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Abstract—State representations critically affect the effective-
ness of learning in robots. In this paper, we propose a robotics-
specific approach to learning such state representations. Robots
accomplish tasks by interacting with the physical world. Physics
in turn imposes structure on both the changes in the world
and on the way robots can effect these changes. Using prior
knowledge about interacting with the physical world, robots can
learn state representations that are consistent with physics. We
identify five robotic priors and explain how they can be used
for representation learning. We demonstrate the effectiveness of
this approach in a simulated slot car racing task and a simulated
navigation task with distracting moving objects. We show that our
method extracts task-relevant state representations from high-
dimensional observations, even in the presence of task-irrelevant
distractions. We also show that the state representations learned
by our method greatly improve generalization in reinforcement
learning.

I. INTRODUCTION

Creating versatile robots, capable of autonomously solving
a wide range of tasks, is a long-term goal in robotics and
artificial intelligence. As every one of these tasks might have
different sensor requirements, robots must have versatile, task-
general sensors, leading to high-dimensional sensory input.
These high-dimensional observations, however, present a chal-
lenge for perception and learning. This seems unnecessary,
as most likely every single task can be mastered by only
considering those aspects of the high-dimensional input that
are pertinent to it. To build task-general robots, it is therefore
necessary to extract from the high-dimensional sensor data
only those features pertinent to solving the task at hand.

In robotics, feature engineering is probably the most com-
mon approach to this challenge. The mapping from obser-
vations to state representation is designed by hand, using
human intuition. Feature engineering has enabled systems to
successfully learn and solve complex tasks. But the downside
of this approach is that we have to define an observation-state-
mapping for every robotic task to meet our original goal.

Representation learning methods use machine learning in-
stead of human intuition to extract pertinent information from
high-dimensional observations. This approach does not require
specific knowledge about the task. Instead, it uses general
assumptions about the structure of the problem. However,
the price for its generality is the huge amount of data and
computation required to extract useful state representations.
In robotics, data acquisition is costly and slow. Thus, existing
representation learning approaches may be difficult to apply.

But robots do not have to solve the general representation
learning problem. Robots only need useful representations for
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(a) Slot car racing

Fig. 1.

(b) Robot navigation

Simulated robotic tasks with visual distractors.

interacting with the real world governed by physics. Physics
imposes structure on both the changes in the world and on
the way robots can effect these changes. Using prior knowl-
edge about interacting with the world (which we call robotic
priors), robots can learn representations that are consistent
with physics. We believe that prior knowledge is the key to
representation learning in robotics.

In this paper, we identify five robotic priors and explain how
they can be used for state representation learning by turning
them into a loss function and minimizing this loss function.
We evaluate our approach in two simulated robotic tasks based
on visual observations: a slot car racing task with two cars and
a navigation task with a mobile robot in a room with moving
distractors (see Figure |I|) In both scenarios, the robot learns
a linear mapping from 300-dimensional visual observations to
low-dimensional states. We show that the resulting state repre-
sentation captures the pertinent task dimensions while ignoring
irrelevant information. We also show that the observation-
state-mapping learned by our method improves generalization
and thereby boosts reinforcement learning performance.

II. RELATED WORK

A. Task-Specific, Generic, and Robotic Priors

In Bayesian statistics, the word “prior” refers to the prior
probability distribution that is multiplied by the likelihood and
then normalized to compute the posterior. Following others
in the field of representation learning [1], we use the word
prior more broadly in an analogous fashion. In the context
of this paper, a prior represents knowledge about a class of
learning problems that is available before taking into account
data from a specific problem instance. We will now look at
different domains, for which priors can be defined.

Many robotic tasks have been successfully solved using re-
inforcement learning, from ball-in-a-cup to inverted helicopter
flight [[12]. However, these approaches typically require human
engineering, relying on what we call task-specific priors, priors



that apply only to a specific task. One way of introducing task-
specific priors is feature engineering: defining a mapping from
observations to task-relevant states by hand.

Work in the area of representation learning strives to remove
the need for feature engineering by automatically extracting
pertinent features from data. The power of this approach
has been empirically demonstrated in tasks such as speech
recognition [24]], object recognition [13], and natural language
processing [4]. All of these examples substantially improve
on the best previous methods based on engineered represen-
tations. To achieve these results, the representation learning
methods use generic priors, big data, and massive computation.

According to Bengio et al. [1]], the key to successful
representation learning is the incorporation of “many general
priors about the world around us.” They proposed a list of
generic priors for artificial intelligence and argue that refining
this list and incorporating it into a method for representation
learning will bring us closer to artificial intelligence. This is
exactly what we are trying to do in the context of robotics.
However, we believe that the problem of artificial intelligence
is too broad and that therefore generic priors are too weak.
We try to find stronger priors about the problem structure by
focusing on robotic tasks, which involve interacting with the
physical world. We call such priors robotic priors.

B. State Representation Learning

State representation learning is an instance of representation
learning for interactive problems with the goal to find a
mapping from observations to states that allows choosing the
right actions. Note that this problem is more difficult than
the standard dimensionality reduction problem, addressed by
multi-dimensional scaling [14] and other methods [23| [29], |6]
because they require knowledge of distances or neighborhood
relationships between data samples in state space. The robot,
on the other hand, does not know about semantic similarity of
sensory input beforehand. In order to know which observations
correspond to similar situations with respect to the task, it has
to solve the reinforcement learning problem (see Section [[TI),
which it cannot solve without a suitable state representation.
The question is: What is a good objective for state represen-
tation learning? We will now look at different objectives that
have been proposed in the literature and relate them to our
robotic priors (which we will define in Section |[V).

1) Compression of Observations: Lange et al. [[15] obtain
state representations by compressing observations using deep
autoencoders. This approach relies on the prior that there is a
simple (low-dimensional) state description and on the prior
that this description is a compression of the observations.
While we use the same simplicity prior, we believe that it is
important to also take time, actions, and rewards into account.

2) Temporal Coherence: Slow feature analysis [30] finds a
mapping to states that change as slowly as possible, guided by
the prior that many properties in our world change slowly over
time. This method has been used to identify a representation
of body postures of a humanoid robot [7] as well as for
solving reinforcement learning tasks with visual observations

[16]. Luciw and Schmidhuber [18]] showed that slow feature
analysis can approximate proto-value functions [19], which
form a compact basis for all value functions. Incorporating
the same prior, dimensionality reduction methods have used
temporal distance to estimate neighborhood relationships [9].

Slowness or temporal coherence is an important robotic
prior that our method also relies on. However, the actions of
the robot should also be considered. The following methods
and ours take this valuable information into account.

3) Predictive and Predictable Actions: These approaches
try to find state representations in which actions correspond
to simple, predictable transformations. Action respecting em-
beddings, proposed by Bowling et al. [3]], aim at a state space
in which actions are distance-preserving. Sprague’s [27] pre-
dictive projections try to find a representation such that actions
applied to similar states result in similar state changes. Pre-
dictive state representations, proposed by Littman et al. [L7],
define states as success probabilities for a set of tests, where
a test is a prediction about future observations conditioned
on future actions. Boots et al. [2] showed how predictive state
representations can be learned from visual observations. As we
will see, these ideas are related to the proportionality prior, the
causality prior, and the repeatability prior in this paper.

The problem with these methods, and all other approaches
discussed until this point, is that they try to generate task-
general state representations. This is problematic when the
robot lives in a complex environment and there is no common
state representation that works for all tasks. Therefore, we
will use the reward to focus on the task-specific aspects of the
observations and ignore information irrelevant for the task.

4) Interleaving Representation Learning with Reinforce-
ment Learning: The approaches presented so far learn state
representations first to then use them for reinforcement learn-
ing. We will now discuss approaches that combine these
steps. Piater et al. [21] use decision trees to incrementally
discriminate between observations that have inconsistent state-
action values according to the reinforcement learning algo-
rithm. This method is comparable to an earlier approach of
Singh et al. [26]], which minimizes the error in the value
function by clustering states. Menache et al. [20] also adapt
the state representation during reinforcement learning; they
represent the state as a set of basis functions and adapt their
parameters in order to improve the value function estimate.

Methods in this category rely on causality of values. They
assume that the value is attributable to the state. To compute
the value, they must solve the reinforcement learning problem.
These steps can be decoupled by factorizing the value function
into the reward function and the state transition function. This
is used by the following approaches, and also by ours.

5) Simultaneously Learning the Transition Function: In
earlier work [11], we proposed to learn the state transition
function together with the state representation to maximize
state predictability while simultaneously optimizing temporal
coherence. A drawback of this approach is that it ignores
the reward and therefore cannot distinguish task-relevant from
irrelevant information.



6) Simultaneously Learning Transition Function and Re-
ward Function: Some approaches jointly learn an observation-
state-mapping, a transition function, and a reward function,
differing in their learning objective. Hutter [8] proposes to
minimize the combined code length of the mapping, transition
function, and reward function. Duell et al. [5] learn these
functions to predict future rewards conditioned on future
actions. Jetchev et al. [10] maximize state predictability and
reward discrimination to learn a symbolic state representation.

These approaches build models of state transitions and re-
wards to enforce state predictability and reward discrimination.
Contrary to this approach, we define our learning objective in
terms of distances between state-samples, similar to the idea
of multi-dimensional scaling [14]. In this way, we can assure
the existence of transition and reward functions for our state
representation without having to model them explicitly.

III. STATE REPRESENTATION LEARNING

Reinforcement learning is the problem of learning a policy
7 to select actions so as to maximize future rewards [28]]. The
policy ™ maps states s; to actions a;. But as the robot usually
cannot directly perceive its current state s;, it must compute
st = ¢(o;) from its observation o; using an observation-state-
mapping ¢ (see Figure [2). Given s;, the robot performs action
a; = 7(s¢). This framework describes the interactive loop
between the robot and the world. It is therefore well-suited
for formalizing many learning problems in robotics.

State representation learning is the problem of learning ¢,
the mapping from observations to states, in order to enable
efficient learning of the policy. This is the problem that we
address in a robotics-specific way in this paper.
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Fig. 2. The robot-world-interaction. At time ¢, the robot computes the state s¢
from its observation o; using observation-state-mapping ¢. It chooses action
a¢ according to policy 7 with the goal to maximize future rewards r¢41.00-

Note that the current state s; could depend on the entire
history of observations, actions, and rewards. But in this paper,
we assume that the problem is fully observable such that all
information required to choose the best action is contained
in the last observation. This is a strong limitation, as many
real-world problems in robotics are only partially observable.
Some—but not all—of the limitations can be alleviated by
including sensor inputs from multiple time steps in o;.

IV. STATE REPRESENTATION LEARNING IN ROBOTICS

In this section, we present our approach to state representa-
tion learning in robotics. First, we list and explain five robotic
priors. Then, we formulate state representation learning as
an optimization problem by turning our robotic priors into

a loss function. Finally, we turn the theory into a method that
tries to minimize this loss function and thereby learns a state
representation that reflects our priors.

A. Robotic Priors

The interaction between the robot and the real world is
structured by the laws of physics. From this fact, we can derive
robotic priors that capture characteristics of robotic tasks.

1) Simplicity Prior: For a given task, only a small number
of world properties are relevant. This prior is related to
Occam’s razor, which is part of the scientific method that
aims to form an understanding about our physical world. It
favors state representations that exclude irrelevant information,
thereby leading to a lower-dimensional reinforcement learning
problem and improving generalization.

2) Temporal Coherence Prior: Task-relevant properties of
the world change gradually over time. This prior is related
to Newton’s first law of motion. Physical objects have inertia
and change their velocity only gradually as a result of external
forces. However, temporal coherence also applies to more
abstract properties than physical motion, as most changes
in the world occur gradually. The temporal coherence prior
favors state representations that obey this principle as the robot
transitions between states.

3) Proportionality Prior: The amount of change in task-
relevant properties resulting from an action is proportional to
the magnitude of the action. This prior results from Newton’s
second law of motion, F' = m - a. If an action represents
the application of a certain force on an object of a fixed
mass, the acceleration evoked by this force is constant. This
holds true for motion and physical interactions with objects
in the world but also generalizes to more abstract properties.
This prior enforces the proportionality principle in the state
representation.

4) Causality Prior: The task-relevant properties together
with the action determine the reward. This and the next prior
resemble Newton’s third law of motion or, more generally,
causal determinism. If the same action leads to different
rewards in two situations, these situations must differ in some
task-relevant property and should thus not be represented by
the same state. Consequently, this prior favors state represen-
tations that include the relevant properties to distinguish these
situations.

5) Repeatability Prior: The task-relevant properties and
the action together determine the resulting change in these
properties. This prior is analogous to the previous one—for
states instead of rewards—and also results from Newton’s
third law of motion. This principle is enforced by favoring
state representations in which the consequences of actions are
similar if they are repeated in similar situations.

Note that most of these priors are defined in terms of actions
and rewards. Thus, they do not apply to passive “robots”
that can only observe but not act. These priors are also not
generic artificial intelligence priors applicable to all tasks and
environments, as artificial environments can be very different
from our world, e.g. not obeying Newton’s laws of motion.



However, restricting the problem space to the physical world
allows us to define useful priors.

But even in the physical world, there are still counterexam-
ples for each prior. In fact, the simulated robotic experiments
in this paper include such counterexamples: Proportionality
does not hold when the robot is running into a wall and its
position remains constant even though it tries to move with a
certain velocity. Causality is violated due to sensory aliasing
when the robot cannot distinguish two situations with different
semantics. Repeatability is contradicted by stochastic actions.
Nevertheless, our robotic priors are very useful because they
capture the structure of most of the robot’s experiences.

B. Formulation as an Optimization Problem

We will now turn the robotic priors into a loss function
L such that L is minimized when the state representation
is consistent with the priors. We construct loss terms for all
robotic priors (except for the simplicity prior, see below) and
define L as their sum

L(D, QE) = Ltemporal coherence(D» (;AS) + Lproponionality(Dv d))
+ Lcausality(Dv (b) + Lrepeatability(Da QZ)) .

Each of these terms is computed for an observation-state-
mapping (ﬁ and data of the robot interacting with the world,
D = {o,a¢,r:}7,, which consist of sensory observations,
actions, and rewards for n consecutive steps. The observation-
state-mapping ¢ is then learned by minimizing L(D, $) (the
* indicates that ¢ changes during learning).

By linearly combining these loss terms, we assume indepen-
dence between the robotic priors. They could also be combined
non-linearly, but the existence of independent counterexamples
for each individual prior supports our assumption. The terms
could be weighted differently. However, a linear combination
with uniform weights already yields an effective loss function.

We will now describe how the individual robotic priors are
defined as loss terms. For better readability, we will write 3,
instead of g{)(ot) when we refer to the state at time ¢ according
to the observation-state-mapping g{)

1) Simplicity Loss: The simplicity prior is not formulated
as a loss term but implemented by enforcing the state repre-
sentation to be of fixed, low dimensionality.

2) Temporal Coherence Loss: States must change gradually
over time. We denote the state change as A§; = $44.1—3; . The
temporal coherence loss is the expected squared magnitude of
the state change,

Ltemporal coherence(D7 (ZAS) =E |:||A‘§t ||2:| .

3) Proportionality Loss: If the robot has performed the
same action at times ¢; and to, the states must change by
the same magnitude ||AS, || = ||AS, || -

The proportionality loss term is

Lproponionali[y(Dvé) = E|:(||A§t2H - ||A<§t1 H)2 ‘ ag, = at2:| 9

the expected squared difference in magnitude of state change
after the same action was applied.

4) Causality Loss: Two situations at times ¢; and ¢o must
be dissimilar if the robot received different rewards in the
following time step, even though it had performed the same
action, Ay, = Ay NT¢ 41 =+ Ttot1-

The similarity of two states is 1 if the states are identical and
approaches 0 with increasing distance between them. Research
from psychology indicates that the exponential of the negative
distance is a reasonable similarity function [235]], e I8ty =3u, 1l

We define the causality loss as

in —||8¢, —8
Lcausality(Da¢) = E|:€ I ‘2 tl“ ‘ Aty = Aty T 41 75 Tto+1 |5

the expected similarity of the state pairs for which the same
action leads to different rewards.

5) Repeatability Loss: States must be changed by the
actions in a repeatable way. If the same action was applied at
times t; and ¢, and these situations are similar (have similar
state representations), the state change produced by the actions
should be equal, not only in magnitude but also in direction.

We define the repeatability loss term as

Lrepeat.(D7 (ZB) == E[e—H‘étz_éfl Il ||A§t2 - A§t1 ”2 ‘ atl = at2:| )

the expected squared difference in the state change following
the same action, weighted by the similarity of the states.

C. Our Method

We will now show how a linear mapping from observations
to states can be learned by minimizing the loss function.

1) Computational considerations: We compute the ex-
pected values in the loss function by taking the mean over
the training samples. For the proportionality loss, the causality
loss, and the repeatability loss, this would require comparisons
of all O(n?) pairs of training samples. We approximate these
comparisons, for reasons of computational efficiency, by only
comparing those samples that are & time steps apart. This way,
we can compute the expectations from O(n) pairs of samples.
The parameter k does not need careful tuning, it should just be
large enough such that states with this temporal distance are
roughly uncorrelated. We used k£ = 100 for all experiments.

2) Learning a Linear Mapping from Observations to States:
Our method learns a linear observation-state-mapping,

8¢ = ngS(ot) = WOt )

where W is a weight matrix that is adapted by performing
gradient descent on the approximated loss function L. Linear
functions form a very limited hypothesis space, but this
method can easily be extended to non-linear functions using
feature expansion, kernel approaches, or function approxima-
tors, such as artificial neural networks.

3) Exploration: Our exploration policy repeats the action
from k steps earlier with probability 0.5 and otherwise picks
an action at random. This way, the expectation in the loss terms
can be estimated using on average at least ”T’k samples. This
compensates for the fact that we do not compare all pairs of
samples but only those k time steps apart.



V. EXPERIMENTS

In this section, we evaluate our method in simulated robotic
tasks with 300-dimensional visual observations. First, we
analyze learned state representations to gain an insight into the
capabilities of our approach. We start by comparing learned
state representations for a simple navigation taskl'| when the
robot sees the scene from different perspectives, having either
an egocentric view or a top-down view of the scene. The
results show that, in both cases, our method learns a mapping
to the same pertinent dimensions. Next, we investigate in a slot
car racing taskEl how our method can handle task-irrelevant
distractors. To the best of our knowledge, this is the first
time that this problem is addressed in state representation
learning even though it is essential; apart from highly con-
trolled experiments, observations of robots are always subject
to task-irrelevant distractions. We will see that our method
can separate task-relevant properties of the observation from
irrelevant information. After that, we analyze how the state
representations for both tasks change if they are given more
dimensions than necessary to solve the task. The results show
that, in the task without distractors, our method can even
identify the minimal state dimensionality.

Finally, we measure how useful the learned state represen-
tations really are for subsequent reinforcement learning, as
this is the main motivation for state representation learning.
We extend the navigation task and also introduce distractors
to make it more challenging. We compare a standard rein-
forcement learning method on different state representations.
The experiment shows that our method can substantially
improve the performance of reinforcement learning compared
to different baselines. In a last experiment, we explain these
results by showing how our approach improves generalization.

A. Invariance to Perspective

To investigate whether our method is invariant to perspec-
tive, we test it in two versions of a simple navigation task with
different visual observations, viewing the scene from the top
and viewing it from the robot’s perspective. In both versions,
the robot learns a state representation that reflects its location
which is exactly the information required to solve the task.

1) The Simple Navigation Task: In the simple navigation
task (see Figure [3a), the robot is located in a square-shaped
room of size 45 X 45 units with 4-units-high walls of different
colors. The robot has a height and diameter of 2 units. The
orientation of the robot is fixed but it can control its up-down
and left-right velocity choosing from [—6,—3,0,3,6] units
per time step. The robot thus has 25 discrete actions. These
actions are subject to Gaussian noise with 0 mean and standard
deviation of 10% of the commanded velocity. The task of the
robot is to move to the top right corner without bumping into
walls. If the distance to this corner is less than 15 units, the
robot gets a reward +10 unless it is running into a wall, in
which case it gets a negative reward of —1. The observation of

!'The navigation task is based on similar experiments in the literature [2 27].
2The slot car racing task is inspired by an experiment of Lange et al. [13].
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Fig. 3. Results for two versions of the simple navigation task with fixed
orientation. The observation of the robot is either a top-down view (b) or an
egocentric view (c) of the scene (a). (d—g) show the representation of 5000
training samples in state space. Each dot results from applying the learned
observation-state-mapping ¢ to an observation. (d,f) correspond to the top-
down view version, (e,g) correspond to the egocentric version of the task. The
color relates the state samples to the ground truth location of the robot.

(g) Egocentric state samples (y)

the robot is a 10 x 10-pixel RGB image. In the top-down view
version of this task, the robot’s observation is an image of the
entire room. In this image, the robot is a dark spot against
the background (see Figure [3b). In the egocentric version, the
robot perceives its environment through a camera with a wide
angle lens (field of view 300°). The example observation (see
Figure shows the dark blue wall in the middle and the
green and the light blue wall on either side of the image.

2) Experimental Setup: We performed the following ex-
periment for both versions of the task. The robot explored
its environment performing 5000 random actions and learned
a mapping from the 300-dimensional observation space to a
two-dimensional state representation based on this experience.

3) Results: To compare the learned state representations,
we plotted the state estimates for these 5000 time steps for
the top-down view (see Figure 3d) and the egocentric view
(see Figure [3¢). In both cases, the samples roughly form a
square in state space, suggesting that the state is an estimate
of the location of the robot in the square room. We can show
that this is in fact what is learned by coloring each state sample
according to the ground truth z-coordinate of the robot (see
Figures [3d| and B¢) and to the ground truth y-coordinate of
the robot (see Figures [3f] and [Bg). The results are the same



for both state representations: there are two orthogonal axes
in the state representations that correspond to the coordinates
of the robot. Of course, these axes in state space do not have
to align between experiments; they can be rotated or flipped.

4) Discussion: In the two versions of the task, the sensory
observations of the robot were very different. Nevertheless, it
learned a mapping from these observations to the task-relevant
dimensions—the location of the robot. Note that the mapping
from observations to states must be very different to result in
this identical state representation.

B. Ignoring Distractors

In this experiment, we test whether our method distinguishes
task-relevant properties of the observations from irrelevant
information. We investigate this in a slot car racing task with
two cars. While the robot observes two slot cars, it can only
control one of them. The other car does not play a role in this
task apart from potentially distracting the robot. The robot
does not know beforehand which car is relevant for the task.

1) The Slot Car Racing Task: An example scene from this
task is shown in Figure ] The robot can control the velocity
of the red car, choosing from [0.01,0.02,...,0.1] units per
time step. The velocity is subject to zero mean Gaussian noise
with standard deviation of 10% of the commanded velocity.
The robot’s reward is equal to the commanded velocity—
unless the car goes too fast in a sharp turn and is thrown
off the track. In this case, the robot gets a reward of —10. The
robot cannot control the green slot car. The velocity of this
car is chosen randomly from the same range as for the red
car. The green slot car does not influence the reward of the
robot or the movement of the red car. The robot observes the
scene from the top through a 10 x 10-pixel RGB image (see
Figure [4D).

2) Experimental Setup: The robot explored randomly for
5000 time steps and then learned a mapping from its 300-
dimensional observation to a two-dimensional state.

3) Results: To understand this state representation, we have
plotted the states of the 5000 exploration steps with one dot per
state sample (see Figure ). The states form a circle which
corresponds to the topology of the track. We have colored
the state samples according to the ground truth position of
the red slot car (see Figure and the green slot car (see
Figure [4d). The figures show that the position along this circle
in state space corresponds to the position of the controllable
slot car on the track. One round of the red slot car corresponds
to a circular trajectory in state space. Our method was able
to distinguish task-relevant from irrelevant information in
the observations and, at the same time, found a compressed
representation of these pertinent properties.

C. Mapping to a Higher-Dimensional State Space

In the previous experiments, we gave the robot an appropri-
ate number of dimensions for the state representation. In this
section, we investigate what happens in the same examples,
when the robot tries to learn state representations with more
dimensions than necessary. We repeated the experiments for

(a) Slot car racing with a distractor (green car) (b) Observation
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State dimension 2

Position of controllable slot car

Position of non-controllable slot car

1 0 1 1 0 1
State dimension 1 State dimension 1

(c) State samples (red car) (d) State samples (green car)

Fig. 4. Results for the slot car racing task (a) with visual observations (b).
The color relates state samples to the relevant car (c) and the distractor (d).

the simple navigation task with egocentric observations and for
the slot car task. But instead of learning a two-dimensional
state representation, we used a five-dimensional state space.
After exploration for 5000 time steps and state representation
learning, we took the 5000 x 5-matrix M containing the esti-
mated states for these experiences and performed a principal
component analysis of this matrix.

1) Identifying the Dimensionality of the Task: For the
navigation task, we find that all but the first two eigenvalues
of M are close to zero (see Figure [5a). The rank of the matrix
is effectively two. This means that all state samples lie on a
plane in the five-dimensional state space. We can visualize
this plane by projecting the state samples on their first two
principal components (see Figure [5b). The state samples again
form a square in this space just as in the two-dimensional
experiment. Thus, even with a five-dimensional state space,
the robot learns that the task is two-dimensional and captures
only those properties of its observation.
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Results for the navigation task with a five-dimensional state space.

2) Finding Alternative Explanations for the Reward: In
the slot car task, the state sample matrix M has rank four.
There are two larger eigenvalues and two smaller eigenvalues
(see Figure [6a). If we project the state samples on their first
two principal components, we can see that the dimensions
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Fig. 6. Results for the slot car task with a five-dimensional state space.

with the larger eigenvalues correspond to the position of the
controllable red slot car on the race track (see Figure [6b).
The third and fourth principal component correspond to the
position of the non-controllable green slot car (see Figure [6c).

3) Discussion: 1If the green car is irrelevant for the task,
why is it represented in the state? The robot maximizes state
dissimilarity between situations where it received different
rewards even though it performed the same action. If the robot
chooses the same velocity but the slot car is thrown off one
time while it stays on track another time, it tries to make the
states of these two situations dissimilar. The most powerful
discrimination between these situations is the position of the
red slot car. But sometimes small differences in position or the
stochasticity of the actions can make the difference between
the two outcomes. The robot thus finds alternative explanations
like the position of the green slot car. The eigenvalues show
that this property has a lower impact on the state than the
position of the controllable red slot car. Our method includes
these alternative explanations if there are enough dimensions
in the state space. When the state space is limited, the method
focuses on pertinent dimensions.

D. Improved Performance in Reinforcement Learning

The preceding experiments have demonstrated promising
properties of our method. But in the end, the utility of state
representations can only be measured by how they benefit
subsequent learning. In this experiment, we will see that
our method can substantially improve reinforcement learning
performance and that it needs very few data to do so.

1) The Extended Navigation Task: To construct a chal-
lenging task for this experiment, we extended the naviga-
tion task by allowing variable orientation of the robot and
adding visual distractors. The robot can turn and move for-
wards or backwards choosing its rotational velocity from
[—30,—15,0, 15, 30] degrees per time step and its translational

(a) (b) (©

il

) (e) ()

Fig. 7. Extended navigation task. (a-c) show the robot moving to the upper
right corner while the distractors move randomly. (d-f) show the respective
observations (note how they are influenced by the distractors).

velocity from [—6,—3,0,3, 6] units per time step for a total
of 25 actions. All actions are subject to Gaussian noise with
0 mean and 10% standard deviation. The distractors are three
circles on the floor and four rectangles on the walls that move
randomly (see Figure [7). The distractors are observed by the
robot but do not influence its movement or reward. They are
irrelevant for the task and should thus not be included in the
state representation. The objective of the task has not changed.
The robot must move to within 15 units of the top right corner,
where it gets a reward of 10 unless it is running into a wall,
in which case it gets a reward of —1.

2) Experimental Setup: The robot explored randomly as in
previous experiments but was interrupted every 500 time steps.
From its accumulated experience, it learned an observation-
state-mapping and a policy. Then, the robot was tested for 20
episodes of 50 steps to compute the average sum of rewards.
We repeated this learning-evaluation cycle ten times.

We conducted this experiment multiple times using the
same reinforcement learning method with different state rep-
resentations: the five-dimensional state representation learned
with our method, the five slowest features of the observations
(computed using linear slow feature analysis [30]]), the first
five principal components of the observations, and the raw
300-dimensional observation. To get an upper bound on the
reinforcement learning performance, we also compared against
a simpler version of this task without distractors in which the
robot has access to its ground truth pose. In this case it uses
its position and the cosine and sine of its orientation as state,
which we consider an optimal representation for this task.

3) Reinforcement Learning Method: As a reinforcement
learning method, we used neural fitted Q-iteration with
the default parameters on a neural network with two hidden
layers, each containing five sigmoid neurons.

4) Results—Improved Generalization: We want to start
analyzing the results in Figure [8] by comparing our method
(green) against using the raw observations as states directly
(orange). These results show very clearly that the robot needs
much less training when reinforcement learning is performed
on the states learned by our method. Where does this differ-
ence come from? Our method basically acts as a regularization
on the learning problem. This leads to faster generalization.
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We examine this in more detail with another experiment—
this time in a supervised learning task, which allows us to
visualize generalization by comparing training error and test
error. In this experiment, we compare how well the location of
the robot can be estimated from the learned state representation
and from the raw observation. The location estimator is learned
by linear regression from a set of training samples which
contain the ground truth coordinates and either the 300-
dimensional observations or five-dimensional states (learned
from 5000 exploration steps).
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Number of training samples

Fig. 9. Learning curves for location estimation. Solid lines display the test
error, dashed lines display the training error.

The learning curves (see Figure [J) show that linear re-
gression on the learned states (light green) generalizes very
quickly—having the same error on the training set (dashed
line) as on the test set (solid line). Generalizing based on
raw observations (orange) takes much more training. But
with enough training, its test performance surpasses the per-
formance based on the learned state representation, which
shows that a linear function in the state space is probably

too restricted. Fitting a more complex quadratic function in
the state space also needs very few training to generalize and
results in superior performance (dark green).

The key to these results is the compactness of the represen-
tation. A linear function in the state space has six parameters
(one for each state dimension plus one for the bias), a quadratic
function has 21 parameters. A linear function in observation
space has 301 parameters. Too many parameters lead to
overfitting: the training error is low, but the test error is high.
The same principle applies to reinforcement learning.

5) Results—Pertinent State Representation: This general-
ization argument, however, does not explain the performance
differences between our approach and the baselines: principal
component analysis (purple) and slow feature analysis (blue,
see Figure [§). All of these representations have the same
dimensionality. The other methods probably did not perform
well because they failed to distinguish relevant from irrelevant
dimensions of the task as they are purely based on observations
and do not take actions and rewards into account.

6) Results—Little Training Required: Finally, we compare
the results of our approach to the upper bound of the re-
inforcement learning method—using the ground truth pose
of the robot as state (dashed line, see Figure [§). Keep in
mind how much easier this task is compared to coping with
300-dimensional visual observations influenced by distractors.
Still, the results show that our method is able to learn a state
representation that is as useful for reinforcement learning as
the true pose of the robot. Even with very little training, the
results are comparable showing that our method actually needs
less data than the reinforcement learning method.

VI. DISCUSSION

We have presented an approach to state representation
learning in robotics based on prior knowledge about interacting
with the physical world. The first key idea to this approach
is to focus on state representation learning in the physical
world instead of trying to solve the general problem of state
representation learning in arbitrary artificial environments.
Reducing the problem domain in this way allows us to use
robotics-specific prior knowledge.

The second key idea is to use this knowledge to eval-
uate representations by how consistent they are with our
priors about the world. We proposed five robotic priors—
simplicity, temporal coherence, proportionality, causality, and
repeatability—and showed how they can be turned into an
objective for state representation learning.

We would like to advocate formulating additional priors
about inherent problem structure in robotics in future research.
Hopefully, this will lead to a discussion on the “right” robotic
priors. Additionally, we think that the field should strive to
find new ways to use robotic priors in machine learning.
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