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Abstract—For robots, the ability to model human configura-
tions and temporal dynamics is crucial for the task of anticipating
future human activities, yet requires conflicting properties: On
one hand, we need a detailed high-dimensional description of
human configurations to reason about the physical plausibility
of the prediction; on the other hand, we need a compact
representation to be able to parsimoniously model the relations
between the human and the environment.

We therefore propose a new model, GP-LCRF, which admits
both the high-dimensional and low-dimensional representation
of humans. It assumes that the high-dimensional representation
is generated from a latent variable corresponding to its low-
dimensional representation using a Gaussian process. The gener-
ative process not only defines the mapping function between the
high- and low-dimensional spaces, but also models a distribution
of humans embedded as a potential function in GP-LCRF along
with other potentials to jointly model the rich context among
humans, objects and the activity. Through extensive experiments
on activity anticipation, we show that our GP-LCRF consistently
outperforms the state-of-the-art results and reduces the predicted
human trajectory error by 11.6%.

I. INTRODUCTION

The ability to anticipate possible future moves of a human
is a necessary social skill for humans as well as for robots
that work in assembly-line environments (e.g., Baxter) or in
homes and offices (e.g., PR2). With such a skill, the robots
can work better with humans by performing appropriate tasks
and by avoiding conflict. For instance, Koppula et. al. [20]
used anticipation in assistive robotic settings, such as in the
tasks of opening doors for people or serving drinks to people.

Human activity anticipation is a very challenging task,
especially in unstructured environments with a large variety of
objects and activities. Koppula et. al. [20] have shown that the
rich context (such as object-object and human-object spatial
relations) is important for predicting high-level human activi-
ties. However for anticipation and robotic planning, predicting
detailed human motions is also crucial. In this work, our goal
is to model the detailed human motions, along with the rich
context, in anticipating the human activities. We specifically
focus on how to represent (and learn with) high-dimensional
human configurations and their temporal dynamics.

Recently, high-dimensional description of human motions
is widely available through motion capture data or RGB-D
cameras (e.g., Kinect), where a human configuration is spec-
ified by the joint locations and orientations and often has
more than 30 degrees of freedom. While it captures human
kinematics and dynamics accurately, modeling human motions
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Fig. 1: Given an RGB-D video of a human interacting with the
environment, we are interested in predicting the future: what activity
will he perform and how the environment and human pose will
change. The key idea in this work is to compactly represent the high-
dimensional human configuration in a low-dimensional space so that
we can model relations between the human, activity and objects more
effectively in a graphical model.

in such space (much higher than 30 DOF when considering
velocities and accelerations) often requires a detailed musculo-
skeletal human model and a large number of spatial and timing
constraints to produce smooth and realistic motions [4].

Such a high-DOF model does not lend itself to use in
learning models where rich modeling of the human with the
environment is needed. Therefore, some works assume a few
static human poses are representative enough [6, 8, 13, 12]
or simplify a human configuration to a 2D point for nav-
igation task [3, 18, 44, 23] or to a 3D trajectory of one
hand while keeping the rest body static neglecting kinematic
constraints [20, 19]. In these works, human motions are under-
represented and would fail when a more elaborate human
motion prediction is required.

In this work, we design a model that can handle the
two competing requirements: (a) having access to a high-
dimensional model of a human skeleton so that physical
feasibility and other kinematic criterion can be reasoned
about, and (b) having a low-dimensional representation that
allows its use in learning algorithms that model the human’s
relation to entities in the environment containing objects. The



general idea is to learn a two-way mapping between the
high-dimensional and low-dimensional representations of the
human configurations. Meanwhile, we associate the mapping
with a probability distribution over the low-dimensional space
so that data-driven learning approaches can use the distribution
to build a probabilistic model that captures the relationships
between human and other entities in the environment.

We therefore propose a model GP-LCRF (stands for Gaus-
sian Process Latent Conditional Random Field), which is a
conditional random field (CRF) augmented with latent nodes
in low-dimensional space corresponding to the compressed
high-dimensional nodes in the CRF. The correspondence is
modeled using a Gaussian process that explicitly defines a
mapping function and a likelihood function over the two
spaces. The likelihood function is incorporated as the po-
tential function for the edges between the low-dimensional
and high-dimensional nodes. In our application to the task
of anticipating human activities, GP-LCRF models human
configurations as the high-dimensional nodes and learns their
compact representation as latent nodes. Edges between latent
nodes are used to model the continuity of human motions.
Inspired by [20], GP-LCRF also models objects and sub-
activities as other nodes and their spatial-temporal relations
as edges. In this way, GP-LCRF provides a joint graphical
model for humans, objects and sub-activities together.

We show that, during training the model, the likelihood
could be decomposed into two disjoint sets, one for learning
the mapping of the latent space and the other for learning
the parameters of the CRF. During inference, our goal is
to anticipate future human actions, for which we use Gibbs
sampling for inferring probable human configurations.

We test our model on CAD-120 human activity dataset [22],
which contains 120 RGB-D videos of daily human activities
such as eating food, cleaning, etc. Through extensive experi-
ments, we show that our GP-LCRF achieves the state-of-the-
art results while comparing against multiple baselines with or
without modeling humans. Particularly, we reduce the human
trajectory prediction error by 11.6% (with a p-value of 0.0107),
which could make significant difference to robot planning that
uses the predicted future human motions.

In summary, our contributions are:
• We propose a new graphical model, GP-LCRF, that

bypasses the difficulty of modeling high-dimensional
variables in traditional CRFs by augmenting the graph
with latent nodes corresponding to the low-dimensional
representations of those variables.

• We apply GP-LCRF to the human activity anticipation
task. GP-LCRF is able to capture both the rich context in
the environment and the temporal dynamics of humans.

• We test our model on a large human activity dataset (with
various objects and activities) and achieve the state-of-
the-art results.

II. RELATED WORK

Modeling human configurations has attracted great attention
in many computer vision and robotic applications. There is a

significant body of work building a full human body model
for tracking and reconstruction human motions. For example,
Navaratnam et al. [30] learn a mapping from image features
to human joint angles to estimate human pose in 2D images.
Demircan et al. [4] utilize a detailed subject-customized bio-
mechanical model and multiple markers from motion capture
data to reconstruct realistic human motions in real-time. Kulić
et al. [24] consider clustering human configurations into
motion segments. In the field of character animation, human
model is also used to synthesize and plan the high-dimensional
human motions [37, 28]. There are some works focusing on
learning a low-dimensional representation of humans that can
be used to interpolate new human motions [34, 7]. While these
works can model detailed human configuration well, the high-
dimensional representation is not suitable for probabilistic
modeling in the problem of human activity anticipation, and
thus they are complimentary to ours.

Some works reduce the large space by using a few static
poses. Grabner et al. [6] and Gupta et al. [8] utilize imaginary
human actors to detect objects and human workspace in 2D
images. Jiang et al. [13, 11, 12] apply hallucinated human
configurations to a robotic task of arranging 3D indoor scenes.
In another previous work of anticipating human activities [20,
19], human motions are implicitly modeled through object
trajectories. Some other works [3, 18, 44, 23] predict possible
human navigation trajectories in 2D from visual data. In all the
aforementioned works, human motions are under-represented
and would fail when a more elaborate prediction on human
movements is required.

Some other works consider human robot collaborations
without anticipating human activities [1], focus on high-level
actions [31], or consider object affordances for manipulation
[16]. These works are orthogonal to ours.

In terms of capturing the context in human activities, condi-
tional Random Fields (CRFs) [25] have emerged as a popular
way to model contextual relations. Many variants augment
CRFs with latent variables in order to model hidden states,
such as latent CRFs [33] that have been applied to object
recognition [36, 14, 42], scene understanding [35], gesture
recognition [40] and grounding natural language to robotic
tasks [29]. However, in these models, the predefined latent
space is discrete and small to keep the learning and inference
tractable. Our GP-LCRF, on the contrary, learns the latent
space in a non-parametric way and admits continuous latent
values.

III. OVERVIEW

We define the anticipation task as follows: Given an RGB-D
video of a human interacting with the surrounding environ-
ment, our goal is to predict what will happen to the environ-
ment in a time span in terms of the next sub-activity label,
object affordance labels and object trajectories. Modeling
future human configurations, in the context of the activity and
the environment, is a key ingredient for a good anticipation.

Human configuration has two sides of nature: It is high-
dimensional in terms of the degree of freedom a human body
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(b) Our GP-LCRF

Fig. 2: Graphical representations of the original ATCRF [20] and our GP-LCRF. Our model adds latent low-dimensional nodes X to the
model, which are related to the original high-dimensional human configuration nodes H through Gaussian Process latent variable model with
parameters α, β, γ. Shaded nodes indicate observations. In both models, temporal segment t is given for anticipation with observed human
poses Ht and object locations Lt, and the goal is to infer the next segment t+ 1 where nothing is observed.

possesses. One would need the location and orientation of each
joint of a human skeleton to fully describe a static human pose,
and the velocities and accelerations to describe a sequence
of human motions. The high-dimensional representation is a
guarantee for generating realistic human poses/motions. We
need it to perform (self-)collision detection, inverse kinematics
and path planning.

However, most dynamic human behaviors are intrinsically
low-dimensional, as our arms and legs operate in a coordinated
way and they are far from independent with each other. Many
daily behaviors such as walking and jumping have been repre-
sented in low-dimensional space [7, 34]. The low-dimensional
representation is a requisite for probabilistic models of human
motions. The distribution of human poses can be used to
synthesize or predict new poses.

Our main idea is to keep both the high- and low-dimensional
representation of human dynamics in anticipating human ac-
tivities. Our learning model thus has two parts:

Learning low-dimensional human dynamic distributions.
For each human pose, indexed by i, we use hi to de-
note its high-dimensional and xi for its corresponding low-
dimensional representation. The correspondence is specified
by a mapping function, i.e. hi = f(xi). Additionally, we are
also interested in associating the mapping with a probabilistic
model, so that we can generate new human dynamics (xi, hi)
from the learned distribution. Hence, the objective of this part
is to learn the parameters of f as well as a likelihood function
L(xi, hi) from the training data {hi}.
Modeling the spatial and temporal context of human
activities. We use a graphical model, following [20] to capture
the three important aspects in a human activity—sub-activities
A, objects O and humans H. Given a video segment t,1

each entity is represented by a node in the graph modeling
its prior distribution and the edges in the graph model their
relations, as shown in Fig. 2. The whole video is a repetition of
such a graph. Edges between consecutive segments are used

1Frames of a video are grouped into temporal segments, and each segment
spans a set of contiguous frames, during which the sub-activity and object
affordance labels do not change.

to model temporal dynamics. In particular, for each human
pose in segment t, in addition to the original human node
hti, we add a low-dimensional latent node xti. The edges
between hti andOt orAt are used to capture human-object and
human-activity relations, while the edges between xt−1i and xti
are for modeling the human dynamics. This graphical model
thus defines a joint distribution P (A,O,H,X ) as a product
of parameterized edge potentials. We learn those parameters
from labeled data and then sample future segments from this
distribution for anticipation.

By combining these two parts, our proposed GP-LCRF
possesses many advantages: First, we can now use the context
of high-dimensional data that is difficult to model for a
traditional CRF. Second, as the low-dimensional representation
is modeled as latent nodes and the mapping is learned in
an unsupervised way, our model does not require any extra
label/data to learn. Third, being able to learn the distribution
of the low-dimensional latent node makes our GP-LCRF a
generative model that suits the anticipation problem. Before
presenting our GP-LCRF, we first briefly review the back-
ground of the two parts in the following.

IV. PRELIMINARIES

A. Dimensionality Reduction with a Gaussian Processes

Consider a general setting for regression problems: Our goal
is to learn a mapping h = f(x) for a set of N training pairs
(xi, hi). However, from a Bayesian point of view, instead of
mapping to one point, a Gaussian process (GP) “maps” x to
a distribution of h. Let µ be the mean of the training data
µ =

∑
hi/N , and let Hk = [h1,k − µk, . . . , hN,k − µk]T be

the feature vectors of the kth dimension. In a GP model, Hk

can be viewed as one sample from a multivariate Gaussian
distribution:

P (Hk|{xi}) =
1

(2π)N/2|K|1/2
exp(−1

2
HT

k K
−1Hk) (1)

K is the covariance matrix of all inputs xi. We can use many
non-linear kernel functions, such as the popular “RBF kernel”,
to admit non-linear mappings:

Ki,j = k(xi, xj) = α exp(−γ
2
||xi − xj ||2) + δxi,xjβ

−1



where δxi,xj
is the Kronecker delta. Using this kernel means

that the two points, xi and xj , that are correlated in the latent
space, will also be highly correlated after the mapping. The
parameter α imposes a prior on how much the two points are
correlated, γ is the inverse width of the similarity function,
and β reflects how noisy the prediction is in general.

In a more general setup, only h1, . . . hN are given and the
goal is to determine the mapping function f as well as the
corresponding xi. This can be solved using Gaussian process
latent variable models (GPLVM) proposed in [26]. GPLVM
maximizes the likelihood of the training data, based on Eq. (1),
to learn the parameters of the kernel function (γ, α, β) and the
latent variables x1, . . . , xN .

Since GPLVM provides a probabilistic model of nonlinear
mappings and generalizes well for small datasets, it has
been extended to model human motions in many works. For
example, it is integrated with a dynamical model to capture
dynamical patterns in human motions [39] so that it can
provide a strong prior for tracking human activities [38, 43, 5].
In this work, we also adopt GPLVM as a dimensionality
reduction approach, however, our goal is to incorporate this
with Latent CRFs to model high-dimensional human motions
and rich context in the environment at the same time.

B. Capturing Context with CRF
Conditional Random Fields (CRFs) have been widely ap-

plied to a variety of vision and robotic applications for its
ability to model rich contextual relations. Given a graph, where
V denotes the nodes and E for the edges, A CRF defines the
joint distribution of V conditioned on observed features:

P (V) ∝
∏

i
ψi(vi)

∏
(i,j)∈E

ψi,j(vi, vj)

where ψi denotes the unary potential and ψi,j denotes the pair-
wise potentials. For instance, in scene labeling, each segment
is modeled as a node whose value indicates the object class
label, and the edges between nodes describe the object-object
(spatial) context [2]. The potentials are usually parameterized
as a inner product of the feature and parameter vectors. The
parameters are learned by maximizing the joint likelihood of
training data.

In the task of anticipating human activities, previous
work [20, 19] propose a novel CRF, ATCRF, to model the
relationships between sub-activity labels A, object affordance
labels O, object locations L and human poses H, as shown
in Fig. 2-(a). Inside one temporal segment, a graph structure
is defined as Gt = (Vt, Et) with Vt = {Ot,Ht,At}. The
edges capture object-activity, object-object and human-activity
relations. They also model temporal relations with edges
between the sub-activities nodes and the same object nodes
from the two consecutive segments.

V. REPRESENTING HUMANS

In this work, we define the high-dimensional representation
of a human pose h as:
• Joint locations: We include the head location and the local

locations (with respect to the head) of eight upper-body

joints (neck, torso, left and right shoulders, elbows and
hands). This gives 27 features in total.

• Head 3D orientation in a global coordinate system.
• Velocity and acceleration: To distinguish motions with

different directions (e.g., moving left vs. right), we addi-
tionally include the difference of consecutive poses. For
all the 30 features above, the velocity and acceleration at
time t are computed as ht−ht−1 and ht−2ht−1 +ht−2.

In total, each h is a 90-dimension vector.
Curse of H’s high dimensionality. In ATCRFs [20], antici-
pation is conducted by sampling future segments, including
possible sub-activities, object affordance labels and object
trajectories. Because of the high dimensionality of the human
configuration H, instead of sampling the full human body they
assume that the sampled object trajectory is always reachable
by hands and only samples the hand location around the object.
As a result, the anticipated human configuration is not realistic
and this inaccuracy propagates to the computation of features
and the potential function scores. Furthermore, because they
assume that h is fully determined by the object trajectory, its
temporal potential ψ(ht, ht−1) overlaps with ψ(ot, ot−1) and
thus does not capture the human dynamics.

VI. GP-LCRF FOR HUMAN ACTIVITY ANTICIPATION

We propose a model, GP-LCRF, that learns a probabilistic
mapping between the high- and low-dimensional representa-
tion of human dynamics based on Gaussian processes. Then
it embeds the compactly represented humans as latent nodes
in a CRF to capture a variety of context between the human,
objects and activities.

Our GP-LCRF introduces a layer of latent nodes in a CRF:
each node hi is now linked to a latent node xi and their relation
is defined by a GPLVM with parameters (α, β, γ). Because
latent nodes have much lower dimensions, we can model
the edges between latent nodes (e.g., (xti, x

t+1
i )) instead of

attempting to capture it with high-dimensional nodes directly.
(The high-dimensionality of the human nodes makes the edge
distribution ill-conditioned.) Figure 2 shows the corresponding
graphical model.

GP-LCRF differs from other latent CRFs in two aspects:
Prior. We adopt GPLVM to impose a Gaussian process prior
on the mapping and a `2-norm prior on the latent nodes.
This prior regulates the mapping so that the high-dimensional
human configurations hi that are close in the original space
would remain close in the latent space xi. This property of
local distance preservation is very desirable in many applica-
tions, especially for time series analysis.
Non-parametric. In many latent CRFs, the values of latent
nodes are discrete and finite [33]. Some other works consider
a non-parametric Bayesian prior over the latent values but they
do not handle dimensionality reduction. In our GP-LCRF, the
latent space is completely determined by the training data,
making it more adaptive to various applications.

A. Likelihood of GP-LCRF
As shown in Fig. 2-(b), a GP-LCRF is a repetition of

small graphs (one per each temporal segment). A segment



Fig. 3: An example of the learned mapping from the high-dimensional human configurations to a 2-dimensional space. The intensity of each
pixel x visualizes the its probability −D

2
lnσ2(x)− 1

2
||x||2. We also plot the projected 2D points for different activities in different colors.

We can see that human configurations from the same activity are mapped to a continuous area in the 2D space while the ones from different
activities are separated.

t contains one sub-activity label node At, object affordance
label nodes Ot = {Ot

i}, object location nodes Lt = {Lt
i},

high-dimensional human configurations Ht = {hti} and low-
dimensional human representations X t = {xti}.

Following the independence assumptions imposed by the
edges in the graph, the likelihood of one temporal segment
P (At,Ot,X t|Lt,Ht) is,

Pt ∝ ψ(At,Ht)
∏

i
ψ(At, oti)

∏
i
ψ(oti, L

t
i)∏

(i,j)
ψ(oti, o

t
j)
∏

i
φ(xti, h

t
i) (2)

where the first four terms capture human-activity relations,
object-activity relations, object affordances and object-object
relations respectively. These potentials are parameterized as
log-linear functions of feature vectors [20]. We define the
last term, potential of the mapping between xi and hi as the
likelihood derived from GPLVM:

φ(xi, hi) = expL(xi, hi) (3)

L(x, h) = −||h− f(x)||2

2σ2(x)
− D

2
lnσ2(x)− 1

2
||x||2 (4)

where

f(x) = µ+HTK−1k(x)

σ2(x) = k(x, x)− k(x)TK−1k(x)

k(x) = [k(x, x1), . . . , k(x, xN )]T

The three terms in L(x, h) measure the discrepancy between
the given h and the prediction f(x), the uncertainty of the
prediction, and the prior of the latent value x.

We now consider the temporal relations between the two
consecutive temporal segments t− 1 and t:

Pt−1,t ∝ ψ(At,At−1)
∏

i
ψ(oti, o

t−1
i )φ(xti, x

t−1
i ) (5)

where the first two terms capture the temporal transitions
of sub-activity labels and object affordance labels. They are
also parameterized as log-linear functions of features [20]. We
define the last term, the temporal transitions of latent nodes,
as Gaussian distributions:

φ(xti, x
t−1
i ) ∝ N (||xti − xt−1i ||2; 0, 1) (6)

Hence, the overall likelihood of a GP-LCRF is

LGP-LCRF ∝
∏T

t=1
Pt ×

∏T

t=2
Pt−1,t (7)

Using this function, we learn the parameters by maximize the
training data’s likelihood and to predict the future activities
and human dynamics by sampling from this distribution.

B. Learning
During training, given all observations (H and L) and labels

(A and O), our goal is to learn the parameters in every
potentials and latent nodes X by maximizing the likelihood
in Eq. (7), which can be written into two parts:

LGP-LCRF =
∏
t

(
ψ(At,Ht)

∏
i

ψ(At, oti)ψ(oti, L
t
i)

∏
(i,j)

ψ(oti, o
t
j)ψ(At,At−1)

∏
i

ψ(oti, o
t−1
i )


×

∏
t

(∏
i

φ(xti, h
t
i)φ(xti, x

t−1
i )

)
The first pair of parentheses contains the CRF terms, with
parameters denoted by ΘCRF. (They are similar to the terms
in ATCRF.) The second pair of parentheses contains all terms
related to latent nodes in GP-LCRF with parameters including
K,α, γ, β, denoted by Θlatent. Note that ΘCRF and Θlatent are
two disjoint sets.

Therefore, learning can be decomposed into two indepen-
dent problems: 1) learning ΘCRF by using the cutting-plane
method in the structural learning for SVM [15], same as [20];
2) learning Θlatent by minimizing the negative log-likelihood,
given by:

− lnP ({xi}, α, γ, β|{hi})
=− lnP ({hi}|{xi}, α, γ, β)P ({xi})P (α, γ, β)

=
D

2
ln |K|+ 1

2

D∑
k=1

HT
k K

−1Hk +
1

2

N∑
i=1

||xi||2 + lnαβγ

where the priors on the unknowns are: P (x) = N (0, I) and
P (α, β, γ) ∝ α−1β−1γ−1. We use numerical optimization
method L-BFGS [32] to minimize it.



TABLE I: Anticipation Results, computed over 3 seconds in the future averaged by 4-fold cross validation. The first six columns are in
percentage and a higher value is better. The last column is in centimeters and a lower value is better.

Algorithms Anticipated sub-activities Anticipated object affordances Anticipated traj.
micro-P/R@1 macro-F1@1 Pre@3 micro-P/R@1 macro-F1@1 Pre@3 MHD@1 (cm)

Chance 10.0±0.1 10.0±0.1 30.0±0.1 8.3±0.1 8.3±0.1 24.9±0.1 48.1±0.9
ATCRF-KGS [20] 47.7±1.6 37.9±2.6 69.2±2.1 66.1±1.9 36.7±2.3 71.3±1.7 31.0±1.0
ATCRF [19] 49.6±1.4 40.6±1.6 74.4±1.6 67.2±1.1 41.4±1.5 73.2±1.0 30.2±1.0
HighDim-LCRF 47.0±1.8 37.2±2.8 68.5±2.1 65.8±1.8 37.3±2.4 70.6±1.6 29.3±0.9
PPCA-LCRF 50.0±1.5 40.7±1.4 74.2±1.2 67.8±1.7 41.7±1.3 73.4±1.0 28.7±0.9
Our GP-LCRF 52.1±1.2 43.2±1.5 76.1±1.5 68.1±1.0 44.2±1.2 74.9±1.1 26.7±0.9

C. Inference for Anticipation
Given the observed segment t, we predict the next future

segment t+ 1 in the following way: We first sample possible
object trajectories, represented in locations Lt+1. Then we
sample human configurations Ht+1 and X t+1. We now use
the sampled Lt+1 and Ht+1 as observations and infer the most
likely sub-activity labels At+1and object affordance labels
Ot+1 by maximizing the conditional likelihood in Eq. (7).
All the samples together form a distribution over the future
possibilities and we use the one with maximum a posterior
(MAP) as our final anticipation.

We now present how to sampleHt+1 and X t+1 in particular.
(Sampling other terms is similar as in [20].) Given object
locations, we generate a human motion of either moving or
reaching an object. In both cases, the hand trajectory is given
and the problem is formulated as: Given a target hand location
`∗, compute the most likely human configurations where both
x and h are unknown. A good pose should reach to the target
as well as being reasonable which can be measured by the
likelihood from GPLVM, L(x, h) in Eq. (4). Hence, we define
the objective function as:

arg minx,h−L(x, h) + λ||`∗ − `(h)||2 (8)

where λ is the penalty of the new pose deviating from the
target. In our implementation, we start with a simple IK
solution h0, and use the inverse mapping function g(h) = x
(given by GPLVM with back constraints [27]) to compute
its corresponding x0. In this way, the first term in Eq. (4)
is always zero and can be neglected. So the new objective
becomes a function of h only:

arg min
h

D

2
lnσ2(g(h)) +

1

2
||g(h)||2 + λ||`∗ − `(h)||2 (9)

We then use L-BFGS to optimize it.

VII. EXPERIMENTS

Data. We test our model on the Cornell Activity Dataset-
120 (CAD-120), same as used in [20, 19]. It contains 120
3D videos of four different subjects performing 10 high-level
activities, where each high-level activity was performed three
times with different objects. It contains a total of 61,585
total 3D video frames. The dataset is labeled with both sub-
activity and object affordance labels. The sub-activity labels
are: {reaching, moving, pouring, eating, drinking, opening,
placing, closing, scrubbing, null} and the affordance labels
are: {reachable, movable, pourable, pour-to, containable,

drinkable, openable, placeable, closable, scrubbable, scrub-
ber, stationary}.
Baselines. We compare against the following baselines:
1) Chance. Labels are chosen at random.
2) ATCRF-KGS [20]. ATCRF with fixed temporal structure.
3) ATCRF [19]. ATCRF with sampled temporal structures.
4) HighDim-LCRF. In this method, we do not compress the
human configuration into a low-dimensional representation
but directly model human dynamics in the high-dimensional
space. We replace φ(xti, h

t
i) with a Gaussian based on the

distance between hti to its nearest neighbor h∗ in the training
data. For an anticipated frame, we use inverse kinematics to
generate a new pose that is closest to the target trajectory
(without considering its GPLVM likelihood). We also change
φ(xt−1i , xti) to φ(ht−1i , hti) ∼ N (||ht−1i − hti||2; 0, 1).
5) PPCA-LCRF. We use probabilistic principal component
analysis (PPCA) instead of GPLVM for dimensionality re-
duction of human configurations. PPCA only learns a linear
mapping and do not impose any prior on the latent space
and the mapping. We verify through experiments that it does
not model low-dimensional human dynamics well and thus is
outperformed by our GP-LCRF model.
Evaluation. We train our model on activities performed by
three subjects and test on activities of a new subject. We report
the results obtained by 4-fold cross validation and evaluated
by the following metrics (same are used in [20, 19]):
1) Labeling Metrics (on top#1 prediction). For anticipated sub-
activity and affordance labels, we compute the overall micro
accuracy (P/R) and macro F1 score. Micro precision/recall is
equal to the percentage of correctly classified labels. Macro
precision and recall are averaged over all classes.
2) Pre@3. In practice a robot should plan for multiple future
activity outcomes. Therefore, we measure the accuracy of the
anticipation task for the top three predictions of the future. If
the actual label matches one of the top three predictions, then
it counts towards positive.
3) Trajectory Metric (on top#1 prediction). For anticipated
human trajectories, we compute the modified Hausdorff dis-
tance (MHD) to the true trajectories. MHD finds the best
local point correspondence of the two trajectories over a small
temporal window to compute distance between those points.
The distance is normalized by the length of the trajectory.

Table I shows the frame-level metrics for anticipating sub-
activity and object affordance labels for 3 seconds in the future
on the CAD-120 dataset. We can see that our proposed GP-
LCRF outperforms all the baseline algorithms and achieves a
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Fig. 4: Plots showing (from left to right): a) how the trajectory distance error changes with the observed percentage in the segment to
anticipate increases from 0% to 100%; b) The Pre@3 of the anticipated sub-activity labels as a function of the length of future prediction
time in seconds; c) The Pre@3 of the anticipated object affordance labels as a function of the length of future prediction time in seconds.

consistent increase across all metrics. Especially as our GP-
LCRF aims to model human configurations better, we can see
that the anticipated human trajectory error is reduced from
30.2 cm to 26.7 cm which is a 11.6% improvement and has
a p-value of 0.0107 indicating the difference is statistically
very significant. We now inspect the results in detail from the
following aspects:

The importance of dimensionality reduction. Table I shows
that when not using any dimensionality reduction, HighDim-
LCRF performs even worse than ATCRF even though it tries
to model the human temporal dynamics. This is because that
in the high-dimensional space, φ(ht−1, ht) can be noisy and
over-fitted, thus modeling it actually hurts the performance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5: The learned mapping using
PPCA. The colored points corre-
sponding to the activities in Fig. 3.

On the other hand, with
dimensionality reduction,
PPCA-LCRF outperforms
HighDim-LCRF, however
it only achieves comparable
results as ATCRF. This
shows that the quality
of the dimensionality
reduction is quite important.
Figure 5 illustrates a
learned mapping of human
configurations. Although both mapped to a 2D space,
compared to GPLCRF in Fig. 3, PPCA learns a flat mapping
and does not distinguish different motions well enough. For
instance, the motions in the activity of ‘taking medicine’
(in magenta) and ‘microwaving food’ (in green) are very
different, however they are mapped to an overlapped
area using PPCA in Fig. 5. As a result, the effect of the
dimensionality reduction in PPCA-LCRF is not as significant
as our GP-LCRF.

Sensitivity of the results to the degree of dimensionality
reduction. We investigate the performance of GP-LCRF with
different dimensions of the latent space, from 1-D to 5-D in
Fig. 6, in terms of the trajectory distance error. We can see
that under various learning conditions (where the anticipated
segment is observed in different percentages), GP-LCRF with
latent dimensions of two to five all give similar performance.
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Fig. 6: The trajectory distance error of GP-LCRF with different
dimensions of latent space (from 1D to 5D, shown in the parentheses).
We evaluate the performance under different conditions where the
percentage of the future segment observed is 0%, 10%, 50% and
80%, i.e., the task is to anticipate is the rest of 100%, 90%, 50% and
20% of that segment respectively.

Dimensions of one has an obvious performance drop but is
still better than ATCRF. However, with the observation’s per-
centage increase to 80%, the gap diminishes as the anticipation
problem becomes easier. Evaluations with the labeling metrics
share similar trends. Hence, this shows that our GP-LCRF is
very robust to the choices of the latent dimensions.

The impact of the observation time. The first plot in Fig. 4
shows how the trajectory distance error, averaged over all the
moving sub-activities in the dataset, changes with the increase
of the observed part (in percentage) in the segment to be
anticipated. While all approaches achieve better predictions
with increased observation time, our GP-LCRF consistently
performs better than the others, especially in the range of
20% to 60%. Because this part, unlike the beginning where the
evidence of human motions is too weak to be useful and unlike
the near end where the evidence human-object interactions
weighs more than humans alone, is where the momentum
of human motions can be captured from the observation by
our model (through the velocity and acceleration features
described in Sec. V) and be fully utilized for anticipation.

Results with change in the future anticipation time. The
last two plots in Fig. 4 show the changes of Pre@3 with
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Fig. 7: Top-ranked trajectories predicted by ATCRF (top) and our GP-LCRF (bottom) for different activities. In each image, the ground-truth
trajectory is shown in green dots, predicted trajectory in blue, and the anticipated human skeletons in red in the order of from dark to bright.

the anticipation time lengthened. The longer the anticipation
time, the harder the task gets and thus the performances of
all approaches decrease. However, the improvement of our
GP-LCRF against ATCRF grows from 1.7% to 2.2% for
sub-activity anticipation and from 1.6% to 2.1% for object
affordance anticipation. This demonstrates the potential of
modeling human kinematics well in long-term anticipations.
How does modeling human dynamics improve anticipated
trajectories? In addition to the quantitative results in Fig. 4-
(a), we also sample some qualitative results showing the top-
ranked predicted trajectories in Fig. 7 using ATCRF (top) and
using our GP-LCRF (bottom). In each image, we illustrate
the predicted hand trajectories in blue dots, the ground-truth
trajectories in green dots and human skeletons in red. We
performed an ablative analysis and we now discuss some
failures in the original ATCRF but are avoided by our GP-
LCRF, arranged in three major categories:
1) Unrealistic skeletons leading to impossible trajectories:
In the first two cases/columns, the trajectories sampled by
ATCRF are both not reachable (without making any effort
such as bending over or leaning forward). As ATCRF does
not consider any human kinematics and it simply changes
the hand location to match the trajectory, the forearms in
these two cases are stretched out. The features computed from
these false human skeletons are erroneous and thus wrong
trajectories are picked out. Our GP-LCRF, however, generates
kinematically-plausible skeletons (because of availability of
high-dimensional configurations in the model) so that the out-
of-reach trajectories will have high penalty in the likelihood
L(x, h) and out-ranked by those reachable ones.
2) Unnatural poses leading to unlikely trajectories: In other
cases, such as the third column in Fig. 7 where the subject
picked up a rag on the table along the green dots to clean the
microwave, both trajectories are physically possible but the
top one requires raising the right hand to cross the left hand
making a very unnatural pose. Because GP-LCRF learns the
distribution of human poses from the training data, it assigns
a low probability to uncommon poses such as the top one and
prefers the bottom poses and the trajectory instead.
3) Not modeling motions leading to discontinuous trajectories:

How human body moved in the past gives such a strong cue
that sometimes we can have decent anticipated trajectories
purely based on the continuity and smoothness of human
motions. For instance, the two subjects are lifting the box
(4th column) and reaching towards the microwave door (last
column). While our GP-LCRF chooses trajectories matching
the moving directions best, ATCRF which does not model
human temporal relations (i.e., no edges between Ht−1 and
Ht) produces trajectories with sudden changes in the direction.
Runtime. On a 16-core 2.7GHz CPU, our code takes 11.2
seconds to anticipate 10 seconds in the future, thus achieving
near real-time (1.12X) performance.

VIII. CONCLUSION AND DISCUSSION

In this paper, we proposed a new model, GP-LCRF, in order
to compactly model human configurations and dynamics in
the task of anticipating human activities. The key idea is to
have access to high-dimensional representations of humans for
generating detailed and realistic human poses in the future, and
meanwhile to have a compact low-dimensional representation
for the ease of modeling and learning the context among
humans, objects and the activity. Bearing this in mind, our GP-
LCRF models the low-dimensional representations as latent
nodes through a Gaussian process, and models the relations
between human and other entities in a CRF. We tested our
model on 120 RGB-D videos of different activities and it out-
performed the state-of-the-art results consistently, and reduced
the predicted human trajectory error by 11.6%.

This improvement could make a significant difference to
robots working in the presence of humans. With more accurate
human trajectory prediction, robots can plan more relevant
actions and paths [21, 10]. Furthermore, with real-time an-
ticipation, our work can be used for human-robot interaction,
such as to improve the efficiency of collaborative tasks [41, 9],
or to avoid intrusion/collision during navigation [17].
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[24] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura.
Incremental learning of full body motion primitives and their
sequencing through human motion observation. IJRR, 31(3):
330–345, 2012.

[25] J. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional

random fields: Probabilistic models for segmenting and labeling
sequence data. In ICML, 2001.

[26] N. D Lawrence. Gaussian process latent variable models for
visualisation of high dimensional data. In NIPS, 2004.

[27] N. D Lawrence and J. Quiñonero-Candela. Local distance
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