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Abstract—Most fielded wheeled mobile robots (WMRs) today
use basic 2D kinematic motion models in their planning, control,
and estimation systems. On uneven or low traction terrain, or
during aggressive maneuvers, higher fidelity models are required
which account for suspension articulations, wheel slip, and liftoff.
In this paper we present a simple, algorithmic method to con-
struct 3D kinematic models for any WMR configuration. We also
present a novel enhancement to predict the effects of slip on body-
level motion. Extensive experimental results are presented to
validate our model formulation. We show odometry improvement
by calibrating to data logs and modeling 3D articulations. We also
show comparable predictive accuracy of our enhanced kinematic
model to a full dynamic model, at much lower computational cost.

I. INTRODUCTION

Motion models predict changes in state given a sequence of
inputs. All wheeled mobile robot (WMR) navigation systems
rely critically on such models. Estimation systems rely on
them for odometry, especially in the absence of GPS or
other localization sensors. Model predictive planning/control
systems repeatedly forward simulate these models to find and
follow optimal trajectories.

Motion models vary widely in complexity. Models can be
kinematic, such that body frame velocity is computed from
joint rate inputs and integrated once to predict pose. Models
can also be dynamic, such that acceleration is computed from
force/torque inputs and integrated twice. Models can account
for 3D suspension deflections, or neglect them in a planar
representation. For several reasons, most fielded WMRs today
make do with basic 2D kinematic models.

First, 2D kinematic models are easy to derive in closed
form. Deriving the full 3D dynamics of a WMR from scratch
is laborious. One could model the WMR in a general-purpose
physics simulator (e.g. Open Dynamics Engine, Bullet), but
most only enforce Coulomb’s law of friction at contact points,
whereas real wheel-terrain interaction is much more complex.

Second, 2D kinematic models are computationally cheap.
Receding-horizon model predictive planning requires that
models be simulated many orders of magnitude faster than real
time, as numerous candidate trajectories are evaluated at each
time step. Often, only a fraction of a processor is allocated for
such planning.

Finally, 2D kinematic models are often sufficient, but only
because WMRs are used conservatively. Most WMRs are
restricted to driving slowly on flat ground; steep or rough
patches are avoided as obstacles. Greater mobility is possible
with wheeled locomotion, for example: traversing rubble at

disaster sites, climbing steep mountainsides, or racing while
staying just within the tire friction envelope. However, to
safely push the limits of mobility, WMR navigation systems
require fast, high-fidelity motion models. In this paper we
present an enhanced formulation of 3D WMR kinematics, that
provides near dynamic model fidelity at less computational
cost.

II. RELATED WORK

The earliest general approach to deriving WMR kinematics
was published by Muir and Neuman [19]; they assign frames
in a transformation graph following the Sheth-Uicker conven-
tion, cascade transforms relating wheel to body positions, then
symbolically differentiate them to obtain Jacobians relating
wheel to body velocities. More recently, Kim et al. [13] and
Fu and Krovi [7] extended methods for parallel manipulators
(transfer method, twist-based) to derive the kinematics of
planar WMRs.

Some recent work concerns the 3D kinematics of articu-
lated WMRs on uneven terrain. Tarokh and McDermott [25]
present a 3D version of Muir and Neuman’s transform-based
approach, and demonstrate it on a rocker-bogie rover. Le Menn
et al. [16] extend a reciprocal screw-based approach to derive
the 3D kinematics of multi-monocycle robots. Tarokh et al.
(in later papers) [26][27], Chang et al. [4], and Kelly and
Seegmiller [12] use a velocity propagation-based approach,
similar to the one used here. Choi and Sreenivasan [5] and
Chakraborty and Ghosal [3] do not provide general methods
for kinematics derivation, but simulate 3D WMR kinematics to
validate mechanism designs. Lamon and Siegwart [14] provide
rare experimental 3D odometry results for their articulated
SOLERO platform.

Despite much progress, the literature still lacks models
proven to be accurate and efficient enough for model predictive
planning/control for high mobility WMRs. Importantly, none
of the above publications includes a predictive model of wheel
slip, even though real WMRs slip significantly, especially
in low traction, steep, or high-speed conditions. Most just
estimate slip as it occurs (e.g. [1],[23]) then rely on feedback
control to correct for it ([8],[17]), but unpredicted wheel
slip can cause a collision before the feedback controller
can react, or entrapment [20]. There are many wheel-level
models of slip in the literature but few publications incorporate
these into full WMR models. Tian et al. [28] incorporate
an empirical tire model into a planar dynamics model of a
differential drive robot. Ishigami et al. [10] incorporate their



own terramechanics-based model for rigid wheels in loose soil
into an Open Dynamics Engine model of an articulated rover.
However, computation times were excessive when using this
model for motion planning [11].

Most wheel-ground contact models relate slip and force,
so they are not directly compatible with kinematic models
which require velocity (vs. force) inputs. Our prior work [22]
included slip in a simplistic kinematic model. We required
that WMR kinematics be reduced to a “unicycle” model,
which moves instantaneously in the tangent plane to the
terrain surface (ignoring suspension deflections). Body-level
slip was parametrized over an ad hoc polynomial of velocity
and gravity terms.

III. OVERVIEW OF CONTRIBUTION

In this paper, we present a general method to construct
3D kinematic models for any articulated WMR configuration
(Sections IV-A through IV-C). While the vector algebra basis
of our approach exists in prior work, our exact algorithm is
unique and straightforward to implement.

Our most significant theoretical contribution is enhancement
of the kinematics to predict the effects of wheel slip on
body frame motion (IV-D). We do so in a principled way,
parametrizing slip over inertial force (due to gravity, accelera-
tion) and dissipative forces. Calculating the inertial force also
enables rollover risk assessment (IV-E).

In comparison to related work on 3D WMR kinematics,
we provide an unprecedented level of experimental validation
of our formulation. In all experiments we calibrate model
parameters to data logs, optimizing predictive accuracy over
extended horizons (IV-F). This makes the models suitable
for model predictive control vs. just instantaneous feedback
control.

We show improved odometry results for an articulated rover
traversing obstacles by modeling 3D kinematics (V-A). Our
experiments are of longer duration than in prior work [14]. We
also show that our enhanced kinematic models are comparably
accurate to more computationally expensive dynamic models
(V-B). We know of no other experimental comparison of
kinematic vs. dynamic WMR models in the literature.

By replacing the basic models used in most WMR plan-
ning/control/estimation systems with higher-fidelity models,
autonomous mobility can be improved on uneven, slippery
terrain and during aggressive maneuvers. Some tradeoff be-
tween fidelity and computation speed is unavoidable. Ideally,
model complexity should vary per application for optimal
performance. We provide a unique model of intermediate
complexity suitable for many applications.

IV. MODEL CONSTRUCTION

This section explains our systematic approach to model
construction and calibration. The kinematics presentation in
Sections IV-A through IV-C is similar to that in [21] (on
WMR dynamics); however, we provide more insight and
implementation detail here.

Table I summarizes the mathematical notation used in this
paper. Regarding Cartesian coordinate vectors, the variables
⇀
r , ⇀
v , and ⇀

ω will denote position, linear velocity, and angular
velocity respectively. Sometimes the left superscript is omitted
leaving the coordinate system unspecified or to be inferred
from context; when two or more quantities are operated on
they must be expressed in the same coordinates. The skew-
symmetric matrix notation [ ]× explicitly means:

[
⇀
u]× =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 (1)

Finally, in this document, vector and matrix indexing is one-
based (vs. zero-based).

TABLE I. Mathematical Notation

Symbol Meaning
u (bold lowercase) column vector
⇀
u 3-element Cartesian coordinate vector
→
u 6-element Plücker coordinate (or spatial) vector
[
⇀
u ]× skew-symmetric matrix formed from the vector ⇀

u . Used

for cross products: ⇀
a ×

⇀

b = [
⇀
a ]×

⇀

b
cuba the quantity u is of frame a with respect to frame b,

expressed in the coordinates associated with frame c
Rb

a the rotation matrix of frame a relative to frame b. Used
to transform coordinates: b⇀u = Rb

a(
a⇀
u)

u(i) the ith element of vector u, also called ui
u(i...i+ n) the subvector of elements i through i+ n of u
M(i, j) the element of M at row i, column j.
M(i, ...) row i of M
M(..., j) column j of M

A. Specification of the Kinematic Tree

The first step in model construction is the specification of
frame information for the kinematic tree. The root is the body
frame, which has 6 degrees of freedom (DOF) with respect to
the ground-fixed world frame. Additional frames are defined
for each movable rigid body (including the wheels). Each
frame is attached to a single parent frame by a revolute or
prismatic joint. Unlike some prior work [26][4] our method
does not require the Denavit-Hartenberg convention, which
allows more intuitive frame definitions; joint axes may be
aligned with any one of the x, y, or z axes. Wheel frames
are attached via revolute joints about their y axes.

Contact frames are automatically appended for each wheel.
They are defined with their origin at the wheel-terrain contact
point. In reality contact occurs over one or more patches on
the wheel surface, but we approximate to a single point. Their
z-axis is aligned with the terrain normal, and their x and y axes
are aligned with the longitudinal and lateral slip directions.

Frame information is stored in an ordered list such that
every frame’s index is greater than its parent’s: i > p(i).
As an example, Table II lists frame information for the Zoë
rover, which is used in the experiments in Section V-A. The
Type column specifies whether the associated joint is revolute
(R) or prismatic (P) and about the x, y, or z axis. The Act.
column indicates if the joint is actuated (Y/N for yes/no). The
last six columns specify the frame’s position and orientation



Fig. 1. Zoë rover frame diagram. FLc, FRc, BLc, BRc are the contact frames.

TABLE II. Zoë rover frame information [29]

i Frame Parent Type Act. x y z θx θy θz
1 body world
2 s1 body RZ N l 0 0 0 0 0
3 FL s1 RY Y 0 w -d 0 0 0
4 FR s1 RY Y 0 -w -d 0 0 0
5 r2 body RX N -l 0 0 0 0 0
6 s2 r2 RZ N 0 0 0 0 0 0
7 BL s2 RY Y 0 w -d 0 0 0
8 BR s2 RY Y 0 -w -d 0 0 0

in meters: l=.955, w=.820, d=.119, wheel radius=.325, total mass = 198 kg

with respect to its parent when joint displacement is zero. The
contact frames appended for each wheel would be 9-12 in the
list. Fig. 1 displays the frame locations.

The vehicle state is compactly expressed by the vector q:

q =

[
ρw
b

θ

]
, ρw

b =

[
ow
b

w⇀
rwb

]
(2)

The first subvector is the pose of the body frame (ρ) with
respect to the world frame, which comprises position (⇀r )
and orientation (o, expressed using either Euler angles or a
quaternion). The remaining elements are the revolute/prismatic
joint displacements (θ).

Given q and the frame information, we can compute the
homogeneous transform between each frame i and its parent
frame p(i):

T
p(i)
i =

[
R

p(i)
i

⇀
r

p(i) p(i)

i

[0] 1

]
(3)

Rotation (R) and translation (⇀r ) are functions of the joint
displacement (θi) for revolute and prismatic joints respectively.
We also recursively compute the homogeneous transform of
each frame with respect to the world frame: Tw

i = Tw
p(i)T

p(i)
i .

B. Recursive Velocity Kinematics

The symbolic differentiation of homogeneous transforms in
[19][25] can be tedious and expensive. Instead we compute
the velocity kinematics directly using a recursive Newton-
Euler technique, originally developed for manipulators by Luh
et al. [18]. Later papers on WMR kinematics have used similar
velocity propagation techniques [26][4][12].

A chain of frames can be extracted from the kinematic tree
for each wheel by starting at the contact frame (c) and adding

successive parent frames. For example, the chain for the Zoë
rover’s back right wheel is:

w ← b← r2← s2← BR← BRc (4)

Then position, linear velocity, and angular velocity can be
recursively propagated as follows:

⇀
rwi+1 =

⇀
rwi +

⇀
r ii+1

⇀
vw
i+1 =

⇀
vw
i +

⇀
ww

i ×
⇀
r ii+1 +

⇀
v i
i+1 (5)

⇀
ωw
i+1 =

⇀
ωw
i +

⇀
ωi
i+1

where i is the index in the chain, not in the frame list for
the entire WMR. Note how the propagation of linear velocity
depends on angular velocity.

Let 0 and n be the indices of the world and contact frames
respectively. Then, based on (5), the velocity of the contact
point with respect to the ground-fixed world frame can be
expressed as the summation:

⇀
v0
n =

n−1∑
i=0

⇀
v i
i+1 +

n−2∑
i=0

⇀
ωi
i+1 ×

⇀
r i+1
n (6)

This expression makes the contribution of each joint clear.
⇀
ωi
i+1 is nonzero for revolute joints, ⇀

v i
i+1 is nonzero for

prismatic joints, and both are nonzero for the 6-DOF “joint”
between the world and body frames (0 and 1). Equation (6)
can be evaluated in any coordinate system.

C. Wheel-Ground Contact Constraints

We solve for WMR motion, i.e. the time derivative of state
(q̇), through constraints on the contact point velocities. To
simplify the constraint calculations, we define the joint space
velocity:

q̇′ =

[
b→
vw
b

θ̇

]
, b→

vw
b =

[
b⇀
ωw
b

b⇀
vw
b

]
(7)

q̇′ is equivalent to q̇, except that the time derivative of pose
is converted to the spatial velocity of the body frame in body
coordinates. The constraint equation for a single wheel is:

Aq̇′ =
⇀
v c (8)

where ⇀
v c is short for c⇀

vw
c , the velocity of the contact point

with respect to the world frame in local coordinates. The
Jacobian A is calculated by Algorithm 1.

In Algorithm 1, i is the index in the frame list for the entire
WMR (not just a particular chain). All rotation matrices (R)
and position vectors (⇀r ) are obtained directly from precom-
puted homogeneous transforms between each frame and the
world frame (Tw

i ). a(i) returns the axis number for joint i
(x=1, y=2, z=3).

This algorithm is based on (6); it loops through the kine-
matic chain from contact to body frame accounting for each
joint. On lines 5 and 7, the columns of the rotation matrices
Rw

i are the axes along which the revolute and prismatic joint
velocities are directed (i.e. the unit vectors ω̂p(i)

i , v̂p(i)i ). Line
11 accounts for the angular velocity of the body frame, and
uses the identity: ⇀

ω × ⇀
r = −⇀

r × ⇀
ω = [

⇀
r ]T×

⇀
ω. Line 13



Algorithm 1 Jacobian Calculation for a Single Wheel

1: A← [0]
2: c← contact frame index, i← p(c)
3: while i > 1 do
4: if joint i type = revolute then
5: A(..., i+ 5)← Rw

i (..., a(i))× (
⇀
rwc −

⇀
rwi )

6: else if joint i type = prismatic then
7: A(..., i+ 5)← Rw

i (..., a(i))
8: end if
9: i← p(i)

10: end while
11: A(..., 1...3)← [

⇀
rwc −

⇀
rw1 ]T×R

w
1

12: A(..., 4...6)← Rw
1

13: A← (Rw
c )TA

converts from world to contact frame coordinates such that
nonholonomic and holonomic constraints are separated.

The first two rows of (8) constrain the x and y components
of the contact point velocity; they enforce nonholonomic
constraints on longitudinal/lateral wheel slip. The third row
of (8) constrains the z component of contact point velocity
(in the terrain normal direction); it enforces the holonomic
constraint that the wheel not penetrate or lift off of the
terrain surface to first-order. Violation of the holonomic con-
straint due to numerical drift can be eliminated by using
Baumgarte’s stabilization method (Yun and Sarkar [32]). Set
⇀
v c = [0 0 − ∆z/τ ]T , where ∆z is the contact height error
and τ is a time constant larger than the integration time step.

Constraint equations for all nw wheels are stacked to obtain
an equation with 3nw rows:

Aq̇′ = vc (9)

Hereafter let A refer to the stacked matrix. Note that additional
constraints can be appended, for example, to constrain two
suspension joint angles to be symmetric. The degrees of
freedom in q̇′ can be partitioned into free and fixed:

A(..., free)q̇′(free) = vc +A(..., fixed)q̇′(fixed) (10)

In a simulation/prediction context, the fixed DOFs include
actuated joint rates, and the free DOFs include passive joint
rates and the body frame velocity. Most WMR configurations
are overconstrained, and so (10) must be solved using the
pseudoinverse:

q̇′(free) = A(..., free)+
(
vc +A(..., fixed)q̇′(fixed)

)
(11)

To integrate WMR motion (i.e. update q), q̇′ must first be
converted to q̇, which requires the conversion of body frame
spatial velocity into the time derivative of pose:

d

dt

[
ow
b

w⇀
rwb

]
=

[
Ω(ow

b ) [0]
[0] Rw

b

] [
b⇀
ωw
b

b⇀
vw
b

]
(12)

where Ω converts angular velocity to Euler angle or quaternion
rates.

D. Body-Level Slip Prediction

Related work on WMR kinematics seldom accounts for
nonzero wheel slip, even though real WMRs can slip signifi-
cantly. The obvious way to include slip in our model is to set
the x,y components of ⇀

v c in (8) to nonzero values, but to what
values? Canonical wheel-ground contact models relate force to
slip, but kinematic models provide no information about force
at the wheels. Besides being unknown, wheel slip values may
be unnecessary; in many applications only the motion of the
vehicle body matters. Accordingly, we enhance the kinematics
to predict body-level slip.

Empirically, wheel slip ratio (s) and angle (α) are linearly
proportional to normalized longitudinal and lateral force, up to
a limit [2]. Normalized means the ratio with respect to normal
force. Let vx,vy denote the x,y components of ⇀

v c, or the slip
velocities. Let fx,fy ,fz denote the components of contact force
(
⇀

f c). Finally let Vx,Vy denote the velocities of the wheel frame
with respect to the ground. All variables are in contact frame
coordinates (Figure 2). Then:

s =
rω − Vx
Vx

=
−vx
Vx
∝ fx
fz
, vx ∝

fx
fz
Vx (13)

α = atan

(
vy
Vx

)
≈ vy
Vx
∝ fy
fz
, vy ∝

fy
fz
Vx (14)

Up to a limit, slip velocity is linearly proportional to the
product of normalized force and longitudinal velocity. We
extend this wheel-level observation to model slip at the body-
level.

Forces at the wheels are reactions to inertial effects (due to
gravity, acceleration) and dissipative effects (such as rolling
resistance). We compute inertial force at the body frame using
spatial vector algebra:

→
f b = Icb

→
g − →

v b × Icb
→
v b (15)

Due to space limitations this equation cannot be fully ex-
plained here, but it is in [6][21]. →

g is the acceleration of
gravity, and →

v b is the spatial velocity of the body frame
(obtained from the least-squares slip solution for q̇′). Icb is
the composite spatial inertia of the vehicle. Our kinematic
model is first-order, but (15) still accounts for the Coriolis
and centripetal components of acceleration.

The magnitudes of →
v b and

→
f b depend on where the user

chooses to define the body frame, but physical slip does not.
For consistency, we transform these values to a new frame,
defined with its origin at the center of gravity (cg):

→
v cg = (Xcg

b )
→
v b,

→
f cg = (Xcg

b )−T
→
f b (16)

The cg position is required to compute the Plücker transform
Xcg

b ) and the spatial inertia Icb . Like all spatial vectors, →
v cg

and
→
f cg have linear and angular components:

→
v cg =

[
⇀
ωcg
⇀
v cg

]
,

→
f cg =

[
⇀
τ cg = 0

⇀

f cg

]
(17)



Fig. 2. Diagram of wheel and body-level slip variables

We also define unit vectors in the longitudinal ( ˆlon), lateral
( ˆlat), and angular slip ( ˆang) directions. These are commonly
aligned with the body frame x, y, and z axis but do not have
to be (See Figure 2). Body slip velocity is parametrized over
these values as follows:

⇀
v cg,s =

(
p1
flon

fz
Vlon + p2Vlon

)
ˆlon +

(
p3
flat

fz
Vlon

)
ˆlat (18)

⇀
ωcg,s =

(
p4
flat

fz
Vlon + p5Vlon + p6Vang

)
ˆang (19)

where the following are abbreviations for dot products with
unit vectors:

flon =
⇀

f cg · ˆlon Vlon =
⇀
v cg · ˆlon

flat =
⇀

f cg · ˆlat Vlat =
⇀
v cg · ˆlat

fz =
⇀

f cg · ẑ

where ẑ is the normal force direction.
The p1 and p3 terms in (18) are direct analogues of the

wheel-level relationship between slip and force in (13) and
(14). The p2 term accounts for rolling resistance, which pre-
vents the vehicle from coasting at constant speed. Longitudinal
rolling resistance is proportional to normal force [30], so the
fz terms cancel out.

While only longitudinal and lateral slip are considered at the
wheel level, angular slip must also be considered at the body
level. The p4 term in (19) accounts for oversteer/understeer
behavior, which is proportional to lateral acceleration [30].
The p5 term accounts for left/right asymmetry in rolling
resistance, for example due to a flat tire. The p6 term accounts
for angular slip as a result of skidding. Skid-steer vehicles
can’t turn without dragging some wheels along the ground.
The pseudoinverse solution assumes isotropic friction, but real
friction forces may be anisotropic.

The slip velocity at the cg (→v cg,s) must be transformed back
to the body frame and added to →

v b in the least-squares slip
solution for q̇′, prior to integration. Alternatively, body level
slip can be converted to nonzero x,y components of the contact

point velocity ⇀
v c in (8). The z component is left unchanged

so that holonomic constraints are unaffected. After updating
all slip velocities in vc with nonzero values, q̇′ is re-solved
for using the pseudoinverse per (11).

This model does not capture some second-order inertial
effects, such as skidding with locked brakes, but it works under
the near steady-state conditions of normal operation. As seen
in Section V-B, this can be sufficient to predict motion as
accurately as a full dynamic model.

E. Liftoff Prediction
Just as wheel slip is significant in steep and high-speed

conditions, so is the risk of liftoff and rollover. Carrying
heavy loads can raise a vehicle’s cg, making it particularly
susceptible. While not the focus of this paper, we note that
the calculation of inertial force in (15) enables rollover risk
assessment.

According to [24] and others since, if the vector
⇀

f cg,
originating at the cg, intersects the ground plane outside of the
support polgyon (whose vertices are the wheel-ground contact
points) then liftoff is imminent. While our first-order model
cannot account for all types of acceleration, it does account
for centripetal acceleration and gravity, major contributors to
sideways rollover.

F. Parameter Calibration
A more detailed model is only more accurate if its param-

eters are correctly identified. In Section V we demonstrate
the calibration of enhanced 3D kinematic model to data logs.
Any observable combination of kinematic, sensor, and slip
parameters may be calibrated.

WMR motion models are typically expressed as a nonlinear
differential equation of the form:

q̇(t) = f(q(t),u(t),p) (20)

where u comprises the inputs (i.e. actuated/sensed joint rates)
and p the parameters to be identified.

The simplest calibration approach is to minimize velocity
residuals, or the differences between measured and predicted
velocities. Instead, we calibrate to pose residuals, in which
the predictions require forward simulation of the model (or
solution of the differential equation) over the interval (t− t0):

r = qmeas(t)− qpred(t) (21)

qpred(t) = qmeas(t0) +

∫ t

t0

f(q(τ),u(τ),p)dτ (22)

The subscripts meas and pred denote measured and predicted
values respectively. The residual can be a subset of r in (21),
such as only the (x,y,yaw) components of the body frame pose.

This calibration method is an extension of our prior work
on Integrated Prediction Error Minimization (IPEM) [22]. It
optimizes for simulation accuracy over extended horizons (vs.
instantaneous accuracy), which is desirable for model predic-
tive planning/control and estimation applications. Importantly,
this method also enables characterization of stochasticity, such
that the uncertainty of model predictions can be quantified (see
[22] for details).



Fig. 3. Animated 3D odometry as the rover’s right wheels traverse a ramp.
The blue and red lines trace the estimated paths of the body and contact
frames (using only wheel speed, axle angle, and attitude inputs). The green
line is the path of the pole-mounted prism tracked by the total station.

Fig. 4. Photograph of the test rover and four ramp obstacles at the Robot
City test location.

V. EXPERIMENTAL RESULTS

This paper is distinguished from prior work on WMR
kinematics not only by our novel enhancement to account
for wheel slip, but also by extensive experimental results.
Our results show how calibrating to data logs over extended
horizons, modeling 3D articulations, and accounting for wheel
slip improve predictive accuracy.

A. 3D Odometry

In this section we show improved odometry results by
calibrating to data logs and modeling 3D articulations. We
conducted experiments using the Zoë rover [29]. Zoë’s front
and rear axles are passively steered by varying the four
independently actuated wheel speeds. The rear axle’s roll
degree of freedom keeps all wheels in contact on uneven
terrain (Fig. 1, Table II).

The wheel speed, axle angle, and attitude (i.e. roll, pitch)
inputs were sensed by encoders, potentiometers, and incli-
nometers respectively. Ground truth position was measured
using a Leica robotic total station. The prism tracked by the
total station had to be mounted high above the rover’s camera
mast to maintain line of sight (Fig. 4). Ground truth orientation
was measured using an IMU.

In each test, the rover executed two laps around a course.
Speeds were kept below 0.5 m/s to facilitate tracking. During
each lap the rover traversed two ramp obstacles, 41cm high by
179cm long with a 61cm long flat middle section, as seen in
Fig. 1. Though commanded to drive straight over the ramps,

each perturbed the rover slightly off course. When a wheel
climbs the ramp on one side, the body sways to the other
affecting both the yaw and steer angles. The proportional
steering controller, having no 3D kinematic model, drives the
sensed steer angles back to zero which actually causes a turn.
Fig. 3 depicts the estimated trajectory of the rover over one
ramp.

Fig. 5 presents paths and estimation errors for three 3D
odometry tests. The first two tests took place on a paved lot,
while the second took place on a larger lot with paved and
grassy sections (Fig. 4). In the second test the rover traversed
four total ramps per lap; the additional two ramps were 42cm
high by 134cm long with no flat section.

Results are shown for three different kinematic models. For
the manually calibrated model, wheel radius was measured
with a meterstick, and parameters for the linear conversion
from potentiometer voltages to steer angles (slope, intercepts)
were calculated by manually setting the steer angles to +20◦

and −20◦ using precision machined blocks. In the other
models, wheel radius and pot. conversion parameters were
calibrated to data logs as explained in Section IV-F. The 2D
models assume axle roll and all contact angles are zero. Con-
tact angles (γ) specify where along the wheel’s circumference
contact occurs; γ = 0 corresponds to the bottom with respect
to the unrotated wheel frame.

Calibration to data logs results in a major accuracy im-
provement over manual calibration, and accounting for 3D
articulations results in a significant additional improvement.
When using 2D kinematics, spikes in yaw error occur when
traversing ramps, but these are completely eliminated by using
3D kinematics. 3D odometry is very accurate: less than .25m
and 2.3◦ error after traveling up to 201.5m on uneven terrain,
without using a gyroscope to aid yaw estimation.

Interestingly, we noticed that 3D odometry assuming γ = 0
is no better than 2D odometry. In our experiment, we used
prior knowledge of the obstacle geometry to help determine
γ. Iagnemma and Dubowsky [9] propose a method to estimate
contact angles from wheel speeds and pitch rate, but it assumes
no wheel slip. Slip is unavoidable for our rover configuration
on uneven terrain. In general, contact angle estimation may
require additional sensing such as an instrumented wheel
[15][31]. Given a perception-generated terrain elevation map,
contact points my be solved for by geometric collision detec-
tion. This is a necessity for simulation/planning contexts, but
is also possible in estimation. Unfortunately perception was
unavailable for our tests.

B. Enhanced Kinematic vs. Dynamic Model Comparison

In this section we show improved predictive accuracy of a
kinematic motion model by accounting for slip as presented in
Section IV-D. Whereas the Zoë rover used in Section V-A was
designed for minimal slip, the skidsteer LandTamer platform
used here cannot turn without slipping (Fig. 6). We obtained
vehicle pose ground truth via Real Time Kinematic (RTK)
GPS and a tactical grade IMU.
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(a) CMU paved lot, right wheels on ramps
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(b) CMU paved lot, left wheels on ramps
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(c) Robot City, left wheels on ramps

Fig. 5. Top row: Paths of the test rover: (solid line) measured by the total station, (short-dash) estimated using a manually calibrated 2D kinematic model,
(dash-dot) estimated using a 2D kinematic model calibrated to the data log, (long-dash) estimated using a 3D kinematic model calibrated to the data log,
(triangle) path start, (square) path end. Middle row: Position error (Euclidean distance) vs. time for trajectories estimated using the above models. Bottom
row: Yaw error vs. time. For the 2D models, spikes in yaw error occur when traversing ramps.

Fig. 6. The LandTamer (made by
PFM Manufacturing Inc.) is a six-
wheeled skidsteer platform.

Although these results were generated by post-processing
data logs, we claim they are indicative of predictive perfor-
mance, as wheel speeds measured by encoders can be replaced
with planned commands. Likewise, attitude measured by an
IMU can instead be predicted by enforcing holonomic contact
constraints with respect to a terrain elevation map.

We drove the LandTamer at speeds up to 2.5 m/s and 0.5
rad/s for 150 seconds on three terrain types: dirt, grass, and
a paved parking lot. Fig. 7 shows the vehicle paths overlaid
on aerial images. We evaluated three model types: a no slip
kinematic model, an enhanced kinematic model, and a full
dynamic model.

The “no slip” (or non-enhanced) kinematic model does
account for slip to some extent by minimizing it in a least-
squares sense, per equation (11). Even this is more accurate

than common technique reducing skid-steer kinematics to
differential drive kinematics (which greatly overestimates yaw
rate). The full dynamic model is constructed as presented in
[21], and uses the Pacejka “magic formula” tire model [2].
Parameters of the enhanced kinematic model (i.e. coefficients
in (18) and (19)) and the dynamic model (tire model coeffi-
cients, cg location) were calibrated to separate training data
logs collected on the same day as the logs used for evaluation.

Table III displays position and yaw prediction errors for all
three motion models, for all three terrain types, for horizons of
10 and 20m. Table IV displays the percent reduction in errors
for the enhanced kinematic and dynamic models relative to the
non-enhanced kinematic model. On pavement, error reductions
of 83-96% were achieved for the 10m horizon. Smaller but still
significant reductions of 64-76% were acheived on the rough,
inhomogeneous dirt and grass.

While the predictive accuracy of the enhanced kinematic
model and dynamic model are comparable (kin.+ did slightly
better on pavement, dyn. did slightly better on dirt and grass),
the enhanced kinematic model is computationally cheaper.
Relative to the non-enhanced kinematic model, forward simu-
lation of the dynamic model took 4.5-5.5× more computation
time (depending on inputs), whereas the enhanced kinematic
model took only 1.3× more. The enhanced kinematic model
also required fewer parameters.
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Fig. 7. Paths of the LandTamer overlaid on aerial images, 20m prediction horizon: (solid) measured by RTK GPS, (short-dash) predicted by a non-enhanced
kinematic model which assumes no wheel slip, (long-dash) predicted by an enhanced kinematic model, (triangle) path start, (square) path end

TABLE III. LandTamer position & yaw prediction errors

Dirt (24 trials) Grass (36) Pavement (33)
Dist. Model pos. yaw pos. yaw pos. yaw
10m kin. 1.717 0.291 1.465 0.277 1.774 0.493

kin.+ 0.480 0.104 0.445 0.096 0.146 0.021
dyn. 0.420 0.076 0.379 0.081 0.294 0.039

20m kin. 4.354 0.402 3.972 0.447 4.295 0.827
kin.+ 1.222 0.192 1.273 0.176 0.249 0.034
dyn. 0.979 0.150 0.978 0.103 0.445 0.061

(pos.) mean position error (Euclidean distance) in meters, (yaw) mean absolute
yaw error in radians, (kin.) non-enhanced kinematic model, (kin.+) enhanced
kinematic model, (dyn.) dynamic model

TABLE IV. Percent reduction in prediction errors*

Dirt Grass Pavement
Dist. Model pos. yaw pos. yaw pos. yaw
10m kin.+ 72% 64% 70% 65% 92% 96%

dyn. 76% 74% 74% 71% 83% 92%
20m kin.+ 72% 52% 68% 61% 94% 96%

dyn. 78% 63% 75% 77% 90% 93%
*relative to the non-enhanced kinematic LandTamer model.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a straightforward, algorithmic method
to construct 3D kinematic models for any articulated WMR
configuration, and a novel enhancement to predict the effects
of wheel slip on body-level motion. In addition, we provided
unprecedented experimental validation of our model formula-
tion. We showed major improvements in odometry accuracy
by calibrating to data logs and modeling 3D articulations. We
also showed that our enhanced kinematic models can provide
comparable accuracy to full dynamic models at a fraction of
the computation cost.

We plan to further analyze the tradeoff between fidelity
and computation speed in future work. We aim to derive
formulas for how performance varies with model complexity
and with control/terrain inputs. Given this, we could select the
optimal level of model complexity per application. We could
even dynamically switch between models within an application
based on situation (e.g. soil type, steepness, speed).

We have implemented a modular software library that

supports dynamic, kinematic, and enhanced kinematic WMR
simulations. We are in the process of converting this software
from MATLAB to C++ so that we can fairly benchmark
computation speeds against alternatives (e.g. Open Dynamics
Engine, CarSim). In preliminary tests, the dynamics and
enhanced kinematics of the Zoë rover can be simulated 1200×
and 5200× faster than real time on a 3.4 GHz processor,
respectively. Regardless of speed, our method provides func-
tionality/flexibility that is lacking in alternative resources.

While modeling WMR motion is not a new problem, we
have shown that major improvements in model accuracy and
speed can still be achieved. Further research on this topic
is warranted, as model improvements directly benefit the
planning, control, and estimation systems that rely on them.
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