
Hierarchical Semantic Labeling for Task-Relevant

RGB-D Perception

Chenxia Wu, Ian Lenz and Ashutosh Saxena

Department of Computer Science, Cornell University, USA.

Email: {chenxiawu,ianlenz,asaxena}@cs.cornell.edu

Abstract—Semantic labeling of RGB-D scenes is very impor-
tant in enabling robots to perform mobile manipulation tasks,
but different tasks may require entirely different sets of labels.
For example, when navigating to an object, we may need only a
single label denoting its class, but to manipulate it, we might need
to identify individual parts. In this work, we present an algorithm
that produces hierarchical labelings of a scene, following is-part-of
and is-type-of relationships. Our model is based on a Conditional
Random Field that relates pixel-wise and pair-wise observations
to labels. We encode hierarchical labeling constraints into the
model while keeping inference tractable. Our model thus predicts
different specificities in labeling based on its confidence—if it is
not sure whether an object is Pepsi or Sprite, it will predict soda
rather than making an arbitrary choice. In extensive experiments,
both offline on standard datasets as well as in online robotic
experiments, we show that our model outperforms other state-
of-the-art methods in labeling performance as well as in success
rate for robotic tasks.

I. INTRODUCTION

Semantic scene labeling is crucial to many robotic tasks,

allowing a robot to precisely localize objects, build maps,

perform mobile manipulation tasks, and achieve many other

goals. In recent work, many algorithms have been developed

to produce such a labeling for RGB-D images (e.g., [37, 24, 4,

14]). However, these approaches produce only a flat labeling

of a scene, ignoring important relationships between the label

classes. In this work, we present an algorithm whose output

is a hierarchical labeling of the scene.

These hierarchical labels are very important for a wide

range of robotic applications. Segmenting object parts, such as

handles, knobs, and buttons, separately from the body of the

object is critical to properly afford most household objects.

Understanding hierarchical object classes can also enable a

robot to make rational substitutions between objects. Consider,

for example, the task of fetching a Coke from a fridge (Fig. 1).

To open the fridge, the robot must detect and grasp the fridge

handle separately from its door. Then, if a Coke is not present

in the fridge, it is much more desirable for the robot to return

with another soda, such as a Pepsi, than empty-handed.

Using a semantic label hierarchy as shown in Fig. 2 enables

these behaviors, which could not be realized using flat labels.

When labeling with this hierarchy, each pixel belongs to a

series of increasingly-general labels - for example, a pixel of

class fridge-handle would also be of classes fridge-door, fridge

and electronics. This also allows us to represent uncertainty,

using a more general class when the algorithm is not sure

which low-level class a pixel should belong to.

Fig. 1: Hierarchical Labels are produced by our algorithm as
required for a robotic task. In the above environment, a robot is
asked to fetch a Coke. It needs to perform three sub-tasks: navigate
to the fridge, open the fridge door, and pick up the Coke (shown
in three rows). For navigation, the robot needs to produce a higher-
level fridge-door label so that it can approximately navigate close
to it. Once it gets closer, producing a more detailed fridge-handle
label is necessary. In the last step, the robot cannot detect Coke, so
it fetches another soda instead. Such a label hierarchy lets a robot
hedge its bets.

Conventional flat labeling approaches [37, 14] might sim-

ply be applied by flattening all the classes in the semantic

hierarchy, but this sacrifices important information. Mean-

while, image classification approaches using semantic hierar-

chies [10, 35], which predict only one label for each image,

cannot be applied to most robotic tasks that require pixel-level

labeling of the entire scene. Properly integrating a semantic

hierarchy into the labeling problem is a major challenge, and

the main focus of this work.

To this end, we propose a novel approach which uses

mixed integer programming to optimize a model isomorphic

to a Conditional Random Field (CRF). Our model encodes

Fig. 2: Semantic hierarchy graph. Each node denotes a class and
each directed edge denotes a ‘belong to’ relation.

relations both from color/depth features to labels and between

neighboring segments, as well as constraints arising due to the

hierarchical nature of labels. It directly integrates hierarchical

information, allowing it to represent ambiguities in perception

by giving more general labels. In fact, our algorithm allows a

desired specificity of the produced labels, allowing for more

specific ones for tasks which need them, and more general

ones for those that do not. Our approach also combines

multiple segmentation trees generated using different metrics

to yield more robust labeling results. We demonstrate that

all the necessary terms and constraints for our approach can

be combined into a model which remains parsimonious and

solvable in under 1.5 seconds per image despite incorporating

more information than considered in other labeling algorithms.

We validate the performance of our algorithm in an ex-

tensive series of experiments, both offline on the NYUD2

dataset [45] and online in a series of robotic experiments using

our PR2 robot equipped with a Microsoft Kinect. Our algo-

rithm produces significantly improved results on hierarchical

labeling over the state-of-the-art, increasing performance by up

to 15%. In robotic experiments, we demonstrate the usefulness

of hierarchical as opposed to flat labeling and show that

our algorithm can be applied to real-world robotic scenarios,

achieving an average success rate of 81% over several chal-

lenging tasks. Video of some of these is available at http:

//pr.cs.cornell.edu/sceneunderstanding/.

In summary, the main contributions of this work are:

• We consider a hierarchy of semantic labels when labeling

RGB-D scenes, which allows the robot to predict task-

relevant labels.

• We design an inference model that incorporates, over a CRF,

relations between segment-features and labels, relations be-

tween neighboring segments, as well as constraints arising

because of the hierarchical nature of the labels. We show

that it still remains tractable and is solved by constrained

mixed integer programming.

• Our model allows a robot to choose varying levels of

specificity in the labels produced.

• We perform extensive evaluation on the NYUD2 dataset as

well as on several different robotic tasks.

II. RELATED WORK

Scene understanding. Scene understanding from 2D images

has been widely explored [41, 43, 12, 8]. Due to the avail-

ability of affordable RGB-D sensors, significant effort has

been put into RGB-D scene understanding recently [45, 37,

24, 31, 4, 25, 14, 20, 19, 17, 27]. Ren et al. [37] developed

Kernel Descriptors, highly useful RGB-D feature, and used the

segmentation tree to get contextual information. Gupta et al.

[14] generalized 2D gPb-ucm contour detection to 3D, giving

more effective segmentation. Koppula et al. [24] and Anand

et al. [4] used rich contextual information for semantic labeling

of 3D point clouds. Jia et al. [19] interpreted objects in a scene

by reasoning about blocks, support, and stability. All these

works predict flat labels, which are not applicable to many

robotic tasks. Instead, our approach outputs a hierarchical

labeling, which aids navigation, object finding and rational

target substitution in robotic applications.

Visual recognition using semantic hierarchies. Our work

is also related to visual recognition using semantic hierar-

chies [9, 39]. One similar work [10] classified large scale

images by optimizing accuracy-specificity trade-offs. Ordonez

et al. [35] considered predicting labels that people actually use

to name an object. Both of these works targeted web image

classification, and so predict a single label for each image

denoting the most salient object. For many robotic tasks, we

must consider pixel level labeling of multiple objects in a

complex scene using a semantic hierarchy.

Robotic tasks using vision. There is also a huge body of

works using vision algorithms to help perform different robotic

tasks [13, 38, 16, 30], such as object grasping [42, 11, 29],

navigation [6, 26], trajectory control [44], and activity an-

ticipation [23]. Many works focused on improving SLAM

techniques to better depict an environment for planning and

navigation [34, 28], such as incremental smoothing and map-

ping using the Bayes Tree [21], real-time visual SLAM over

large-scale environments [46], and object level SLAM [40].

Milford [33], He and Upcroft [15] proposed a place recog-

nition algorithm for mobile robots. Katz and Brock [22] de-

veloped interactive segmentation for observing object motion

during manipulation. Pangercic et al. [36] built semantic object

maps for manipulation tasks for an autonomous service robot.

Hinkle and Edwin [18] proposed a technique for functionally

classifying objects using features obtained through physical

simulations.

III. OVERVIEW

The input to our algorithm is a co-registered RGB and Depth

image pair I ∈ Rm×n×3, D ∈ Rm×n, where m,n are the

image height and width. Our goal is to predict the label of each

pixel and output the label matrix L ∈ Cm×n, where C is the

set of possible hierarchical semantic labels. We achieve this by

mapping a semantic hierarchy graph to the segmentation tree

built on the input image. We will first introduce the semantic

hierarchy graph and the segmentation tree in this section.

Semantic hierarchy graph. For many robotic actions, we

need semantic labels at different levels of abstraction rather

than a simple object level. Therefore, we consider two types

of relations in a semantic hierarchy:

• Is-part-of. For some robotic tasks, we need detailed localiza-

tion of specific object parts. For example, to open a fridge,

it is much better to know exactly where the fridge-handle

http://pr.cs.cornell.edu/sceneunderstanding/
http://pr.cs.cornell.edu/sceneunderstanding/

is from the labeling rather than to simply guess based on a

higher-level fridge-door label.

• Is-type-of. Understanding which objects belong to the same

higher-level semantic class allows a robot to make rational

substitutions between such objects. For example, if the robot

is sent to find a Coke but cannot, it could instead return with

any soda such as a Pepsi.

We represent this semantic hierarchy by a directed acyclic

graph, called a semantic hierarchy graph, where the nodes

C = {ck} represent the possible labels and the edges represent

one of aforementioned relations. See Fig. 2 for an example.

Segmentation tree of the RGB-D image. We begin by

segmenting the image into small segments. This gives us a

set of candidate segments {si} to label. If a segment is too

small, visual and/or geometric information might be limited; if

it is too large, it might straddle a class boundary. We therefore

build a segmentation tree and label over this tree. In detail,

we first obtain leaf node over-segmentations using a gPb-

ucm approach extended for RGB-D images [14]. Second, we

merge the most similar pairs of nodes step-by-step based on

a similarity measure (the gPb-ucm boundary value)1, forming

a tree as shown in Fig. 3.

Fig. 3: Illustration of segmentation tree. Pixels are grouped into
small segments which are then merged to form a segmentation tree.

Note that mapping the semantic hierarchy graph to the

segmentation tree is challenging, because both labels and

segments are hierarchical rather than flat as in previous works.

For example, for a parent segment with two child segments,

it is possible to label them with parent-child labels such as

labeling the parent as chair and the children as chair-back

and chair-base, or to only label the children as two unrelated

classes such as TV and cabinet. Thus, we need to take into

account appropriate constraints in designing our CRF-based

objective function. For many robotic applications, it is also

desirable to be able to select the degree of specificity of the

produced labels in the semantic hierarchy. Integrating all these

desiderata into a parsimonious model is challenging.

IV. PRELIMINARIES

Our approach is based on a Conditional Random Field

(CRF), modeling the unary terms of, and pair-wise relations

1 In order to improve the chances of obtaining desirably-sized segments
for labeling, we actually build multiple segmentation trees based on different
similarity measures [32]: the gPb-ucm boundary value (ucm tree), the simi-
larities between the normals of two neighboring segments (normal tree), and
the semantic similarities of any two segments (category tree). These diverse
trees provide rich candidate segments for the labeling stage.

between, the segments. We will introduce the unary term and

a CRF model to label RGB-D images with flat-labels in this

section. We first define the following notations:

ck k-th label in the semantic hierarchy graph.

si i-th segment in the segmentation tree.

yik ∈ {0, 1}. If si is labeled with ck, yik = 1,o.w. yik = 0.

ai number of pixels in segment si.
aik number of pixels of class ck in segment si.
wik = aik/ai, fraction of ck class pixels in segment si.

A. Unary term of a segment

The unary term relates the features of a segment to its label.

Kernel descriptors have been proven to be useful features for

RGB-D scene labeling [37], so we extract six such descriptors

from each segment: gradient, color, local binary pattern, depth

gradient, spin, surface normals, and KPCA/self-similarity. The

feature vector of segment si is denoted as zi. We then use

the fraction of ck class pixels in segment : w∗
ik = aik/ai as

a confidence score for si belonging to ck. Since each pixel

belongs to several ground-truth classes in the hierarchy such

as chair-back, chair, sittable, furniture, we treat this as a linear

regression problem rather than a classification problem as in

previous work [37]. In detail, ridge linear regression is used

to train the linear prediction function ŵik = θ⊤k zi.

B. Labeling RGB-D Images with Flat Labels

Previous work by Anand et al. [4] started by dividing the

RGB-D image into small segments, with the goal of labeling

each segment from a flat label set {ck}. They then used a CRF

to model the unary terms of and pair-wise relations between

the segments. Since each segment is allowed to belong to only

one class, we have the constraint
∑

ck
yik = 1. The objective

function is as follows:

FlatSeg-FlatLabely(ŵ,Φ) :

max
y

unary terms
︷ ︸︸ ︷
∑

si,ck

yikŵik +

edge terms
︷ ︸︸ ︷

∑

(si,sj)∈N,ck

yikyjkΦ(si, sj),

s.t.
∑

ck

yik = 1 ∀si, yik ∈ {0, 1}.

(1)

Here the unary term is ŵik, the edge term is Φ(si, sj) =
α exp(−β gPb(si, sj)), in which gPb(si, sj) is the gPb-ucm

boundary weight between si, sj , and α, β are two weighting

parameters. The edge term encourages neighboring segments

(si, sj) ∈ N with small boundaries to take the same label.

V. OUR APPROACH

In this section, we will describe an improved CRF model

with constraints which allow labeling over semantic trees using

hierarchical labels. We first define the following notations:

π(v) a function that takes a vertex v in a directed graph

and returns the set of its ancestors, including itself.

π̇(v) the set of ancestors without v itself: π(v)− {v}.

šl l-th leaf node segment in the segmentation tree.

Hl hierarchical relation graph of the ancestor set π(šl).
Qlt t-th maximal independent set of graph Hl.

A. Labeling Segmentation Trees with Flat Labels

Now we describe how we label a segmentation tree, where

flat segments are merged to form a tree as in Fig. 3. As some

segments in the tree overlap, we first need to select which

ones to label, and second predict their labels. We achieve this

by enforcing that, for each leaf node segment, only one of its

ancestors (including itself) is labeled. This is because a pixel

can have only one label in a flat labeling scheme while these

segments are overlapping. So following constraints are added.

Non-overlapping constraints (NO-CT). We replace the

sum-to-one constraint
∑

ck
yik = 1, ∀si in Eq. 1 with

∑

si∈π(šl),ck
yik = 1, ∀šl. Since all leaf nodes are considered,

every pixel is labeled with exactly one label. We also need to

ensure that the area of the child segment vs. the parent segment

is accounted for in the objective function. We therefore weight

each ŵik by the total number of pixels ai of the segment si.
The objective function then becomes:

TreeSeg-FlatLabely(ŵ,a,Φ) :

max
y

unary terms
︷ ︸︸ ︷
∑

si,ck

yikŵikai +

edge terms
︷ ︸︸ ︷

∑

(si,sj)∈N,ck

yikyjkΦ(si, sj),

s.t.

NO-CT
︷ ︸︸ ︷

∑

si∈π(šl),ck

yik = 1 ∀šl, yik ∈ {0, 1}.

(2)

B. Labeling Segmentation Trees with Hierarchical Labels

When hierarchical labels are introduced, the following in-

teresting property emerges: even if a child node is labeled,

its ancestors can be labeled with its ancestor classes. This

complicates the specification of constraints in the model, so we

add following hierarchical relation constraints. We summarize

our RGB-D hierarchical semantic labeling approach in Alg. 1.

Hierarchical relation constraints (HR-CT). Now, we allow

labeling more than one segment in π(šl) with hierarchical

labels, such as labeling the parent node as chair and the child

as chair-back. To achieve this, we do the following:

1) Find hierarchical relations. We first define a tuple

(si, sj , ck, cz), called hierarchical relation if it follows

cz ∈ π̇(ck), sj ∈ π̇(si). This allows the pair of segments

(si, sj) ∈ π(šl) to be labeled with (ck, cz) respectively, as

their order is consistent in both the segmentation tree and

the semantic hierarchy graph. All such tuples comprise a

set Ωl for each π(šl).
2) Build hierarchical relation graph. In order to find all

the constraints in each ancestor-set π(šl) considering both

the non-overlapping and hierarchical labeling properties,

we build a undirected graph Hl = (Vl,El), called hi-

erarchical relation graph, of which the vertices are all

possible assignments: Vl = {yik, ∀si ∈ π(šl), ∀ck} and

edges link vertices if they follow the hierarchical relation:

El = {(yik, yjz), ∀(si, sj , ck, cz) ∈ Ωl}.

3) Find constraints on the hierarchical relation graph. Fol-

lowing the hierarchical relation, if two vertices (yik, yjz)
on Hl are linked by an edge, they can be both set to one.

Algorithm 1 RGB-D Hierarchical Semantic Labeling.

Input: RGB and Depth image matrix I,D.

Output: Pixel-level label matrix L.

1. Obtain segment set {si} by building the segmentation

tree on I,D (Section III);

2. Extract feature zi from each segment si (Section IV-A);

3. Compute terms ai, ŵik, r̃k,Φ in

OpTreeSeg-HierLabel
y,ξ(ŵ,a, r̃,Φ) Eq. 5:

ŵik = θ⊤k zi, r̃k = rηk , Φ(si, sj) = α exp(−β gPb(si, sj))
(Section IV-A, IV-B, V-B);

4. Obtain ancestor-set π(šl) for each leaf node šl;
6. Find hierarchical relations for each π(šl):

Ωl = {(si, sj , ck, cz)|cz ∈ π̇(ck), sj ∈ π̇(si),
∀si, sj ∈ π(šl), ∀ck, cz}, (Section V-B (1));

7. Build hierarchical relation graph Hl = (Vl,El):
Vl = {yik, ∀si ∈ π(šl), ∀ck},

El = {(yik, yjz), ∀(si, sj , ck, cz) ∈ Ωl},
(Section V-B (2));

8. Enumerate maximal independent set Qlt on each Hl

(Section V-B (3));

9. Solve OpTreeSeg-HierLabel
y,ξ(ŵ,a, r̃,Φ) Eq. 5

(Section VI);

10. Label each pixel p with the most specific label from

the set {ck|p ∈ si & yik = 1}:

Lp = argmaxck rk subject to p ∈ si & yik = 1.

Otherwise, at most one can be set to one following the

non-overlapping constraint. To give efficient and sufficient

constraints, we constrain the sum of all yik in each maximal

independent set (the set of vertices, no pair of which

are adjacent) to be not greater than one. The problem

then becomes to enumerate all maximal independent sets2

{Qlt, t = 1, . . .} of Hl. In practice, we will introduce a

parsimonious model (Sec. VI), leading to a sparse graph Hl

thus more efficient constraint-finding. After finding these

sets, we add the constraints
∑

yik∈Qlt
yik ≤ 1, ∀cl, t. To

further ensure that all pixels to be labeled, we add the

completeness constraints (CM-CT)
∑

si∈π(šl),ck
yik ≥ 1, ∀l

to ensure at least one segment in each π(šl) to be labeled.

4) Overlapping unary correction. To give even weighting

for each pixel, we also modify the unary term for the

overlapping pixels when both parent and child segments are

labeled. If yik and yjz are both set to 1, yikyjz = 1, when

(si, sj , ck, cz) ∈ Ωl, we would rather label their overlapping

pixels ai with the more specific label ck. So, the summation

of the unary term would be ŵikai + ŵjz(aj − ai). Then,

the objective function relating these two terms changes to

yikŵikai + yjzŵjzaj − yikyjzŵjzai.

Note that considering these hierarchical relations and con-

2To enumerate maximal independent sets of Hl, we first divide Hl into a

subgraph (Ṽl, ∅), where Ṽl are all isolated vertices in Hl, ∅ is the empty

edge set, and another subgraph H̃l = (Vl − Ṽl,El). Then we enumerate

all maximal independent sets {Q̃lt, t = 1, · · · } of H̃l by enumerating all
cliques of its complementary graph, which is a well-studied problem in
graph theory [2, 7] and is solved by the Bron-Kerbosch algorithm [7] in

our approach. Finally, Qlt = Q̃lt ∪ Ṽl.

(a) Ground truth. (b) Estimated score. (c) NO-CT. (d) NO-CT, HR-CT.

Fig. 4: An illustration of the benefit of adding HR-CT. In the
example, (a) shows the ground-truth labels of the segments. (b)
gives the highest estimated confidence score ŵ, its corresponding
estimated label and the area a of each node. (c) considers non-
overlapping segments selection leading to two possible selections and
(d) further considers the hierarchical relation leading to one more
possible selection. According to the sum of scores, (c) fails to label
the right child node while (d) gives a reasonable labeling, because
the (chair,chair-back) relation strengthens each other avoiding the
possible error incurred by the poor estimated ŵ.

straints allows the model to avoid possible errors caused by

poor local estimates of ŵ (see an example in Fig. 4).

Choosing the degree of specificity for hierarchical labels.

For many robotic applications, it is also desirable to be able to

decide the degree of specificity of the produced labels. Here

we use the information gain rk to represent the specificity of

each class as in [10]:

rk = log2 |C| − log2
∑

cz∈C

I(ck ∈ π(cz)), (3)

where the first term is the total number of classes and the

second term gives the number of ck’s child nodes. We can

see rk is larger for lower level classes and smaller for higher

levels in the semantic hierarchy. We weight the unary term

ŵik by r̃k = rηk , where η is the parameter deciding the degree

of specificity of prediction.3

In summary, the final objective function becomes:

TreeSeg-HierLabely(ŵ,a, r̃,Φ) :

max
y

unary terms
︷ ︸︸ ︷
∑

si,ck

yikŵikr̃kai −

overlapping correction terms
︷ ︸︸ ︷

∑

šl,(si,sj ,ck,cz)∈Ωl

yikyjzŵjz r̃zai

+

edge terms
︷ ︸︸ ︷

∑

(si,sj)∈N,ck

yikyjkΦ(si, sj),

s.t.

NO-CT, HR-CT
︷ ︸︸ ︷
∑

yik∈Qlt

yik ≤ 1 ∀šl, t,

CM-CT
︷ ︸︸ ︷

∑

si∈π(šl),ck

yik ≥ 1 ∀šl,

yik ∈ {0, 1}.
(4)

After solving this, we label each pixel p with the most specific

label from the set: {ck|p ∈ si & yik = 1}.

VI. EFFICIENT OPTIMIZATION

The quadratic term in the objective function makes op-

timization difficult. So, we equivalently formulate it by re-

placing quadratic term yikyjz with an auxiliary variable ξkzij

3With larger η, the relative weight for more specific class: (ri/rj)
η , ri >

rj is larger, thus prediction is more specific. The prediction is balanced when
η = 0.

leading to a linear objective which can be solved by a mixed

integer programming (MIP) solver [1]:

OpTreeSeg-HierLabel
y,ξ(ŵ,a, r̃,Φ) :

max
y,ξ

unary terms
︷ ︸︸ ︷
∑

si,ck

yikŵikr̃kai −

overlapping correction terms
︷ ︸︸ ︷

∑

šl,(si,sj ,ck,cz)∈Ωl

ξkzij ŵjz r̃zai

+

edge terms
︷ ︸︸ ︷

∑

(si,sj)∈N,ck

ξkkij Φ(si, sj),

s.t.

NO-CT, HR-CT
︷ ︸︸ ︷
∑

yik∈Qlt

yik ≤ 1 ∀šl, t,

CM-CT
︷ ︸︸ ︷

∑

si∈π(šl),ck

yik ≥ 1 ∀šl,

ξkzij ≤ yik, ξ
kz
ij ≤ yjz, yik + yjz ≤ ξkzij + 1, ∀si, ck

yik ∈ {0, 1}, ξkzij ∈ {0, 1},
(5)

Parsimonious Model. We observe that there is some redun-

dancy in the above objective, and introduce a parsimonious

model to avoid this.

First, we do not need to consider all possible classes for

each segment. Classes with low unary terms ŵikr̃kai can be

omitted for si. We consider only the top τ classes, leaving

only τ possible yik for each si.

Second, in constraint-finding, some hierarchical relations

(si, sj , ck, cz) ∈ Ωl are mutually exclusive.4 So we also

consider ŵikr̃kai in each hierarchical relation, reducing the

number of relations by greedily selecting the top ones with no

conflicts. In detail, we first rank all the possible hierarchical

relations (si, sj , ck, cz) by the sum of unary terms of each pair

wikr̃kai + wjz r̃zaj , all of which consist a candidate relation

list. We select the one with the highest score from the list,

link the corresponding edge in graph Hl, and remove all its

violating relations from the list. We repeat this selection until

no relations remain in the list. As a result, the graph Hl

becomes sparse with many isolated vertices, since only most

confident relations are considered.

The most time consuming step in Alg. 1 is to enumerate

the maximal independent sets in step 8. In the worst case it is

O(nl3
hs·τ/3), where nl is the number of leaf nodes of and hs

is the height of the segmentation tree, and τ is the number of

top considered classes. Though the worst-case running time

is non-polynomial, the Bron-Kerbosch algorithm runs much

faster in practice [3]. In our experiments on the NYUD2

dataset, it only takes an average of 0.84 and 0.49 seconds

per image respectively to find the constraints and optimize the

objective using our parsimonious model.

4For example, consider (s1, s3, c1, c2) and (s2, s4, c3, c4), where s2 ∈
π̇(s1), s3 ∈ π̇(s2), s4 ∈ π̇(s3), c2 ∈ π̇(c1), c3 ∈ π̇(c2), c4 ∈ π̇(c3). They
are both belong to hierarchical relations according to the definition. However,
they are mutually exclusive because when y1,1=1, y3,2=1, y2,3 cannot be 1
as the segment s2 is within segments s1, s3 while class c3 is higher than
classes c1, c2.

TABLE I: Average class recall of each class level on NYUD2 dataset.

Recall(%) class level0 class level1 class level2 class level3

[37] 24.77 30.52 36.02 41.66
[14]+[37] 28.96 34.14 41.69 46.29

Ours(bs+bc) 30.08 36.09 45.96 51.80
Ours(ts+bc) 32.78 41.38 49.26 55.48
Ours(ts+hc) 33.35 44.46 51.79 61.51

VII. SCENE LABELING EXPERIMENTS

Data. We evaluate our approach on a hierarchically-labeled

subset of the NYUD2 dataset [45], which consists of RGB-D

images from a wide variety of environments. We manually

labeled a subset of 500 images using a hierarchy. We used

20 most common object classes and one background class,

and additionally labeled 12 object-part classes and generalized

10 higher level classes. In total, we have 43 classes in the

semantic hierarchy. We use the standard split of the NYUD2

dataset, giving 269 training images and 231 test images.

Implementation details. In our experiments, we used six

RGB-D kernel descriptors to represent segments for both [37]

and our approach. We kept the same setting as in [37] to run

their approach: first, we ran gPb-ucm algorithm [5] on both

the RGB and depth images separately and linearly combine

them to get the gPb-ucm values, then built one segmentation

tree by using different values to threshold these values. To

make a fair comparison, we also ran the 3D gPm-ucm [14]

algorithm to get the gPb-ucm value for both approach [37]

and ours. So we denote the approach [37] based on original

gPb-ucm as [37] and based on 3D gPb-ucm as [14]+[37].

Evaluation metric. We use three metrics for evaluating scene

labeling performance: cumulative pixel accuracy, average in-

formation gain and average class recall. We label each scene

image at the pixel level and consider it correct to label a pixel

with its ground truth label or any of its ancestors, e.g., a pixel

of class chair-back is also of class chair. If L̂p is a prediction

of a pixel label and L∗
i is its ground truth leaf node label, the

cumulative pixel accuracy over the whole dataset is defined

as:
∑

p I(L̂p ∈ π(L∗
p))/np, where I(.) is an indicator function

and np is the number of pixels in the whole dataset, π(L∗
p) is

the set of all possible correct predictions including L∗
p and all

its ancestors in the semantic hierarchy.

With hierarchical labels, an algorithm can always predict

the top-level parent classes and get higher performance, e.g.,

it is easier to label furniture vs table-leg. Therefore, following

[10], we evaluate the degree of specificity for prediction.

Specifically, we compute the information gain (Eq. 3) of each

predicted class as defined earlier and compute the average.

Recall for class c is defined as: (
∑

p I(L̂p ∈ ch(c) & L̂p ∈
π(L∗

p)))/(
∑

p I(c ∈ π(L∗
p))), where ch(c) represent the class

set of all c’s children plus c itself in the semantic hierarchy.

So, the numerator is the number of correctly predicted pixels

for class c, and the denominator is the number of pixels with

c as ground truth label.

Fig. 5: Results on NYUD2 dataset. For the same degree of
specificity for prediction (i.e., same information gain, left) and recall
(right), our algorithm performs better.

A. Results

We first evaluate the average class recall on four levels of

the semantic hierarchy. Table. I summarizes the results. Class

level0 contains the base classes, the most specific classes in

the tree, e.g. object parts and low-level object classes. Higher

levels are obtained by merging nodes in each previous level,

leading to more general classes. Fig. 7 shows all classes for

each level.

In this experiment, we train and predict labels on the base

classes for flat labeling approaches [37],[14]+[37]. For our

approach, we train and predict labels using leaf node segments

on the base classes (Ours(ls+bc)), the segmentation tree on

the base classes (Ours(ts+bc)) and the segmentation tree on

the test class level and all classes below them in the semantic

hierarchy (Ours(ts+hc)), with η = 0 for balanced prediction.

These results reveal a number of interesting points as follows:

• The proposed approach Ours(ts+hc) shows the best results at

each level, even though predicting more hierarchical labels

is harder than the task of the other compared approaches,

which only predict the base classes. This is because our

approach effectively considers the mapping of the semantic

hierarchy to the segmentation tree.

• Labeling on segmentation trees, e.g. Ours(ts+bc) and

Ours(ts+hc), outperform methods labeling on flat segmen-

tations. In [37], they considered hierarchical segmentation

by packing all semantic features together in a tree path.

However, they still label on the flat leaf node segmentations,

losing some visual information.

• Prediction becomes easier when classes are more general.

Thus, for tasks where specificity is not strictly required, we

can predict more general labels to achieve higher accuracy.

To further evaluate the labeling performance using our

semantic hierarchy, we plot average information gain vs.

accuracy curves (Fig. 5-left) and average class recall vs.

accuracy curves (Fig. 5-right) by varying the degree of

specificity for prediction parameter η. We compare ap-

proaches [37], [14]+[37] and our approaches using single

ucm tree (Ours(ucm)), single normal tree (Ours(normal)),

single semantic tree (Ours(category)) and using all three trees

(Ours(full)). For the flat labeling approach [37], [14]+[37],

we treat each class in the hierarchy as an arbitrary class

without considering the hierarchy and train a one-vs-all SVM

as in [37]. From these results, we can see that our approaches

outperform the flat labeling approaches by a large margin,

since the semantic hierarchy is considered. For the same de-

(a) Input Image (b) Ground Truth (c) [14]+[37] (d) Ours

Fig. 6: Some samples of the results on NYD2 dataset (small areas are not shown with label names for clarity). In the first row, sofa back
is labeled correctly since semantic hierarchy (sofa,sofa back) is considered. In the second row, our algorithm labeled the higher level classes
desk, basic construction instead of desk surface, wall to avoid possible mistakes with the help of semantic hierarchy.

Fig. 7: Multi-level confusion matrix of our final results on NYUD2 dataset. From left to right, the confusion matrix zooms in to see more
specific results in the next level below. In each confusion matrix, the red border square gives the classes merged in the next level up.

gree of specificity, our algorithms give higher accuracy. Using

multiple segmentation trees also improves the performance.

We give two visual examples of labeling results in Fig. 6.

In the first example, we can see that our algorithm yields a

better labeling because semantic hierarchical relations such as

(sofa,sofa back) are considered. The second example shows

that the hierarchical labeling can use higher level classes

to avoid possible mistakes, such as using desk or basic

construction rather than desk surface or wall.

To further study the labeling results of our algorithm, we

illustrate a multi-level confusion matrix in Fig. 7. We can

see that some between-class labeling errors occur within one

general class such as sofa, chair, stood on, most of which

vanish in the next-higher level. However, some classes are hard

to discriminate at any levels, such as door and wall, door and

hanging. Our algorithm performed poorly for the background

class others as it contains large variations in visual appearance.

VIII. ROBOTIC EXPERIMENTS

We evaluated our approach on three robotic tasks: ob-

ject search, retrieval, and placement. We used a PR2 robot

equipped with a Microsoft Kinect as our robotic platform.

Table II shows a summary of the results, listing the perception

accuracy (‘perc’) and end-to-end execution (‘exec’) separately.

A. Object Search Experiments

Here the goal for the robot is to locate a particular object in

a room by moving around.5 We compare our approach to [37].

For repeatable experiments, we pre-recorded a search tree at

20 discrete locations, each with a corresponding RGB-D frame

(not in the training set).

We ran four separate trials for each algorithm, with the goal

of searching for a chair back, fridge handle, mug handle, and

baseball. To evaluate performance, the robot to takes a fixed

number of steps, and then reports the location at which it had

the highest confidence of finding the given object. We score

the algorithm’s performance based on the overlap ratio of the

reported and ground-truth pixels of the target class for that

frame, i.e. |pd ∩ pg|/|pd ∪ pg|, where pd, pg are the detected

object pixels and ground-truth object pixels.

Fig. 10 shows that for any fixed number of steps, our

algorithm was able to outperform the approach from [37] for

this task. Our algorithm was able to achieve an average overlap

ratio of 0.4 after only 6 steps, while [37] took 15, showing

that our approach does a better job of informing the search.

5Experimental setup details: The robot moves in discrete steps through the
room, effectively moving through a search tree spanning the room. At each
node in the tree, it turns to face each potential next location to move to,
recording and labeling an RGB-D image for each. The robot will then move
to the next location with the highest confidence score for containing the target
object. If there are no unvisited neighboring locations, or this score is below
some threshold, the robot will instead backtrack.

Fig. 8: Fetching a drink with our robot. A few snapshots of our algorithm running on
our PR2 robot for the task of fetching a drink. From left to right: the robot starts some
distance from the fridge, navigates to it using our labeling, detects the handle, and grasps
it. It then opens the fridge, and finally retrieves a soda from it.

Fig. 9: Placing a cushion. No sofa was present,
but the robot used our hierarchy to determine that
the chair was another sittable object and thus a
reasonable place for the cushion.

Fig. 10: Robot Object Search results. Figure shows the accuracy
vs the number of movement steps taken by the robot.

TABLE II: Robotic experiment results. Success rates for perception
(‘perch’) and actual robotic execution (‘exec’) of each task.

Search Retrieval Placement Average
@20 steps Soda Bowl Cushion
perc exec perc exec perc exec perc exec perc exec

Flat 44 44 33 33 38 38 50 50 42 42
Hierar. (ours) 64 64 90 80 80 80 100 100 84 81

After 20 steps, both algorithms converged, and ours achieves

an average overlap ratio of 0.64 versus the 0.44 ratio from the

baseline approach, thus also improving long-term accuracy.

B. Object Retrieval Experiments

In this experiment, the robot has to perform a series of

perception and motion/manipulation steps for retrieving an

object—to fetch a drink from a fridge, and to fetch a bowl

from a kitchen counter. The robot first detects and navigates

to a semantically appropriate area to find the object in, then

locates the target object, grasps it, and brings it back.

In some cases, the desired object may not be available, and

the robot is then allowed to retrieve an appropriate substitute.

We define this as some other descendant of a class’s parent in

the semantic hierarchy - for example, Pepsi is a substitute for

Coke because both have the parent class soda. A flat labeling

scheme is incapable of determining such substitutes, and will

report failure if the target class is not found.

From Table II, we can see that our algorithm achieves

a very high rate of success for the complex drink-retrieval

task shown in Fig. 8. Even though this task requires three

separate phases of perception, our perception algorithm failed

only once in ten trials, failing to find the fridge handle,

giving a 90% perception success rate. One more execution

failure was due to the fridge door swinging closed before

the robot could hold it open, giving an 80% overall success

rate. Results for the bowl retrieval experiment were similar.

Video of some of these experiments is available at: http:

//pr.cs.cornell.edu/sceneunderstanding/.

At long distances, neither ours nor the baseline labeling

algorithms were able to distinguish the handle from the door of

the fridge, but our hierarchy informed the robot that the handle

was part of the door. The flat labeling approach, meanwhile,

lacked this information and simply failed if it could not

identify the handle. In fact, the robot was only able to open

the fridge 50% of the times using flat labels. Once opened, it

could not identify proper substitutes if the desired drink was

not present, leading to a mere 33% perception success rate.

C. Object Placement Experiments

We also performed a series of experiments in which the

robot’s goal was object placement rather than retrieval. In

particular, we considered the task of placing a cushion on a

sofa, or on some other sittable object such as a chair if a sofa

is not present. In every experiment performed, our algorithm

was able to successfully locate the sofa, or a substitute if there

was no sofa. One example of the robot successfully placing

a cushion is shown in Fig. 9. By contrast, when using a flat

labeling approach, the robot did not understand to place the

cushion on another sittable surface if the sofa was not present,

and thus succeeded only in the 50% of cases.

IX. CONCLUSION

Objects in human environments can be classified into a

meaningful hierarchy, both because these objects are com-

posed of parts (e.g. fridge-fridge door-fridge handle) and

because of different levels of abstraction (e.g. drink-soda-

Coke). Modeling this is very important in enabling a robot

to perform many tasks in these environments. In this work,

we developed an approach to labeling a segmentation tree with

such hierarchical semantic labels. We presented a model based

on a Conditional Random Field which incorporated several

constraints to allow labeling using this hierarchy. Our model

allows for different levels of specificity in labeling, while

still remaining tractable for inference. We showed that our

method outperforms state-of-the-art scene labeling approaches

on a standard dataset (NYUD2), and demonstrated its use on

several robotic tasks.

http://pr.cs.cornell.edu/sceneunderstanding/
http://pr.cs.cornell.edu/sceneunderstanding/

REFERENCES

[1] Mixed integer programming solver. http://tomopt.com/tomlab/
products/cplex/.

[2] E. A. Akkoyunlu. The enumeration of maximal cliques of large
graphs. SIAM J. Comput., 2(1):1–6, 1973.

[3] D. R. Aloysius. Bron-Kerbosch Algorithm. PopulPublishing,
2012. ISBN 6136404559, 9786136404554.

[4] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena. Contex-
tually guided semantic labeling and search for three-dimensional
point clouds. IJRR, 32(1):19–34, 2013.

[5] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. PAMI, 33(5):
898–916, 2011.

[6] A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt.
Search in the real world: Active visual object search based on
spatial relations. In ICRA, 2011.

[7] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques
of an undirected graph. Commun. ACM, 16(9):575–577, 1973.

[8] S. X. Chen, A. Jain, A. Gupta, and L. S. Davis. Piecing together
the segmentation jigsaw using context. In CVPR, 2011.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. In CVPR,
2009.

[10] J. Deng, J. Krause, A. Berg, and L. Fei-Fei. Hedging your bets:
Optimizing accuracy-specificity trade-offs in large scale visual
recognition. In CVPR, 2012.

[11] C. Eppner and O. Brock. Grasping unknown objects by
exploiting shape adaptability and environmental constraints. In
IROS, 2013.

[12] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into
geometric and semantically consistent regions. In ICCV, 2009.

[13] K. Granström, J. Callmer, F. T. Ramos, and J. I. Nieto. Learning
to detect loop closure from range data. In ICRA, 2009.

[14] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and
recognition of indoor scenes from RGB-D images. In CVPR,
2013.

[15] H. He and B. Upcroft. Nonparametric semantic segmentation
for 3d street scenes. In IROS, 2013.

[16] E. Herbst, X. Ren, and D. Fox. RGB-D flow: Dense 3-d motion
estimation using color and depth. In ICRA, 2013.

[17] E. Herbst, P. Henry, and D. Fox. Toward online 3-d object
segmentation and mapping. In ICRA, 2014.

[18] L. Hinkle and Edwin. Predicting object functionality using
physical simulations. In IROS, 2013.

[19] Z. Jia, A. Gallagher, A. Saxena, and T. Chen. 3d-based
reasoning with blocks, support, and stability. In CVPR, 2013.

[20] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as
the hidden context for labeling 3d scenes. In CVPR, 2013.

[21] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert. iSAM2: Incremental smoothing and mapping using
the bayes tree. IJRR, 31(2):216–235, 2012.

[22] D. Katz and O. Brock. Interactive segmentation of articulated
objects in 3d. In Workshop on Mobile Manipulation at ICRA,
2011.

[23] H. Koppula and A. Saxena. Anticipating human activities using
object affordances for reactive robotic response. In RSS, 2013.

[24] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic
labeling of 3d point clouds for indoor scenes. In NIPS, 2011.

[25] H. Koppula, R. Gupta, and A. Saxena. Learning human
activities and object affordances from rgb-d videos. IJRR, 32
(8):951–970, 2013.

[26] D. Kottas and S. Roumeliotis. Exploiting urban scenes for
vision-aided inertial navigation. In RSS, 2013.

[27] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning for
3d scene labeling. In ICRA, 2014.

[28] M. T. Lazaro, L. M. Paz, P. Pinies, J. A. Castellanos, and

G. Grisetti. Multi-robot SLAM using condensed measurements.
In IROS, 2013.

[29] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting
robotic grasps. In RSS, 2013.

[30] M. Lorbach, S. Hfer, and O. Brock. Prior-assisted propagation
of spatial information for object search. In IROS, 2014.

[31] M. Madry, C. H. Ek, R. Detry, K. Hang, and D. Kragic. Im-
proving generalization for 3d object categorization with global
structure histograms. In IROS, 2012.

[32] T. Malisiewicz and A. A. Efros. Improving spatial support for
objects via multiple segmentations. In BMVC, 2007.

[33] M. Milford. Vision-based place recognition: how low can you
go? IJRR, 32(7):766–789, 2013.

[34] J. Neira, A. Davison, and J. Leonard. Guest editorial special
issue on visual SLAM. Robotics, IEEE Transactions on, 24(5):
929–931, 2008.

[35] V. Ordonez, J. Deng, Y. Choi, A. C. Berg, and T. L. Berg.
From large scale image categorization to entry-level categories.
In ICCV, 2013.

[36] D. Pangercic, M. Tenorth, B. Pitzer, and M. Beetz. Semantic
object maps for robotic housework - representation, acquisition
and use. In IROS, 2012.

[37] X. Ren, L. Bo, and D. Fox. RGB-D scene labeling: Features
and algorithms. In CVPR, 2012.

[38] M. Ruhnke, L. Bo, D. Fox, and W. Burgard. Compact RGB-D
surface models based on sparse coding. In AAAI, 2013.

[39] B. C. Russell and A. Torralba. Building a database of 3d scenes
from user annotations. In CVPR, 2009.

[40] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J.
Kelly, and A. J. Davison. SLAM++: Simultaneous localisation
and mapping at the level of objects. In CVPR, 2013.

[41] A. Saxena, S. Chung, and A. Ng. Learning depth from single
monocular images. In NIPS, 2005.

[42] A. Saxena, J. Driemeyer, and A. Ng. Robotic grasping of novel
objects using vision. IJRR, 27(2):157, 2008.

[43] A. Saxena, M. Sun, and A. Ng. Make3d: Learning 3d scene
structure from a single still image. PAMI, 31(5):824–840, 2009.

[44] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. Vision-
based state estimation and trajectory control towards high-speed
flight with a quadrotor. In RSS, 2013.

[45] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from RGB-D images. In
ECCV, 2012.

[46] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. Mc-
Donald. Robust real-time visual odometry for dense RGB-D
mapping. In ICRA, 2013.

http://tomopt.com/tomlab/products/cplex/
http://tomopt.com/tomlab/products/cplex/

	Introduction
	Related Work
	Overview
	Preliminaries
	Unary term of a segment
	Labeling RGB-D Images with Flat Labels

	Our Approach
	Labeling Segmentation Trees with Flat Labels
	Labeling Segmentation Trees with Hierarchical Labels

	Efficient Optimization
	Scene Labeling Experiments
	Results

	Robotic Experiments
	Object Search Experiments
	Object Retrieval Experiments
	Object Placement Experiments

	Conclusion

