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Abstract—This paper presents a variational formu-
lation for real-time dense 3D mapping from a RGB
monocular sequence that incorporates Manhattan and
piecewise-planar constraints in indoor and outdoor
man-made scenes.

The state-of-the-art variational approaches are
based on the minimization of an energy functional
composed of two terms, the first one accounting for
the photometric compatibility in multiple views, and
the second one favoring smooth solutions. We show
that the addition of a third energy term modelling
Manhattan and piecewise-planar structures greatly
improves the accuracy of the dense visual maps,
particularly for low-textured man-made environments
where the data term can be ambiguous.

We evaluate two different methods to provide such
Manhattan and piecewise-planar constraints based
on 1) multiview superpixel geometry and 2) mul-
tiview layout estimation and scene understanding.
Our experiments include the largest map produced
by variational methods from a RGB sequence and
demonstrate a reduction in the median depth error
up to a factor 5×.

I. INTRODUCTION

Real-time and fully dense –one point per pixel–
3D reconstruction from a monocular RGB sequence
has been recently achieved thanks to the advances
in the optimisation techniques and the availability
of powerful graphical units. The so-called DTAM,
standing for Dense Tracking and Mapping [17], and
previous approaches [20, 15] estimate the depth for
every pixel in a reference image by minimizing an
energy functional composed of a data term and a
regularization term. The data term, or photomet-
ric error, accounts for the pixel color difference
between every pixel in the reference image and
its correspondences in a number of short-baseline

views. The regularization term favors smooth and
low-gradient depth solutions.

DTAM shows an excellent performance when the
data term is highly informative and the regulariza-
tion term only plays a role in a small number of con-
tiguous pixels. For RGB sequences, this is usually
the case in highly textured scenes and large-parallax
camera motions. But as the highly informative data
becomes sparse the standard gradient-based regular-
izer might produce maps of low accuracy. In large
textureless image regions there might be several
depth solutions that hold the low-gradient regular-
ization constraint but are of low accuracy. The lack
of texture in that areas produces depth estimations
mostly dominated by the image noise. DTAM can
also be inaccurate for low-parallax camera motions
and non-Lambertian effects –this latest limitation is
mentioned in the original paper [17].

These three limitations described above –large
textureless regions, low-parallax motions and non-
Lambertian surfaces– are usually found in man-
made scenes. The contribution of this paper is to
model the Manhattan and piecewise-planar struc-
tures usually found in such scenes in order to
improve the accuracy of the variational approach
to dense mapping. Specifically, we model the Man-
hattan and piecewise-planar constraints as an extra
term in the DTAM energy function. We evaluate
two different methods to extract the parameters of
the planarity constraints; the first one based on
multiview superpixel geometry –piecewise-planar
constraint– and the second one based on multiview
layout estimation –Manhattan constraint.

Our experimental results show that our approach



improves by a large margin the accuracy of the
standard DTAM in man-made scenes. We present
the largest dense 3D map produced by a DTAM-
like system from a monocular RGB camera, and
demonstrate the key role that our formulation plays
to achieve accurate results.

The rest of the paper is organised as follows.
Section II describes the related work, section III
relates how to extract the Manhattan and piecewise-
planar constraints from multiple views, and section
IV details the variational formulation including such
constraints. Section V presents the experimental
results and finally section VI concludes.

II. RELATED WORK

The more recent research on dense and real-
time mapping has focused on RGB-D cameras, e.g.
[16, 23, 12]. Our approach addresses the more
challenging case of RGB monocular sequences,
being [20, 15, 17] the first works that used the total
variational framework of [24] to achieve dense and
real-time multiview 3D reconstructions.

There are several recent papers that use high-level
understanding to improve geometry-only 3D recon-
structions. [2] recognizes objects and estimates a
sparse 3D map jointly, improving over the two
tasks performed separately. [3] uses object category
constraints to densely reconstruct 3D object models.
[5] uses object shape constraints to improve 3D
dense reconstructions. [18] recognizes RGB patches
and searches for depth data in a RGB-D dataset to
fill textureless gaps in Structure from Motion (SfM)
maps. The Manhattan assumption has also been
combined with traditional sparse 3D reconstruction
in order to fill textureless gaps [8, 9, 22]. Our contri-
bution is the addition of the Manhattan constraints
in the variational formulation of DTAM, which has
several advantages. First, the formulation allows a
parallel computation and real-time performance us-
ing graphical units. Secondly, having a photometric
and smoothness constraint per pixel instead of a
sparse set of constraints improves the accuracy and
robustness of the results.

Multiview sparse 3D reconstructions have made
use of layout estimation and scene understanding
in [7, 21]; and superpixels in [14, 4]. Again, our

contribution over them is the use of such cues in a
variational framework.

III. MANHATTAN AND PIECEWISE-PLANAR
CONSTRAINTS FROM MULTIPLE VIEWS

Our algorithm takes as the only input a
RGB monocular image sequence V . Dense
mapping based on variational methods selects
first a sparsely sampled set of keyframes
{I1, . . . , Ir, . . . , Ij , . . . , Im} ∈ V . The goal is
to estimate an accurate inverse depth ρ(u) for
every pixel u in a reference image Ir using the
information of a subset of close keyframes.

The next subsections describe the two algorithms
that extract the rough planar structure of a man-
made scene. III-A details how to extract the rough
layout of a Manhattan-like indoor scene using high-
level multiview scene understanding. III-B explains
how we estimate a sparse piecewise-planar recon-
struction by reconstructing a set of superpixels from
multiple views. Both algorithms will provide depth
priors in planar textureless areas that we incorporate
to the variational formulation as detailed in section
IV.

In both cases we need two preprocessing steps.
We extract first a set of salient points u∗ ∈ u
in every keyframe, compute correspondences and
estimate the salient points’ 3D positions p =(
p>1 . . . p>i . . . p>n

)>
and camera poses c =(

c>1 . . . c>r . . . c>j . . . c>m
)>

using a standard
Bundle Adjustment optimization [19].

In the second preprocessing step, we segment
every keyframe Ir into a set of superpixels Sr =
{sr1, . . . , srl , . . . , srt} using the algorithm by Felzen-
szwalb et al. [6].

A. Manhattan constraints from Multiview Layout
Estimation

One of the goals of indoor scene understanding is
the estimation of the rough geometry of a room –its
layout– and the classification of every image pixel
u into the wall, floor, ceiling or clutter classes. In
this paper we basically use the algorithm of [10]
and extend it to a multiview case.

The main assumption is that we are in a cuboid
room. The geometric model of the room lay-
out L will be composed of six planes L =



{π1, π2, π3, π4, π5, π6}. Every plane πk will be
parametrized by its plane normal nk and distance
to the origin dk. We first estimate the plane normals
nk by extracting the vanishing points vrk from the
dominant directions of the room in every keyframe
Ir [13]. We backproject them to the 3D world
Vr
k = K−1r vrk, group them into three clusters, and

take their centroids.
We use the sparse point cloud estimation p to

compute the plane distances dk. Specifically, we hy-
pothesize several distances dhk and build histograms
for the distance between the point cloud p and
such plane distances dhk . We assume that in a room
most of the salient features will be close to its
geometric boundaries and we take as initial seed
the hypothesis with the minimum median.

Finally, we label every superpixel from the seg-
mentation Sr = {sr1, . . . , srl , . . . , srt} into 4 dif-
ferent classes {W,F,C,Cl} –wall, floor, ceiling
and clutter respectively. See [11] for details on the
superpixel features and the classification algorithm
used. We will not constraint the depth of the pixels
u ∈ Cl that are labeled as clutter. For the rest of the
pixels u ∈ {W,F,C} we will compute an a priori
inverse depth ρπ(u) from the intersection between
the backprojected ray K−1r u and the layout plane
πk ∈ L where it has been classified

ρπ(u) = || −
uK−1r Rrnk

dkK
−1
r u

|| . (1)

B. Piecewise-planar constraints from Multiview Su-
perpixel Geometry

We assume that the superpixels
Sr = {sr1, . . . , srl , . . . , srt} correspond to
approximately planar areas in the scene. We
will estimate their 3D parameters using [4], which
we will summarize here for completeness.

We can estimate the geometric parameters Π =(
π>1 . . . π>k . . . π>q

)>
for the q planar superpixels

{s1, . . . , sk, . . . , sq} that were matched in two or
more keyframes with the following optimization

Π̂ = argmin
Π

m∑
r=1

q∑
k=1

F (εrsk) . (2)

εrsk = ursk−h(πk, cr) stands for the reprojection
error of the superpixel sk contours in the keyframe
Ir. As we are approximating the superpixels by
planar surfaces, h stands for a homography model.
We use a robust function of the error F (∗) to avoid
the influence of outliers. As before, every superpixel
πk is parametrized by its plane normal nk and
distance to the origin dk.

The superpixel correspondences between several
views are computed as follows. We first search for
pairwise correspondences between two keyframes
Ir and Ij using a Monte Carlo approach. For
every superpixel sk in Ir we create several plane
hypotheses πhk . The plane hypothesis are ranked
according to the reprojection error of the superpixel
contours in image Ij

εshk = ||uj
shk
− h

(
uj
shk
, πhk , cr, cj

)
|| (3)

The planar superpixel hypotheses πhk with the
smallest error εshk are taken as the initial seed for
the optimization of equation 2.

The Manhattan inverse depth prior ρπ(u) for
each pixel u ∈ sk is computed as the intersection
of its backprojected ray and the plane πk (equation
1).

IV. A VARIATIONAL FORMULATION FOR DENSE
MAPPING WITH MANHATTAN AND
PIECEWISE-PLANAR CONSTRAINTS

The variational approaches to mapping aim to
estimate the inverse depth ρ(u) for every pixel u
of a reference image Ir. In order to do that we
minimize a global energy function Eρ; which is
the weighted sum of a photometric error data term
C(u, ρ(u)), a robust spatial regularization term
G(u, ρ(u)) and our newly proposed Manhattan or
piecewise-planar term M(u, ρ(u), ρπ(u))

Eρ =

∫
(λ1C(u, ρ(u)) + G(u, ρ(u)) (4)

+
λ2
2

M(u, ρ(u), ρπ(u))∂u

λ1 and λ2 are the weighting factor that account
for the relative importance of the photometric,
Manhattan/piecewise-planar and smoothness costs.



The photometric term. As in [17], our photometric
error is based on color difference between the ref-
erence image and the set of short-baseline images.
Every pixel u of the reference image Ir is first
backprojected at an inverse distance ρ and projected
again in every close image Ij .

uj = Trj(u, ρ) = KR>

((
K−1u
||K−1u||
ρ

)
− t

)
(5)

The photometric error is the summation of the
color error between every pixel in the reference
image and its corresponding in every other image
at an hypothesized inverse distance ρ

C(u, ρ(u)) =
1

|Is|

m∑
j=1,j 6=r

||ε(Ij , Ir,u, ρ)||1 (6)

ε(Ij , Ir,u, ρ) = Ir(u)− Ij(Trj(u, ρ)) (7)

The gradient regularizer. The gradient regularizer
is the Huber norm of the weighted gradient of the
inverse depth map ||∇ρ(u)||ε

G(ur, ρ(u)) = g(ur)||∇ρ(u)||ε (8)

Depth discontinuities often coincides with con-
tours. g(u) is a per-pixel weight that decreases the
regularization strength for high-gradient pixels.

g(u) = e−α||∇Ir(u)||2 (9)

The Manhattan or piecewise-planar constraint.
The third term is the Manhattan or piecewise-planar
constraint. It measures how far is every point from
the estimated planar prior ρπ detailed in section III:

M(u, ρ(u), ρπ(u)) = ||ρ(u)− ρπ(u)||22 (10)

In the areas of the image where we do not have
a planar constraint (highly textured or classified as
clutter) we set λ2 = 0.
Solution. The energy is composed of two convex
terms g(u)||∇ρ(u)||ε + λ2

2 ||ρ(u)− ρπ(u)||
2
2 and a

non-convex term λ1C(u, ρ(u)). The convex terms

and the non-convex term are optimized differently.
An auxiliary variable a is used to make these two
terms independent from each other:

Eρ,a =

∫ (
λ1C(u,a(u))+g(u)||∇ρ(u)||ε+

+
λ2
2
||ρ(u)− ρπ(u)||22 +

1

2θ
(ρ(u)− a(u))2

)
∂u

(11)
The coupling term 1

2θ (ρ(u)−a(u))2 will enforce
ρ and a to become the same as θ is drived to 0
iteratively. Therefore, equation 11 will result in the
original energy 4.

The non-convex term will be optimised by sam-
pling and the convex terms will be efficiently opti-
mised using a primal-dual approach.

The convex terms are converted to their primal-
dual formulation using the Legendre-Fenchel trans-
formation (details and proofs in [1]). The energy in
the equation 11 is then minimized as follows

argmax
q,||q||2≤1

{
argmin

ρ,a
E(ρ,a,q)

}
(12)

E(ρ,a,q) =
{〈

gAρ,q
〉
− δq(q)−

ε

2
||q||22

+
λ2
2
||ρ− ρπ||22 +

1

2θ
(ρ− a)2 + λ1C(a)

} (13)

Where q is the dual variable and Aρ stands for the
gradient of ρ.

For the dual variable q the energy has to be maxi-
mized, therefore a gradient ascent step is computed:

∂E(ρ,a,q)

∂q
= gAρ− εq (14)

Discretizing and rearranging terms:

qn+1 = (qn + σqgAρn) / (1 + σqε) (15)

qn+1 = qn+1/max(1, ||qn+1||1) (16)

In the case of the variable ρ, the energy is
minimized, therefore a gradient descent step is com-

puted. Using the divergence theorem
∂
〈
Aρ,q

〉
∂ρ =
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Fig. 1. Summary of the small-scale experiments. 1st column: Reference image. 2nd column: Piecewise-planar reconstruction using
superpixels. 3rd column: ground truth depth –red stands for no-depth-data. 4th column: DTAM depth. 5th column: Depth using
the piecewise-planar constraints. Notice how the latest column is visually closer to the ground truth than the DTAM one.

−div(q) = ATq , where AT forms the negative
divergence operator:

∂E(ρ,a,q)

∂ρ
= gATq+

1

θ
(ρ−a)+λ2(ρ−ρπ) (17)

Discretizing and rearranging terms:

ρn+1 =

(
ρn + σρ

(
−gATqn+1 + an

θn + λ2ρπ

))
(1 +

σρ
θn + λ2σρ)

(18)
The remaining non-convex function is minimised

using a point-wise search for each a in the range
a = [ρmin, ρmax]:

argmin
a

Eaux(ρ,a) (19)

Eaux(ρ,a) =
1

2θ
(ρ− a)2 + λ1C(a)) (20)

Equations 15, 16, 18, 19 are performed iteratively
until θn+1 = θn(1 − 0.001 ∗ n) is below a certain
threshold. Variables are initialized as follows: q0 =
0 and ρ0 = a0 = argmina C(u,a)

Finally, we use the sub-sample accuracy method
recommended in [17]:

an+1 = an+1 − ∇Eaux

∇2Eaux
(21)

V. EXPERIMENTAL RESULTS

We have evaluated our proposal using indoor
sequences in sections V-A and V-B. We recorded
the sequences with a RGB-D camera, took the
depth channel D as the ground truth depth and
used the RGB data as the input for the standard
DTAM algorithm and our proposal incorporating
the planarity priors. We also present results with
outdoor sequences in section V-C. Only qualitative
results are shown there due to the limitations of
RGB-D sensors outdoors.

A. Small-scale experiments

Figure 1 summarizes the three small-scale exper-
iments we have performed –Bookshelf, Desktop and
Room Corner. For each one of them we show the
reference image in the first column, the piecewise-
planar reconstruction of the largest superpixels in
the second row, and the ground truth depth, the stan-
dard DTAM depth and the depth using our proposal
in the third, fourth and fifth columns respectively.

Figure 2 shows the histogram of the depth errors
for the three experiments and both cases; standard
DTAM and our approach –adding piecewise-planar
constraints. Notice first how for the highly textured
Bookshelf image, both DTAM and our approach
performances are very similar and close to the
ground truth. In any case, thanks to the extra



constraints, the median error is reduced 8%, from
1.3cm to 1.2cm.
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Fig. 2. Depth error histograms for the standard variational
mapping approach (DTAM) and our proposal using piecewise-
planar constraints.

For the Desktop and Room Corner experiments,
where significantly large textureless areas exist, our
proposal shows a noticeable improvement. DTAM
depth maps present some defects that piecewise-
planar constraints are able to reduce. We believe
the errors in the Desktop experiment were caused by
light reflections. The Room Corner sequence, being
recorded in a larger scene, also has the challenge
of lower-parallax camera motions and hence the
addition of constraints makes the improvement even
larger.

For a quantitative evaluation, see the histograms
in figures 2(b) and 2(c) and table I. The reduction of
the median error is 26% in the Bookshelf sequence
and 60% in the Room Corner sequence.

B. Large-scale Experiment

The sequence for this experiment was recorded
in our Lab with a hand-held camera, covering
approximately half of the room. As the scene is
larger than the previous ones, we estimated the
depth for 5 references images with the information
of around 50 close keyframes for each one. Each

Sequence Median Depth Error [cm]
DTAM Our approach

Bookshelf 1.3 1.2
Desktop 1.5 1.1
Room Corner 5.6 2.3
Lab (Layout) 27.0 13.4
Lab (Superpixels) 5.2

TABLE I
MEDIAN OF THE ESTIMATED DEPTH ERROR FOR THE

STANDARD DTAM AND OUR APPROACH.

one of the DTAM challenges that we mentioned
in the introduction –large textureless areas, low-
parallax motions and non-Lambertian effects– ap-
pears in this sequence. Up to our knowledge, it is
also the largest scene ever mapped using variational
methods. More details on the experiment can be
seen in the video accompanying the paper.

As the sequence images a box-like room, we
evaluate the performance of the two algorithms to
extract the planar priors described in sections III-A
and III-B. Figure 3 shows a qualitative summary
of the experiment. Each row shows the results for
the depth of each reference image. In columns we
show, respectively: The reference RGB image, the
multiview superpixels, the multiview layout, the
ground truth depth, the results of standard DTAM,
and finally the results of our approach both using
superpixel and layout constraints. Notice that the
depth of our approach is always closer to the
ground truth depth image. The better accuracy of
our approach can also be seen in figure 4, that
shows top and side views of the complete map. The
top view of the DTAM map, figure 4(a), shows a
more inaccurate reconstruction than the one of our
approach in figure 4(b).

Specifically, for this experiment DTAM’s median
depth error is 27.0cm, our approach’s one using
the constraint coming from the layout is 13.4cm
and our approach’s one using the constraint coming
from the superpixels is 5.2cm. The distribution of
the depth errors can be better appreciated in the
histograms of figure 5. The difference between the
two constraints is due to the lower maturity of
the scene understanding techniques compared to
multiview geometry. In any case, we believe that
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Fig. 3. Large-scale experiment. Each row shows the results for a reference image. 1st column: RGB image. 2nd column: multiview
superpixel reconstruction. 3rd column: layout constraint. Red lines stand for the projected box. Magenta stands for clutter, green
for floor and dark blue for ceiling. Other colors stand for walls. 4th column: ground truth depth –red stands for no-depth-data. 5th:
column DTAM depth. 6th column: DTAM results using piecewise-planar constraints. 7th column: DTAM results using Manhattan
constraints. The improvement of the depth maps of DTAM with planarity constraints against the standard DTAM is visually noticeable.

the semantic information that the former provides
could be of great interest for robotics, and hence
could be an interesting line for further research.
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Fig. 5. Depth error histograms for the standard variational map-
ping approach (DTAM), and our proposed additions of piecewise-
planar and Manhattan constraints. Median error is reduced in a
factor 5× in the best case (piecewise-planar constraints), from
27.0cm to 5.2cm

C. Outdoor Scenes

Figures 6 and 7 summarize the two outdoor
experiments that we performed, in a building corner
and a building façade respectively. Though ground

truth depth is not available, the accuracy improve-
ment is noticeable from the figures. Notice the
defect of the DTAM depth image in the right wall
of the building corner –figure 6(c)– and the planar
depth that our approach estimated in the same area
–figure 6(d). DTAM produces a distorted 3D map –
see figure 6(e)–, mostly noticeable in the right wall;
while the 3D map of our approach is accurate in this
area –figure 6(f).

For the façade experiment observe how the
DTAM depth image of figure 7(c) does not cor-
respond to a mostly constant depth, as it should.
This depth errors result in the erroneous wavy 3D
reconstruction of figure 7(e). Notice how the depth
image of our approach in 7(d) reflects the constant
depth of the façade, and how the 3D map of figure
7(f) is a more accurate reconstruction of the scene.



(a) Standard DTAM.
Top view

(b) DTAM + piecewise
planar. Top view

(c) DTAM + Manhat-
tan. Top view

(d) DTAM + piecewise-planar. Side view

Fig. 4. 3D maps for the Lab experiment. Notice the large DTAM errors in the top view of figure (a) and the more accurate
reconstruction of figures (b) –adding piecewise-planar constraints– and (c) –adding the Manhattan constraint. Notice the different
errors of the algorithms: (b) shows small misalignment errors, while (c) is globally consistent but with large errors in the objects
and final parts of two walls due to inaccuracies in the layout and labels. (d) shows a side view of DTAM using piecewise-planar
constraints, the one with most accurate results. Quantitative results are in figure 5 and table I

(a) Ref. Image (b) Multiview Su-
perpixels

(c) DTAM Depth

(d) Piecewise-planar
DTAM Depth

(e) DTAM Map (f) Piecewise-planar
DTAM Map

Fig. 6. Outdoor Corner seq. The higher accuracy of the
piecewise-planar DTAM depth is qualitatively noticeable.

VI. CONCLUSION

In this paper we have presented an algorithm
that integrates Manhattan and piecewise-planar con-
straints into a variational formulation for real-
time dense 3D mapping from a RGB camera. In
our experiments we have shown that our proposal
improves the accuracy of the state-of-the-art ap-
proaches in indoor and outdoor man-made scenes.
We achieve a reduction factor up to 5× in the me-
dian depth error of the reconstruction. The planarity
constraints that we add are particularly relevant in
image sequences where the data term is ambiguous
or noisy; which is the case for low-texture scenes,
low-parallax camera motions or distortions of the

(a) Ref. Image (b) Multiview Su-
perpixels

(c) DTAM Depth

(d) Piecewise-planar
DTAM Depth

(e) DTAM Map (f) Piecewise-planar
DTAM Map

Fig. 7. Façade seq. The higher accuracy of the piecewise-planar
DTAM depth is qualitatively noticeable.

projection model –e.g., non-Lambertian surfaces.
We have evaluated two different methods to

provide our approach with planarity constraints.
In our experiments, multiview superpixel geometry
produces 3D reconstructions of higher accuracy
than the ones based on layout and understanding.
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