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Abstract—We consider performing a sequence of mobile ma-
nipulation tasks with instructions given in natural language (NL).
Given a new environment, even a simple task such as of boiling
water would be performed quite differently depending on the
presence, location and state of the objects. We start by collecting
a dataset of task descriptions in free-form natural language and
the corresponding grounded task-logs of the tasks performed
in an online robot simulator. We then build a library of verb-
environment-instructions that represents the possible instructions
for each verb in that environment—these may or may not be valid
for a different environment and task context.

We present a model that takes into account the variations
in natural language, and ambiguities in grounding them to
robotic instructions with appropriate environment context and
task constraints. Our model also handles incomplete or noisy
NL instructions. Our model is based on an energy function that
encodes such properties in a form isomorphic to a conditional
random field. In evaluation, we show that our model produces
sequences that perform the task successfully in a simulator and
also significantly outperforms the state-of-the-art. We also verify
by executing our output instruction sequences on a PR2 robot.

I. INTRODUCTION

Consider the task of boiling water shown in Figure 1—
it consists of a series of steps to be performed that a user
describes in natural language (NL). Each of the steps is chal-
lenging because there are variations in the natural language,
and because the environment context (i.e., the objects and
their state) determines how to perform them. For example,
for ‘heating the water’, one can either heat it in a pot over a
stove or in a microwave (if it is available). For each option,
several steps of grasping, placing, turning the stove, etc. would
need to be performed. In another example, the NL instruction
‘fill the cup with water’ may require us to pick up a cup
and fill it with water either from the tap (if there is one) or
fill it from a fridge water-dispenser or whatever other means
are available in the environment. We also note that if the
cup already has water then we may need to do nothing. This
mapping (or grounding) of the NL phrase into a sequence of
mobile manipulation instructions thus varies significantly with
the task constraints and the environment context. In this paper,
our goal is to develop an algorithm for learning this grounding.

Some recent notable works have explored aspects of this
problem (e.g., [33, 45, 7, 4, 18]). Guadarrama et al. [18]
focused on using spatial relations to ground NL objects to
objects in the environment. They used an injective mapping
from verbs to controller instructions based on pre-defined
templates. As we show in our experiments, pre-defined tem-
plates do not work well with the variations in NL and with

changing environment and task context (see Figure 2 for an
example). Beetz et al. [4, 33] considered translating web recipe
into a robot making pancakes, and focused on translating the
knowledge into a knowledge reasoning system. However, our
problem requires data-driven retrieval of relevant pieces of
instructions that are contextually-relevant for that sub-task.
Therefore, our work focuses on considering large variations
in the NL instructions for generalizing to different tasks in
changing environments. Bollini et al. [7] showed that mapping
from natural language to recipe is possible by designing a
probabilistic model for mapping NL instructions to robotic
instructions, and by designing an appropriate state-action
space. They then perform a tree search in the action space to
come up with a feasible plan. Since in our problem the search
space is very large, their tree search becomes infeasible.

One key property of our model is that we can handle
missing or incomplete NL instructions, for which the robotic
instructions have to be inferred from context. For example,
the NL instruction ‘heat the pot’ does not explicitly say
that the pot must be placed on the stove first, and it has
to be inferred from the task constraints and the environment
context. Furthermore, sometimes one should not follow the NL
instructions precisely and instead come up with alternatives
that are suitable for the robot to perform in that particular
situation.

In this work, we focus on developing a method that models
the variations in NL and models the ambiguities in grounding
them to robotic instructions with environment context and task
constraints. Our model considers the trade-off in following NL
instructions as closely as possible while relying on previously-
seen contextually-relevant instructions in the training dataset.
In detail, we take a data-driven approach where we first
collect a database of NL instructions and robotic instructions
sequences performed for different tasks in an online simulated
game. Using this data, we build a verb-environment-instruction
library (VEIL). We then present a machine learning approach
that models the relations between the language, environment
states, and robotic instructions. Our model is isomorphic to
a conditional random field (CRF), which encodes various
desired properties in the form of potential functions on the
edges. With a sampling based inference algorithm, we show
that our approach produces valid and meaningful instructions,
even when the environment is new or the NL instructions are
incomplete and not precisely valid for that environment.

We evaluate our approach on our VEIL dataset for four
different tasks, with 5 different environments per task, free-



Fig. 1. Natural Language Instructions to sequence of instructions for a given new environment. Our approach takes description in natural language and
sequences together robotic instructions that are appropriate for a given environment and task. Note that the NL instructions are often ambiguous, and are
incomplete, and need to be grounded into the environment.

form natural language data and robotic instruction logs, col-
lected from several users. The tasks comprise performing
several steps in sequence, and there are often different ways
of performing the task in different environments. We compare
our method against our implementation of [18] and [7], and
show significant improvements. More importantly, we find
that our method handles generalization to new environments
and variations in language well, and is also able to handle
incomplete NL instructions in many cases. Finally, we use our
predicted sequences on a PR2 robot to create a dish following
NL instructions given by a user.

In summary, the key contributions of this paper are:
• We encode the environment and task context into an

energy function over a CRF which allows grounding of
the NL instructions into environment for tasks.

• Our model is able to handle missing NL instructions and
free-form variations in the language.

• Our method can handle mobile manipulation tasks with
long sequences of instructions. Our setting has a large
state space of the objects, and a large robotic action space.

• We contribute an online data collecting method, and
the resulting VEIL dataset comprising free-form natural
language instructions and corresponding robot instruction
logs. Our experiments show good results on the dataset
and our model outperforms the related work.

II. RELATED WORK

Mobile Manipulation Tasks. In the past decade, there has
been significant work on different manipulation and naviga-
tional skills such as grasping [32, 28], mixing [7], pushing
[43], placing [3, 20], constructing semantic maps [48], and
high degree of freedom arm planners (e.g., [40, 1]). These
works form the building blocks for executing the output
instructions for our model.

Traditionally, sequencing complicated controller instruc-
tions have been accomplished using symbolic planners

[41]. Since real environments have uncertainty and non-
determinism, Kaelbling and Lozano-Pérez [22] start with an
abstract plan and recursively generate plans as needed. Or, the
tasks are defined through expert designed state machines [35],
which does not generalize well when the environment or the
task changes. Rather than relying on symbolic representation
of the environment, Sung et al. [44] rely on a set of visual
attributes to represent each object in the environment and
dynamically choose the controller sequence from a list of
possible sequences that minimizes the score function based
on the current environment and the potential candidate for
the next instruction. Others use demonstrations for learning
different behaviors (e.g. [36]). These approaches solve only
parts of the problems that we address in this work—of creating
valid plans and using a score function for data-driven retrieval
of sequences of instructions. Our work addresses not only the
validity of sequences and data-driven retrieval of low-level
instructions, but it also models the ambiguity and grounding
of natural language instructions in the environment context.
Furthermore, the tasks considered by our work are complex
manipulation tasks requiring several sequences of steps.
Grounding Natural Language. The use of language has
gained recent attention in robotics. Other than the works
discussed in the introduction [33, 7, 4, 18], the problem of
navigation has been addressed by using learned models for
verbs like follow, meet, go as well as the conditions such
as walk close to the wall [24, 16]. In detail, Kollar et al.
[24] use maximum-likelihood approach to infer the path taken
by the robot. Translation of such weakly specified actions
into robotic behaviors is very important; these ideas form our
robotic instruction set in Table I. We go beyond navigational
instructions and present a model which can ground natural
language to a sequence of pre-defined set of manipulation and
navigation instructions that can be executed by robots.

Several works [16, 18] have looked at the problem of
grounding intricate noun-phrases in the language to the ob-



Fig. 2. Many-many correspondence between language and controller instructions depending on the environment. We get different instruction-sequences
for add(water, cup) and add(milk, cup) depending upon the parameters milk and water and the environment the actions need to be performed in.

jects in the environment. It has been especially success-
ful in grounding concepts [9] and objects [42, 31] through
human-robot interaction. Works like Chu et al. [11] look
at mapping from text to haptic signals. Kulick et al. [29]
consider active learning for teaching robot to ground relational
symbols. The inverse problem of generating natural language
queries/commentaries has also seen increasing interest in
robotics [46, 10]. A recent work [12] explored the direction
of using natural language as a sensor to come up with prior
distribution about unseen regions of the environment.

In the area of computer vision, some works have considered
relating phrases and attributes to images and videos [39, 15,
26, 25, 21, 50]. These works focus primarily on labeling the
image/video by modeling the rich perceptual data rather than
modeling the relations in the language and the entities in the
environment. Thus, our work complements these works. In
NLP community a lot of literature exists on grammatically
parsing the sentences (e.g. [23]) and grounding text in different
domains such as linking events in a news archive and mapping
language to database queries [37, 51, 5, 38]. These techniques
form the basis of ours in text parsing and representation.
However, most of these works use only text data, and do not
address grounding the physical task or the environment.

Natural language is unstructured and different intermediate
representations of language have been used in previous work.
Tellex et al. [45] use tree of Spatial Description Clause (SDC)
while works such as Matuszek et al. [34] use lambda calculus
representation. Others use Linear Temporal Logic to represent
the language task which generates robot controllers which can
be proven to be correct [17, 27, 49]. However, these works
focus on creating formal descriptions and creating controllers,
and not on handling ambiguous NL variations or data-driven
grounding into the environment and task context.

III. OVERVIEW

Given an environment E containing objects and the robot,
a human gives the instructions for performing a task in natural
language (see Figure 1). The instructions in natural language
L consists of a set of sentences, and our goal is to output
a sequence of controller instructions I that the robot can
execute. Each of these low-level robot instructions often have
arguments, e.g., grasp(objecti).

E,L→ I
This mapping is hard to learn for two reasons: (a) the output
space I is extremely large, and (b) the mapping changes sig-
nificantly depending on the task context and the environment.

For a given E and L, certain instructions I are more likely
than others, and we capture such likelihood by using an energy
function Γ(I|E,L). We will use this energy function to encode
desired properties and constraints in our problem. Once having
learned this energy function, for a given new language and
environment, we can simply minimize this energy function to
obtain the optimal sequence of instructions:

I∗ = argminI Γ(I|E,L)

There are several steps that we need to take in order to
define this energy function: we need to convert the language
L into a set of verb clauses C, we need to represent the
environment E with a usable representation that contains
information about the objects, we need to describe what are
the low-level instructions I and how do they connect to the
actual execution on the robot, and we need to figure out how to
represent and store the training data for their use in inference.

A. Language Representations by a Set of Verb Clauses
To handle the arbitrary structure of the natural language L,

we first reduce it to a more formal intermediate structure based
on clausal decomposition. A verb clause C is a tuple:

C = (ν, [obj], ρ)

containing the verb ν, the set of language-objects [obj] on
which it acts and a relationship matrix ρ : obj × obj → Rel
where Rel is the space of relationship (e.g. ‘with’, ‘from’).
For example, the following comprises four verb clauses:

Take the cup with water and︸ ︷︷ ︸
(take,[cup,water],with:cup→water)

then ignite the stove.︸ ︷︷ ︸
(ignite,[stove],∅)

Now place the cup on the stove︸ ︷︷ ︸
(place,[cup,stove],on:cup→stove)

and wait.︸ ︷︷ ︸
(wait,∅,∅)

In order to achieve the decomposition we begin by first
parsing the sentence L using the Stanford lexical parser [23].
We traverse the parse-tree of each sentence for finding nodes
with verb type and each of these is used to create a clause.
We then attach objects to this clause by using minimum
distance criterion in the parse tree. Care is taken to stem the
verb, and noun-phrase nodes are collapsed into a single node
(example crock pot to crock−pot). The relationship nodes
in between two object nodes of a clause are added in the
corresponding relationship matrix. Note that not all language-
objects (e.g., water) represent an actual physical object.

B. Object and Environment Representation Using Graphs
For performing a task in the environment, a robot would

need to know not only the physical location of the objects (e.g.,



TABLE I
LIST OF LOW-LEVEL INSTRUCTIONS THAT COULD BE EXECUTED BY
THE ROBOT. EACH INSTRUCTION IS PARAMETRIZED BY THE REQUIRED
OBJECTS. WE IMPLEMENT A SUBSET OF THESE INSTRUCTIONS ON PR2

ROBOT (SEE SECTION VII).

Instruction Description
find(obj) Find obj in the environment [2].

keep(obj1, obj2, R)
Keeps obj1 with respect to obj2 such
that relation R holds [20].

grasp(obj) Grasp obj [32].
release(obj) Releases obj by opening gripper.
moveTo(obj) Move to obj by using motion planner [40].

press(obj)
Presses obj using end effector force
controller [6].

turn(obj, angle) Turns the obj by a certain angle.
open(obj) Opens the obj [13].
close(obj) Closes the obj [13].
scoopFrom(obj1, obj2) Takes scoop from obj2 into obj1.
scoopTo(obj1, obj2) Puts the scoop from obj1 into obj2.

squeeze(obj1, obj2, rel)
Squeezes obj1 satisfying relation rel
with respect to obj2.

wait() Wait for some particular time.

their 3D coordinates and orientation), but also their functions.
Their functions are often represented as symbolic attributes
[2, 14] or in a more functional representations [47, 8, 19].
For example, a microwave consists of four parts: main body,
door, buttons and display screen. Each part has its own states
(e.g., a door could be open/closed), and sometimes its state
is affected by another part, e.g., a button when pressed could
unlatch the microwave door. We represent each object as a
directed-graph G where the vertices are the set of parts of
the object (also storing their states), and edges represent the
functional dependency between two object parts. Now for
a given environment, we define E to store aforementioned
representation of every object in the environment.

C. Representing Robotic Instructions
We have defined a set of low-level instructions that could be

executed by the robot in Table I. Each controller instruction is
specified by its name and its parameters (if any). For example,
moveTo(obj) is an instruction which tells the robot to move
close to the specified object obj. We ground the parameters
in objects instead of operation-space constants such as ‘2m
North’ because it is objects that are relevant to the task [8].

In order to completely execute a sub-task such as keeping
a cup on stove, we need a sequence of instructions I. An
example of such a sequence for the sub-task might look as:
find(cup1); moveTo(cup1); grasp(cup1); find(stove1);

moveTo(stove1); keep(cup1, stoveBurner3, on)

Note that the space of possible sequence of instructions I is
extremely large, because of the number of possible permuta-
tions of the instructions and the arguments.

IV. MODEL

In this section, we describe our energy function Γ(I|L,E),
which is isomorphic to a conditional random field (Fig. 3) and
comprises of several nodes and factors ψ’s.

It has the following observed nodes: language L, decom-
posed into clauses C, initial environment E′0. As the instruc-
tions are executed, the state of the environment changes, and
we use Ei, E

′
i to represent the environment-state at step i. Our

goal is to infer the sequence of instructions I = {Ii`, Ii}ki=1.

Fig. 3. Graphical model representation of our energy function. The
clauses C and initial environment E′0 is given, and we have to infer the
instructions Ii, Ii` and the environment at other time steps. The ψ’s are the
factors in the energy function.

Note that for each clause Ci, we have two instructions Ii
and Ii`—this is because natural language instructions are often
incomplete and Ii` represents that missing instruction set. For
example, if the natural language says place cup in microwave,
one would need to open it first (Ii`) and then place it (Ii).

Following the independency assumptions encoded in the
graphical model in Figure 3, the energy function is written
as a sum of the factor functions:

Γ(I|E, C) =

k∑
i=1

ψi(Ii, Ci, Ei) + ψ′i(Ii, Ci, E′i)+

ψi`(Ii`, E′i−1) + ψ′i`(Ii`, Ei)

We encode several desired properties into these potential
functions (we describe these in detail in Section VI):
• The sequence of instructions should be valid. Intuitively
ψi(·) represents the pre-condition satisfaction score and
ψ′i(·) represents the post-condition satisfaction score.

• The output instructions should follow the natural lan-
guage instructions as closely as possible. Thus, ψi(·) and
ψ′i(·) depend on the clause Ci.

• Length of the instruction set. Shorter programs are better
for doing the same task.

• Prior probabilities. A sequence with too many unlikely
instructions is undesirable.

• Ability to handle missing natural language instructions.
The ψi`(·) and ψ′i`(·) represent the potential function for
the missing instruction set, and they do not depend on
any clause.

For each verb clause Ci, the first step is to obtain a few
sample sequences of instructions I(s)i from the training data.
With the samples of instructions for each clause, we will
then run our inference procedure to minimize the energy
function to give a complete set of instructions satisfying the
aforementioned properties. We first describe how we build our
verb-environment-instruction library from the training data.

V. VERB-ENVIRONMENT-INSTRUCTION LIBRARY (VEIL)

For a given verb clause Ci, we use the training data
D to come up with a set of samples of the instruction-
templates {I(s)i }. During training we collect a large set of
verb clauses C(j), the corresponding instruction-sequence I(j)
and the environment E(j). The parameters of the instructions



in the training dataset are specific values, such as cup01, and
that particular object may not be available in the new test
environment. Therefore, we replace the parameters in the train-
ing instructions with generalized variables Z. For example,
{moveTo(cup01); grasp(bottle01)} would be stored as
generalized instruction sequence {moveTo(z1); grasp(z2)}.
The original mapping {z1 → cup01, z2 → bottle01} is
stored in ξ(j).

In order to come up with proposal templates for a given
clause Ci, we return all entries containing the correspond-
ing verb clause, environment, instruction and the grounding:
D(i) = {(C(j), E(j), I(j), ξ(j)) | ν(C(j)) = ν(Ci)} for j =
1 . . . |D| in the dataset. The information in the particular sth

sample is represented as Ds = (Cs, Es, Is, ξs).

A. Instantiation Algorithm
Since we only store generalized instructions (with actual

objects replaced by general variables Z), we need a way to
instantiate the generalized instructions for a new environment
and language context.

Given a sth instruction-template Ds = (Cs, Es, Is, ξs), a
clause Cj and a new environment Ej , the aim of instantiation
algorithm is to return the instantiated instruction template Ij .
In order to accomplish this task, we should find a grounding
of the generalized variables Z(s) to specific objects in the
environment Ej . We take the following approach:
• We first match the objects that have a relation. For

example, if we have cup on table and template is
z1 on z2, then we map z1 to cup and z2 to table.
More formally, ∀z1, z2 ∈ obj(Cs), ∀a, b ∈ obj(Cj) such
that ρ(Cs)[z1, z2] = ρ(Cj)[a, b] we map variables z1 7→ a
and z2 7→ b.

• For a single object a used in clause Cj for the new envi-
ronment Ej , we map it in the same way it was mapped in
the sample s. More formally, ∀z1 ∈ obj(Cs), a ∈ obj(Cj)
such that ξs(z1) = a we map z1 7→ a.

• For every remaining uninitialized variable Z(s), we find
the object in the new environment that shares the most
common states with the one in the sample s.

Mapping z 7→ a of a variable z to an object a is only done if
a represents an actual object in the given environment Ej (e.g.,
non-physical language-objects like water or objects which are
mentioned in the language but are not actually present would
not be used for mapping). The new mapping is stored as ξ and
the instructions returned after replacing the variables using ξ is
given by Ij . We further define the predicate replace such that
replace(Is, Z(s), ξ) will return the instantiated instruction
sequence Ij after replacing all variables z ∈ Z(s) with ξ(z).

VI. ENERGY FUNCTION AND INFERENCE

Now for each clause Ci, we have obtained a sample in-
struction set I(s)i (together with clause and environment data
in Ds). We now need to come up with a full sequence
{I∗i`, I∗i } based on these initial samples. Note that we only
have samples for Ii and not for Ii`, which are for handling
the missing natural language instructions. Furthermore, the
sample initial instruction set is not consistent and valid, and

also does not apply directly to the current environment. Based
on these samples, we need to optimize and infer a sequence
that minimizes the energy function.

In the following subsections, we now describe the different
terms in the potential function that encode the desired prop-
erties aforementioned.

A. Term ψi(Ii, Ci, Ei;w)

This term consists of features that encapsulate properties
such as pre-condition score, instruction length, prior probabil-
ities, etc. For a given sample Ds = (Cs, Es, Is, ξs), we define
the cost of setting Ii := replace(Is, Z, ξ) as:
ψi(Ii, Ci,Ei|Ds, ξ;w) = wT[

∆env(Ds, ξ); ∆nl(Cs, Ci); ∆sim(Z(s), ξs, ξ);

∆pcc(Ci, Cs); ∆jmp(Ii, Ei); ∆dscpl(Ii);
∆inpr(Ii); ∆para(Ii); ∆trim(Ii, Is)

]
We describe each term in the following:

1) Environmental Distance ∆env(Ds, ξ): It is more likely to
have instructions that were made in similar environments in the
training data as compared to the test environment. Hence, if a
variable z ∈ Z(s) is mapped to a cup in the new environment
and was mapped to a pot in the original environment, then
we prefer the template Ds if cup and pot have same values
for states (e.g., both are empty). We encode it as the average
difference between states of objects ξs(z) and ξ(z) and for all
z ∈ Z(s). We represent the union of the states of ξv(z) and
ξ(z) by T (z).

∆env(Ds, ξ) =
1

|Z(s)|
∑

z∈Z(s)

1

|T (z)|
∑

t∈T (z)

1(ξ(z)[t] 6= ξs(z)[t])

2) Natural Language Similarity ∆nl(Cs, Ci): We prefer to
use those instruction templates whose natural language clause
was similar to the new test one. Therefore, we measure
the unordered similarity between objects of Cs and Ci by
computing their Jaccard index:

∆nl(Cs, Ci) =
|obj(Cs) ∩ obj(Ci)|
|obj(Cs) ∪ obj(Ci)|

3) Parameter Similarity Cost ∆sim(Z(s), ξs, ξ): For a given
verb clause, we want the objects in the instantiated sequence to
be similar to the one in the training set. Therefore, we define:

∆sim(Z(s), ξs, ξ) =
1

|Z(s)|
∑

z∈Z(s)

1{ξs(z) 6= ξ(z)}

4) Parameter Cardinality Cost ∆cvr(Ci, Cs): Different
clauses with the same verb can have different number of
language-objects. For example, the sentences ‘add ramen to
the crockpot’ and ‘add milk and sugar to the mug’ have
different number of language objects (2 and 3 resp.). We thus,
prefer to use the template which has the same number of
language objects as the given clause.

∆pcc(Ci, Cs) = 1(|obj(Ci)| 6= |obj(Cs)|)

5) Jump Distance ∆jmp(Ii, Ei): The jump distance is a
boolean feature which is 0 if program Ii can be executed by
the robot given the starting environment Ei and 1 otherwise.

6) Description Length ∆dscpl(Ii): Other things remaining
constant, we believe a smaller sequence is preferred. There-
fore, we compute the sum of norms of each instruction in the
sequence Ii, where we define norm of an instruction I as the
number of parameters that I takes plus 1.



7) Instruction Prior ∆inpr(Ii): We add the prior probability
of having an instruction in the sequence. We compute it by
counting the number of times it appears in the training set:

8) Parameter Instruction Prior ∆para(Ii): Here we add the
prior probability of how often a parameter (e.g., fridge) is
used for a particular instruction (e.g., grasp). We compute it
from the training data.

9) Trimming Cost ∆trim(Ii, Is): Often we do not use the
full sequence of instructions from the set Ds but trim them a
little bit. We define a trimming cost: ∆trim = (|Is| − |Ii|)2.

B. Term ψ′i(Ii, Ci, E′i;w)

This term consists of a single consistency term, given as:
ψ′i(Ii, Ci, E′i;w) = wcons∆cons(E′i, Ci)

The purpose of this consistency score ∆cons(E
′
i, Ci) is to

capture the fact that at the end of execution of Ii the resultant
environment E′i should have fulfilled the intent carried by the
clause Ci. Thus if the clause intends to ignite the stove then
the stove should be in on state in the E′i environment. For this
we compute the probability table P (obj, s, v) from training
data, which gives the probability that obj in clause Ci could
have state s with value v. We use this table to find the average
probability that objects of clause C ′i have the given end state
values in E′i.

C. Term ψi`(Ii`, E′i−1;w)

This term is for the instruction that does not correspond to
a NL instruction—i.e., its purpose is to handle missing NL
instructions. Therefore, it consists of subset of features for ψi:

ψi`(Ii`, E′i−1;w) = wT [∆jmp(Ii`, E′i); ∆dscpl(Ii`);
∆inpr(Ii`); ∆para(Ii`)

]
D. Term ψ′i`(Ii`, Ei;w)

This consists of a single consistency term:
ψ′i`(Ii`, Ei;w) = wcons,l∆cons,l(E

′
i)

This consistency term is define similarly to ∆cons however,
since we do not have a given clause we instead build the table
by taking prior over the entire data-set.

E. Inference Procedure
Given the training dataset D, sequence of clauses {C} and

starting environment E′0, goal is to find the instruction se-
quence that minimizes the energy function. Since the structure
of our model is a chain, we use an approach similar to the
forward-backward inference to obtain the {I∗i`, I∗i }ki=1.

The inference procedure computes the forward variable
αj [E

′
j ] which stores the cost of the minimum-cost assignment

to nodes {Ii`, Ii}i≤j such that the environment at the chain
depth j is E′j . As a base case we have α0[E′0] = 0.

We also define the environment simulator Φ as taking an
environment E and an instruction sequence I and outputting
the final environment after executing the sequence as Φ(E, I).

Our algorithm calls the function Forward-Inference(j)
(Algo. 1) to compute αj given αi∀i<j . To do so, the algorithm
iterates over all samples D(j) for clause Cj which were created
as described in Sec. V. For the edge case, when the verb ν(Cj)
was unseen in the training data we define αj = αj−1.

Each sample Ds is instantiated as described in Sec. V-A
which gives us the instruction sequence I. Instantiation is

1 global D, C, α
2 function Forward-Inference(j)
3 for each E′j−1 such that αj−1[E′j−1] is defined do
4 for each Ds ∈ D(j) do
5 I ← instantiate(Ds, Cj , E′j−1)
6 for each t ∈ [0..|I|] do
7 Ij = I[t · · · ] // trim the sequence
8 cstr = getConstraints(Ij , E′j−1)
9 Ij` = callSymbolicP lanner(E′j−1, cstr)

10 Ej = Φ(E′j−1, Ij`)
11 E′j = Φ(Ej , Ij)
12 αj [E

′
j ] = min{αj [E

′
j ], αj−1[E′j−1]+

ψj(Ij , Cj , Ej) + ψ′j(Ij , Cj , E′j) +
ψj`(Ij`, E′j−1) + ψ′j`(Ij`, Ej)}

Algorithm 1: Forward step during the inference algorithm.

followed by all possible trimming of I giving us Ij = I[t · · · ]
for all t. We note here that the no-op is also considered when
I is totally trimmed.

The trimmed sequence Ij may not be executable due
to some missing instructions. To handle this, the function
getConstraints looks at the pre-conditions of every instruction
in Ij to find the hard-constraints required for executing Ij .
These constraints along with the environment are passed onto
a symbolic-planner [41] which outputs the missing instructions
Ij` (line 9). The cost of the new assignment Ij`, Ij is used
to update the value of αj as shown in line 12.

Once the αj [E] has been computed ∀j and all reachable E,
the optimum assignment is computed by backward-traversal.

F. Learning Method
Note the objective function of our model is linear in the

weights w, i.e., a local search method converges to the global
optimum. For training in our experiments, we divide the
dataset into K-folds for cross-validation, and use stochastic
gradient descent to train the weights. In our experiments, we
manually set the weight wjmp =∞, since we do not want the
inferred sequence to be unexecutable.

VII. EXPERIMENTS AND RESULTS

Data. For evaluating our approach, we have collected a dataset
VEIL-200. Each data-point consists of a natural language
description, state of the environment, ground-truth instruction
sequence, and the mapping between phrases of each descrip-
tion to the instruction sub-sequence. The natural language de-
scribes the high level task but does not necessarily have exact
knowledge of the environment (e.g., it may refer to the cup
while there is no actual cup in the environment). Furthermore,
it may miss several steps in the middle, and use ambiguous
words for describing a task. Please see the project website
http://tellmedave.cs.cornell.edu for few exam-
ples from our dataset. The dataset is then processed to form
the VEIL library (see Section V).

In order to collect the ground-truth instruction sequence,
we developed an online simulator (motivated by [30]). Our
online simulator consists of a virtual 3D environment where
the user controls the robot in first-person perspective. When
the natural language task is shown to user, user interacts
with the environment to accomplish the given task using 12



TABLE II
QUANTITATIVE RESULTS ON FOUR DIFFERENT TASKS ON OUR VEIL DATASET. RESULTS OF BASELINES, DIFFERENT VARIANTS OF OUR METHOD ARE

REPORTED ON TWO DIFFERENT METRICS. NOTE THAT WE NORMALIZE THE IED AND EED METRIC (TO 100) SUCH THAT LARGER NUMBERS ARE BETTER.

making coffee boiling water making ramen making affogato Average
IED EED IED EED IED EED IED EED IED EED

Chance 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Predefined Templates [18] 14.3 22.8 21.5 38.8 32.8 28.7 14.0 17.0 20.7 26.8
Instruction-Tree [7] 14.4 25.7 11.2 38.8 26.3 25.6 12.5 15.9 16.1 26.5
No NL Instructions 39.2 43.9 21.8 43.3 1.2 15.7 12.8 11.5 18.8 28.6
Nearest Environment Instantiation 63.4 47.3 43.5 50.1 52.1 51.4 45.4 49.2 51.1 49.5
Our model, No Domain Knowledge 78.6 71.7 55.7 55.2 66.1 49.5 51.2 51.3 62.9 56.9
Our model, No latent nodes. 78.9 73.8 57.0 58.4 66.3 53.9 51.5 51.2 63.4 59.3
Our full model. 76.5 78.3 54.5 61.3 67.3 49.4 53.5 56.2 63.0 61.3

different instructions. User can point on objects to see their
states (e.g., temperature of water) and accordingly control the
robot. Please see a screencast video at the project website.

We considered four tasks: Boiling Water, Making Coffee,
Making Ramen and Making Affogato. Each task was performed
in 5 different environments, and each had 50 example runs
each. For the first two, we only gave 10 “general” natural
instructions (5×10 = 50). This allowed us to evaluate whether
our algorithm can ground natural language instructions in
different environments. For the last two, there was different
natural language for each of the 50 datapoints. During training,
we use 10-fold cross validation, with first two tasks trained
together and then next two tasks trained together. While
testing, the algorithm always tests on a new environment.
Evaluation Metric. We consider two different type of evalu-
ation metrics:
1) Instruction Edit Distance (IED). We use the string edit
distance, Levenshtein distance, for measuring the syntactical
metric distance between two sequences of instructions. This
gives some idea on how similar our model’s output Î is to
the ground-truth sequence Ig . However, it is limited in that it
does not well represent the cases where one wrong instruction
in the middle could completely change the resulting state. For
instance, it is not acceptable to forget filling the pot with water
while making ramen, even if rest of the sequence is correct.
2) Environment Edit Distance (EED). This metric relies on
that a successful execution of a task given the language is the
attainment of a sequence of states for concerned objects in
a possibly time-ordered way. We compute the edit distance
between the ground-truth sequence of environments (Eg

k)mk=0

and the predicted sequence of environments (Êk)nk=0. There
are two subtle issues: finding the set of concerned ob-
jects ∂, and finding the correct representation of difference,
distenv(Eg

i , E
a
j ), in two states of environments (e.g., closing

the microwave after the use is irrelevant to the task).
We use the list of objects in the ground-truth sequence Ig

as the set of concerned objects ∂. Further we define distenv as
a 0-1 loss function on whether two environments completely
agree on the state of ∂. The recursive equation for computing
EED is given below, where EED(., ., i, j) represents the
distance between (Eg

k)mk=i,(Êk)nk=j

EED((Eg
k)mk=0, (Êk)nk=0, i = 0, j = 0) =

min{EED(·, ·, i, j + 1),EED(·, ·, i+ 1, j) + distenv(Eg
i , Êj , ∂)}

where EED(·, ·, i, j) = m− i if i = m or j = n

We normalize these two metrics and report them as percent-
ages in Table II, where higher numbers are better.
Baselines. We compare our model against the following:
• Chance: Randomly choose the instructions of a prede-

fined length. This shows how large the output space is.
• Predefined Templates, based on Guadarrama et al. [18]

We developed a method similar to [18] in which we
manually created a library of proposal-templates for every
verb. For a given situation we disambiguate the objects
and substitute these parameters in the templates. We
extend [18], by also considering many-many mappings.

• Instruction-Tree Search, based on Bollini et al. [7]: We
define a log-linear reward function that searches over the
sequence of instructions for every clause and chooses the
one which maximizes the reward. The reward function
contains bag-of-word features (correlation of word in sen-
tence and an action). Syntactical constraints on instruction
are used for pruning and gradient descent is used for
training.

• Nearest Environment Instantiation: This method looks up
the nearest template by minimizing the distance between
given environment and that of the template, from the
VEIL library, instantiates it according to the new envi-
ronment. following Section V-A.

• Our model - No NLP. Our model in which we do not give
the model the natural language, i.e., the given clauses C
are missing. However, all the other terms are used.

• Our model - No Domain Knowledge. Our model in which
the robot does not have the knowledge of the results of
its action on the environment, and instead relies only on
the training data. (This is to compare against symbolic
planner based approaches.) For this we disable the latent,
jump features and post-condition features.

• Our model - No latent modes. Our model in which the
latent instruction and environment nodes are missing.
This model cannot handle the missing natural language
instructions well.

• Our full model. This is our full model.
Results. Table II shows our results. We note that the chance
performance is very low because the output space (of the
sequence of instructions) is very big, therefore chances of still
getting a correct sequence are very low.

We compare our results to our implementation of two recent
notable works in the area. Table II shows that the method



Fig. 4. Robot Experiment. Given the language instruction for making the dessert ‘Affogato’: ‘Take some coffee in a cup. Add icecream of your choice.
Finally, add raspberry syrup to the mixture.’, our algorithm outputs a sequence that the PR2 executes to make the dessert. (Please see the video.)

Predefined Templates [18] focused on disambiguating spatial
relations but was extremely brittle to ambiguity in grounding,
therefore giving low performance.

Method Instruction-Tree [7] was able to give reasonable re-
sults on some sequences. However this approach has problem
working with large search tree. Furthermore, the bag-of-word
feature do not take into account the environment context, the
language might say that keep the cup in microwave but the cup
might already be inside the microwave (unless such constraints
are hard-coded). This approach thus fails when the language
is vague, for example, for the following sentence, heat the
water and add ramen., However, our approach takes this vague
sentence and grounds it in the environment using our model.
Our energy function incorporates several features and thus is
able to often give reasonable output sequences for such natural
language instructions. Also on an additional created data-set
for different tasks in a living room, we received similar results
with our full model outperforming the others.

We analyze the results in light of the following questions:
Is Language important? If we enforce all the constraints of
the task and provide the end-state of the environment, one may
argue that just using a symbolic planner may give reasonable
programs. However, the success of a task depends on the way
things are done. Natural language gives an approximate guide
that our model tries to follow. We see that Our Model - No
NLP gives 18.8% on average as compared to 63.0% for our full
model. In fact, we see evidence of such behavior in our results
also. While our model can handle ambiguous and incomplete
NL instructions, e.g., ‘heat up the water and then cook the
ramen’ that resulted in success, in some of the test cases the
NL instructions were quite ambiguous, e.g., ‘Microwave for
12 minutes and place it on the table’ on which our model
failed.
How important is the latent node? Overall, Table II shows
the results improve by about 2% on EED metric. We found that
it was especially helpful in scenarios where instructions were
partially missing. For example, for the instruction in Fig. 1 -

‘place the pot on the tap and turn the tap on...Turn the tap
off and heat the pot.’

there is no template that can fit in for the first clause
(place, [pot, tap], on : pot→ tap). One such template after
initialization has the form -

moveTo(sink); keep(pot , sink , on)

However this will make the sequence unexecutable as robot
cannot execute this sequence since it is not already grasping
the pot. In such cases, interpolation models these constraints
and we get the output using latent nodes as -
moveTo(pot); grasp(pot); moveTo(sink); keep(pot, sink, on)

How well does our model generalize to new environments
and tasks? In this test, we wanted to examine how well our
model can make use of examples from different environment
and tasks. Its not obvious whether the templates learned for
one task, such as making affogato will be useful for another
task such as making ramen. For studying the effect of a differ-
ent task, we performed another experiment in which we trained
and tested the model on making ramen task only (instead of
training together for {making ramen,making affogato}). We
found that because the VEIL library from the making affogato
task was not available for training, the performance dropped
to 64.9 on the IED metric as compared to 67.3 in Table II.
This indicates data examples from other tasks are helpful.
What if the robot does not know the result of its action?
The algorithm implicitly assumes that the robot knows the
result of its interaction with the environment. (It is being used
to compute certain features, doing the interpolation and in
inference) In order to test how crucial it is, we ran the Our
Model - No Domain Knowledge and as the results in Table II,
show the accuracy falls only by only 2-3 %.
Robot Experiment. We show that our grounded manip-
ulation instructions can be executed on PR2 robot given
the natural language instruction, ‘Take some coffee in a
cup. Add ice cream of your choice. Finally, add rasp-
berry syrup to the mixture.’ Figure 4 shows few snapshots
of PR2 making Affogato and the video is available at:
http://tellmedave.cs.cornell.edu

VIII. CONCLUSION

In this work, we presented a model that grounds the free-
form natural language instructions into a given environment
for a given task, in order to output a sequence of instructions
that the robot can execute to perform the task. We presented
a learning model that encodes certain desired properties into
an energy function—expressed as a model isomorphic to
conditional random field with edges representing the relations
between verb clauses, environment state and instructions. We
showed that our model handles missing or incomplete lan-
guage instructions, variations in language, as well as ambiguity
in grounding well. We also show that we outperform related
work in this area.
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