂,ĝ endowed with the inverse

and product operations as defined above is a Lie group of
dimension n2 − (k + p)n + 1. We call this group the affine
deformation group of θ(t)t∈[0,T ] and denote it by A(θ). 4

Recall that we have previously identified the redundancy of
velocities with a certain group of translations TS of dimension
n−m. Similarly, we identify here part of the redundancy of
trajectories with the group A(θ), in the sense that the orbit
of θ under the action of A(θ) is the set of all admissible
trajectories that can be obtained from θ by finite sequences of
affine deformations. Note that, in the limit of large n – as in the
case of highly redundant manipulators or of humanoid robots
– the dimension of A(θ) grows linearly with n2, allowing
thereby more “freedom” than configuration redundancy alone
(the dimension of TS grows linearly with n only).

The group property and the matrix representation of the
admissible deformations allow searching efficiently (using
random sampling, optimization, etc.) within the space of
trajectory redundancy, as partially illustrated in sections II
and III. We also believe that a better understanding of A(θ) –
in particular that of its associated Lie algebra – may provide
powerful methods to make trajectory deformations.

V. CONCLUSION

We have presented a new method of trajectory deformation
for redundant manipulators based on affine transformations.
This method is exact, fast, and guarantees the smoothness of
the resulting trajectories. Furthermore, the resulting trajecto-
ries can be chosen so as to remain close the original trajectory
(with explicit bounds), to optimize a given cost function, or
to satisfy inequality constraints at specific time instants. Com-
bined with further kinematics or dynamics filtering, the method
can also yield trajectories that satisfy constraints applying on
continuous time intervals, in a coarse-to-fine manner.

This method is advantageous with respect to spline- or
dynamic-system-based approaches in that it does not require
choosing an exogenous functions basis (such as hierarchical
spline basis [6], wavelet spline basis [13], Gaussian ker-
nels [3, 14], etc.) : indeed, the only “basis functions” we use
are the original joint angle trajectories. In particular, there is no
need to fine-tune the basis functions or to put extra constraints
on the coefficients multiplying the basis functions in order
to avoid undesirable behaviors (such as spline trajectories
that undulate too much [6] or wavelets that have too much
energy [13]). Finally, the purely endogenous nature of the

proposed method allows the deformed motions to preserve
qualitative properties, such as e.g. the difficult-to-quantify
“naturalness” [18], of the original motions with no extra effort.

Our current research focuses on developing this method for
full-scale applications in character animation [10, 6, 17, 18]
and humanoid robots control [16, 14].
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