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Abstract—Successful execution of many robotic
tasks requires precise control of robot motion and its
interaction with the environment. In robotics these
two problems are mainly studied separately in the
domain of robot motion generation and interaction
control, respectively. Existing approaches rely on two
control loops: a motion generator (planner) that pro-
vides a reference trajectory in the outer loop, and an
active impedance controller that tracks the reference
trajectory in the inner loop. Ensuring stability of the
closed-loop system for this control architecture is non-
trivial. In this paper, we propose a single-loop control
architecture that performs motion generation and
interaction control at once. We model robot discrete
motions with a time-invariant dynamical system,
which is expressed as a nonlinear combination of a
set of linear spring-damper systems. This formulation
represents the nominal motion and the impedance
properties with a single set of parameters, simplifying
stability analysis of the closed-loop system. We pro-
vide sufficient conditions to ensure global asymptotic
stability of this system for movements in free-space,
and its passivity during persistent contact with a
passive environment. We validate our approach in
simulation using the 7-DoF KUKA LWR-IV robot.

I. Introduction

Motion generation and interaction control are two
skills that are jointly essential to safely execute a wide
variety of tasks. Robot motion generation focuses on
the problem of finding a path from an initial state to
a final state given a complete description of the robot’s
geometry and its environment [1], whereas robot interac-
tion control is concerned with the problem of describing
the robot behavior when it gets into contact with the
environment [2]. The application of a pure motion gen-
eration approach is limited to free-space movements in
well-defined environments (e.g. factories, laboratories),
where exact localization of objects is possible [3, 4].
For tasks that require interaction with the environment,
these approaches are prone to instability [5, 6, 3, 7].
To overcome this limitation, several approaches endow

motion generation with an interaction controller in a
two-loop control architecture: a motion generator in
the outer loop that provides a reference trajectory, and
an impedance controller in the inner loop that tracks
the reference trajectory while responding compliantly
to external forces arising in contact [8, 9, 10, 11, 12].
The reference trajectory is only followed in the absence

of an external force, and the impedance parameters
determine the behavior of the robot in contact. This
control architecture also allows execution of an addi-
tional repertoire of tasks that requires contact control
(such as ironing, grinding, peg in hole), which could not
be achieved with a pure motion generation method. As
we will elaborate in Section I-A, existing works analyze
stability of this control architecture in situations where
either the reference trajectory is not updated in closed-
loop, or the impedance parameters are fixed across the
motion. Ensuring stability of the closed-loop system
when using feedback motion planning with a variable
impedance control law remains however non-trivial, and
to best of our knowledge, no rigourous stability analysis
has been done for these systems. In this paper we address
this problem and propose a single-loop control archi-
tecture that performs feedback motion generation and
state varying impedance control at once with guaranteed
stability.

A. Problem Statement

Impedance control [2] is one of the prominent interac-
tion control approaches, where the relationship between
the manipulator position and contact force is related
through tunable impedance parameters. Impedance con-
trol can be achieved from two directions: passively
through hardware design or actively through the con-
troller. In this paper, we focus on the problem of ac-
tive impedance control. The classical way to execute a
task through motion planning and impedance control
is to first plan a trajectory (offline) and then use an
impedance controller to follow the generated path during
the robot execution.
For a manipulator with d generalized degrees of free-

dom s ∈ R
d, the robot dynamics (whether in operational

or joint space) can be represented as [13]:

M(s)s̈ +C(s, ṡ)ṡ+ g(s) = τ + τext (1)

where M(s) ∈ R
d×d is the mass matrix, C(s, ṡ) ∈ R

d×d

is the Coriolis/centrifugal matrix, g(s) is the gravita-
tional force, τ represents the actuators generalized force,
and τext is the external generalized force applied to the
robot by the environment. Note that if s is defined in
the operational space, special considerations should be
taken into account in singular configurations [14].
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Fig. 1: A simplified schematic comparison between the control architecture of the proposed approach and the two widely used impedance
controllers in robotics. By integrating the ‘feedback motion generation’ and ‘impedance control’ blocks into a unified block, the proposed
approach facilitates stability analysis of the closed-loop system. For more information refer to Section I-A.

The simplest impedance controller can be designed to
mimic the behavior of a spring-damper system [2], i.e.

τIC = −S(s− sdes(t))−D(ṡ− ṡdes(t)) (2)

where τIC is the impedance control law1, sdes(t) and
ṡdes(t) are the desired joints position and velocity given
by the motion generator. The stiffness S and damping
D matrices are positive definite and constant. The final
actuator command τ that is sent to the robot is given
by:

τ = τIC + g(s) (3)

Figure 1a shows a simple control block diagram of
the above approach. In this control architecture the
desired trajectory is computed offline and is fed to the
controller through time-indexing. Stability of the task
is guaranteed as long as S and D are positive definite
and constant. The impedance control approach with
fixed gains is particularly useful in static and controlled
environments such as those found in factories. However,
since the motion generation does not get feedback from
the environment (it runs in open-loop), it is ill-suited
for robotic systems that operate in dynamic environ-
ments. Furthermore, it also imposes a trade-off between
accuracy (using large S and D) and safety and energy
efficiency (using small S and D).
Recent approaches employ a variable impedance con-

trol law with the aim to provide higher performance,
efficiency, and human safety. In our previous work [15],
we introduce a framework that allows the user to in-
teractively shape a task-specific stiffness profile though
physical human-robot interaction. This work is then ex-
tended in [9] to improve the framework with a modality
for locally increasing the stiffness. To avoid closed-loop
instability, both [9] and [15] use open-loop reference
trajectory in their impedance control law. In [16], a
stochastic optimal control is proposed to control variable

1Throughout this paper, we consider an impedance control law
that does not reshape the inherent inertia of the robot. This
corresponds to the most common application scenario of impedance
control and was hence chosen to maximize the applicability of the
paper. However, the results herein extend also to the case were a
desired apparent inertia is implemented via force-feedback.

impedance actuators under a predefined tradeoff of task
accuracy and energy cost. In [17], a variable impedance
control law is introduced to account for dynamics model
parameter errors. Reference [18] presents a human-like
learning algorithm to model variable impedance control
subject to minimization of instability, motion error, and
effort. This work is then extended in [19] to perform
unstable contact tooling on unknown surfaces.

Stability analysis of variable impedance control is
nontrivial and is only evaluated in a few works. In [20], a
passivity-based approach is proposed to ensure stability
of a time-varying impedance controller. This method
evaluates the power balance of the robot and ensures
that the amount of energy pumped into the system is
always less than the dissipated energy, and thus the sys-
tem remains passive. In [21], stability analysis of a force
tracking impedance controller is presented. References
[18] and [19] describe an adaptive approach to guarantee
stability of their variable impedance controller. All these
approaches analyze stability for cases where the reference
trajectory is not updated in closed-loop.

To provide realtime adaptation to changes in dynamic
environments, a new body of research is directed at
using the combination of variable impedance control
with feedback motion planning (see Fig. 1b). In [8],
the authors propose an imitation learning approach to
model robot motions with dynamical systems and for-
mulate the stiffness matrix to be inversely proportional
to the observed covariance in the demonstrations. A
similar formulation is used in [12] with the difference
that the impedance parameters are estimated through a
reinforcement learning approach (as opposed to learning
from demonstrations). References [10, 11] also take a
reinforcement learning approach to estimate the variable
impedance control law for a given task.

Addition of feedback motion planning to a variable
impedance control law aggravates instabilities, and to
the best of our knowledge no rigourous stability analysis
has been done for these systems. In the works that
consider closed-loop update of the reference trajectories
[8, 10, 11, 12], motion generation and impedance control
are done in two separate loops (see Fig. 1b). While in



practice, it is often the case that such a system is overall
stable, studying separately stability of each control loop
is not sufficient to ensure stability of the complete close-
loop system. In other words, the closed-loop system
can actually become unstable even when both loops
are stable separately. In place of theoretical stability
analysis, one can proceed to numerical assessment of the
stability of the system throughout the state space. How-
ever this rapidly becomes computationally intractable as
the dimensionality of the system increases.

Despite the importance of ensuring stability of the
system (especially when robots must perform tasks in
dynamically changing environment or in the vicinity
of humans), existing works either do not perform such
stability analysis [8, 9] or only evaluate it numerically
along a particular desired trajectory using reinforce-
ment learning techniques (i.e. considering local stability)
[10, 11, 12].

To summarize, there are two challenges: 1) Providing
a rigorous stability analysis for state-varying variable
impedance controllers, and 2) Ensuring stability of the
system when using feedback motion planners with vari-
able impedance controllers. In this paper we address
these problems by proposing a novel approach that
unifies ‘motion generation’ and ‘impedance control’ into
one single control law. Our Integrated MOtion Generator
and Impedance Controller (i-MOGIC) can be proved
to be globally stable without any need to perform nu-
merical stability analysis. Figure 1c illustrates the flow
of information in such an integrated control law. To
provide realtime adaptability to changing environments
and robustness to perturbations, the proposed approach
models robot motion as an autonomous Dynamical
Systems (DS). This DS is formulated using Gaussian
Mixture Regression (GMR) [22], in which each Gaussian
function represents a linear spring-damper system. The
resulting DS derives from the nonlinear combination
of these spring-damper systems, and can be seen as a
state-varying stiffness and damping system. We provide
sufficient conditions to ensure global asymptotic stability
of the system, and validate the approach in simulation
using the 7-DoF KUKA Light Weight Robot (LWR).

Note that the stability analysis proposed in this paper
differs from those in [18, 19, 20, 21] in two important
aspects: 1) it is applicable to state-varying impedance
controller (as opposed to time-varying), and 2) it also
includes stability of feedback motion planner. In our pre-
vious works [23, 24], we use GMR formulation to model
first order autonomous DS. First order DS only represent
kinematic information and are hence not well-suited for
interaction control. Furthermore, the robot controller in
[23, 24] relies on the two-loop control architecture and
thus shares the same limitation as described above.

II. Dynamical Systems-Based Robot Motions

Consider a state variable s ∈ R
d (e.g. s could be de-

fined in joint or task space). We formulate our impedance
control law as a time-invariant DS:

τIC = f(s, ṡ) f : Rd×d 7→ R
d (4)

where f(s, ṡ) is a continuous function that codes a
specific behavior. Starting in an initial state (s0, ṡ0), the
robot actuator command is given by Eqs. (3) and (4),
and the robot motion follows according to Eq. (1).
As outlined before, we consider the class of motions

which ends to a single point (s∗, ṡ∗), i.e. the attractor
of the system. Typical examples of such motion are
swinging a golf club, inserting peg in hole, reaching out
for an object, closing fingers in a particular grasping
configuration, stepping motion, etc. Note that this does
not necessarily imply that the goal of the task is limited
to reaching s∗. For example, in a polishing task, the
attractor would simply be the end of one polishing stroke
while the ‘goal’ of the task is actually fulfilled during the
convergence to the attractor. The function f(s, ṡ) can
either be provided by the user, or it can be estimated
using some machine learning techniques [25, 26]. In this
paper, we focus on developing a suitable mathematical
representation for f(s, ṡ) so that it allows combining
motion planning and interaction control with guaranteed
global asymptotic stability.

III. Robot Motion Encoding with

State-Varying Stiffness and Damping

There are numerous ways to parameterize a nonlinear
DS. In this paper, we formulate our desired control policy
f(s, ṡ) using the same structure as Gaussian Mixture
Regression (GMR) [22] due to three reasons: 1) As we
will show later on in Section III-B, the GMR formalism
allows us to describe f(s, ṡ) as a nonlinear weighted sum
of spring-damper systems which can be used to shape
both the unperturbed motion and reactive behavior in
contact, 2) The unique structure of GMR allows us to
derive explicit stability conditions on the parameters
of Gaussian Mixture Model (GMM) to ensure global
asymptotic stability of f(s, ṡ) without performing com-
putationally expensive numerical stability analysis, and
3) When it is desired, one could exploit the power of ex-
isting machine learning techniques to build an estimate
of f(s, ṡ).

A. Gaussian Mixture Regression, a probabilistic view

In this section we provide a brief overview of GMR
from a probabilistic perspective. GMR is a nonlinear
regression technique that works on the joint probability
P([ζI ; ζO]) between input ζI ∈ R

n and output ζO ∈ R
m

variables. Note that we use the expression [ζI ; ζO] to
vertically concatenate the two column vectors ζI and



ζO. The joint probability is formed by superposition of
K linear Gaussian functions:

P([ζI ; ζO]) =

K∑

k=1

πkN ([ζI ; ζO]|µk,Σk) (5)

where πk, µk and Σ
k respectively are the prior, mean

and covariance matrix of the k-th Gaussian func-
tion N ([ζI ; ζO]|µk,Σk). Given the joint distribution
P([ζI ; ζO]) and a query point ζI , the GMR process
consists of taking the posterior mean estimate of the
conditional distribution:

ζO = f(ζI) =

K∑

k=1

πkN (ζI |µk
I ,Σ

k
I)

∑K

i=1 π
iN (ζI |µi

I ,Σ
i
I)

(

µk
O +

+Σ
k
OI(Σ

k
I)

−1(ζI − µk
I)
)

(6)

where the subscripts (.)I , (.)O, and (.)OI respectively
refer to the input, output, and cross partitions of µk

and Σ
k.

B. Gaussian Mixture Regression, a DS view

The probabilistic form of GMR as per Eq. (6) can
hardly provide insights on general dynamical behavior of
f . In this section, we rewrite Eq. (6) and reformulate it
as a PD controller with state-varying gains (also known
as gain scheduling). We denote the input and output
variables as ζI = [s; ṡ] and ζO = τ , where s ∈ R

d. The
notation of Eq. (6) can be simplified through a set of
change of variables. Let us consider:

hk(ζI) = hk(s, ṡ) =
πkN (ζI |µk

I ,Σ
k
I)

∑K

i=1 π
iN (ζI |µi

I ,Σ
i
I)

(7a)

Σ
k
OI(Σ

k
I)

−1 =
[
− Sk −Dk

]
(7b)

where 0 < hk(s, ṡ) ≤ 1 are scalar functions, and Sk

and Dk are d × d matrices. Equation (7b) reveals the
relation between the covariance structure of the GMM
and the spring-dampers of the DS resulting from GMR.
Substituting Eq. (7) into Eq. (6) and rearranging yields:

τIC = f(s, ṡ) = −∑K

k=1 h
k(s, ṡ)Sk(s− µk

s
)

−∑K

k=1 h
k(s, ṡ)Dk(ṡ− µk

ṡ
) +

∑K

k=1 h
k(s, ṡ)µk

τ

(8)

If we further enforces that the matrices Sk and Dk

be positive definite, i.e. Sk ≻ 0,Dk ≻ 0, ∀k = 1..K,
then Eq. (8) has the following physical interpretation:
each matrix Sk corresponds now to a linear spring that
pulls s towards its fixed point µk

s
. Similarly, matrices Dk

are linear dampers that damp any velocity component
except µk

ṡ
. Finally, each spring Sk is preloaded by a force

µk
τ
, see the third term in Eq. (8). The nonlinear weights

hk(s, ṡ) determine the contribution of each preloaded
spring and damper. In order to compact the notation,
we introduce the following:

S̄(s, ṡ) =
∑K

k=1 h
k(s, ṡ)Sk

D̄(s, ṡ) =
∑K

k=1 h
k(s, ṡ)Dk

µ̄s(s, ṡ) = S̄(s, ṡ)−1
∑K

k=1 h
k(s, ṡ)Skµk

s

µ̄ṡ(s, ṡ) = D̄(s, ṡ)−1
∑K

k=1 h
k(s, ṡ)Dkµk

ṡ

f̄τ (s, ṡ) =
∑K

k=1 h
k(s, ṡ)µk

τ

(9)

where S̄(s, ṡ) and D̄(s, ṡ) correspond to effective pro-
portional and derivative gains at each state (s, ṡ), re-
spectively. Furthermore, µ̄s(s, ṡ) and µ̄ṡ(s, ṡ) are fixed
points of the effective spring and damper, and f̄τ (s, ṡ)
stands for the net preloaded force. Note that since all
matrices Sk and Dk are positive definite, S̄ and D̄ are
also positive definite and thus invertible. Substituting
Eq. (9) into Eq. (8) yields:

τIC = f(s, ṡ) = −S̄(s, ṡ)
(
s− µ̄s(s, ṡ)

)
+ (10)

− D̄(s, ṡ)
(
ṡ− µ̄ṡ(s, ṡ)

)
+ f̄τ (s, ṡ)

By inspecting Eq. (10), we could now draw some
conclusions about the behavior of f(s, ṡ). By assuming
positive definiteness of matrices Sk and Dk, Eq. (10)
can be interpreted as a spring-damper system, where the
stiffness of the spring and the viscosity of the damper
varies across the state space. In addition, the evolution
of the spring equilibrium position and the undamped
velocity are varying across the state space. The last term,
f̄τ (s, ṡ), has a physical interpretation as a state varying
spring preload. From another perspective, this equation
can also be seen as an impedance control policy with
state-varying stiffness and damping matrices subject to
a state-varying load.

IV. Stability Analysis

The requirement on positive definiteness of matrices
Sk and Dk is not sufficient to ensure stability of a state-
varying impedance controller as per Eq. (10). Figure 2
shows a simple 1D example that illustrates why this is
not the case and also why ensuring stability of state-
varying impedance control even in 1D is non-trivial. In
this section we derive a set of stability conditions on
these parameters so as to ensure global asymptotic sta-
bility of f(s, ṡ) at the target. Without loss of generality,
we assume that the target point s∗ is located at the
origin and is not moving, i.e. s∗ = ṡ∗ = 0. Note that
by unifying motion generation and impedance control,
the notion of tracking a reference trajectory is entirely
removed from our approach. Thus, we only need to prove
stability for the regulator case.

A. Candidate Lyapunov Function

We use Lyapunov’s direct method to ensure global
asymptotic stability of f(s, ṡ). Stability analysis using
Lyapunov’s direct method requires 1) finding a non-
negative Lyapunov function V ≥ 0 (also called energy
function), and 2) verifying that it always decreases as the
motion evolves and vanishes at the target. Note that the
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Fig. 2:A one dimensional example showing instability of a variable
impedance controller with positive definite stiffness and damping
matrices on a point-mass robot with m = 1kg. The DS is modeled
with the following values: π1 = 0.75, π2 = 0.25, µ1

I
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I
= 2I. The motion starts at s0 = −1 and ṡ0 = 0.

conventional way of defining Lyapunov function as sum
of potential and kinetic energies of each spring-damper
falls short to prove global asymptotic stability of state-
varying impedance controller. Hence, in this paper we
seek a new way of defining energy by considering the
following four requirements:

1) As we are interested in ensuring global asymptotic
stability of f(s, ṡ), the candidate energy function should
have a unique global minimum, located at the target.

2) In order to have state-varying stiffness and damping,
the candidate energy function should also allow modeling
spring-damper systems that are active locally.

3) The candidate energy function should have the same
parameters as the function f(s, ṡ). In this way, we can
obtain a task-specific energy function without introduc-
ing extra parameters.

4) The general characteristics of the candidate energy
function can be evaluated in closed-form (i.e. without
any need to perform numerical check on a mesh of
datapoints defined over state-space). This criteria is
essential to quickly evaluate stability of the system.
Considering the above four factors, we propose the

following candidate Lyapunov function to represent the
energy of f(s, ṡ) that is modeled with K Gaussian
functions:

V (s, ṡ) =
1

2
sTS0s+

K∑

k=1

1

ℓk
(
1−βk(s)

)
+
1

2
ṡTM(s)ṡ (11)

where (.)T denotes the transpose, S0 is the base stiffness
and is active globally, M(s) is the mass matrix, ℓk are
positive scalars, and βk(s) is given by:

αk(s) =







sTSk(s− 2µk
s
) if sTSk(s− 2µk

s
) ≥ 0

0 if sTSk(s− 2µk
s
) < 0

(12)

βk(s) = e−
ℓ
k

4

(
αk(s)

)
2

(13)

Figure 3 shows the effect of µk
s
, Sk, and ℓk on the

energy function of a uni-dimensional DS. Figure 4 also
illustrates two examples of the energy function for 2D
systems. First note that the function βk(s) and by
construction V (s, ṡ) are continuous and have continuous
first order partial derivatives (i.e. class C1 smoothness).
Second, V (s, ṡ) is always non-negative provided ℓk > 0.
Third, the exponential term in Eq. (13) provides the
possibility to have local effect for each spring (we will
elaborate later on in this section).

B. Stability Conditions

In this section, we introduce a set of conditions based
on our proposed candidate Lyapunov function such that
f(s, ṡ) becomes globally asymptotically stable.

Theorem 1 Consider a state-varying impedance control
law given by an autonomous DS f(s, ṡ) : Rd×d 7→ R

d:

τIC = f(s, ṡ) = −S0s−D0ṡ−
K∑

k=1

ωk(s)Sk(s− µk
s
)...

−
K∑

k=1

ωk(s)Dk(ṡ− µk
ṡ
) +

K∑

k=1

ωk(s)µk
τ

(14)

where S0 and D0 are the base stiffness and damping
that are active throughout the motion, and the nonlinear
weighting coefficients ωk(s) are given by:

ωk(s) = αk(s)βk(s) ∀k = 1..K (15)

The robot motion driven by the impedance control law
τ = f(s, ṡ) + g(s) is globally asymptotically stable at its
unique attractor s∗ if:

S0 = (S0)T ≻ 0 (16a)

D0 ≻ 0 (16b)

Sk = (Sk)T � 0 ∀k = 1..K (16c)

Dk � 0 ∀k = 1..K (16d)

ℓk > 0 ∀k = 1..K (16e)

µk
ṡ
= µk

τ
= 0 ∀k = 1..K (16f)

Proof: See Appendix A in the supplementary docu-
ment.

Note that Eq. (14) is similar in structure to the
GMR formulation given by Eq. (8) (or its equivalent
in Eq. (10)) with the only difference that the nonlinear
weights hk(s, ṡ) are now replaced by ωk(s). As opposed
to hk(s, ṡ) in GMR, the weights ωk(s) ≥ 0 are designed
so as to ensure that the accumulative effect of the K
spring-damper systems does not generate any spurious
attractor, nor cause instability. The constraints given by
Eqs. (16a) to (16d) are simply stating that for stability,
our state-varying gains should remain positive definite,
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energy when s ≥ 0 and s ≤ 2µs. This is essential to ensure that the accumulation of energy elements 1

ℓk

(

1 − βk(s)
)

in Eq. (11) does
not introduce any local minima, and by construction makes the target point (indicated with a star) the unique global minimum of the
energy function regardless of the number of components K and the values of µk

s
, Sk , and ℓk. For clarity of the graph, without loss of

generality, the energy function in Fig. 3d is computed only for the positional part, i.e. assumed ṡ = 0.

(a) An example with K = 3, µ1
s
= [0.1; 0.1], µ2

s
= −[0.6; 0.6],

µ3
s
= [0.4; 0.1], S0 = 0.05I, S1 = [4 0; 0 4], S2 = [6 2; 2 8],

S3 = [12 8; 8 12], ℓ1 = 2ℓ2 = 5ℓ3 = 1.

(b) An example with K = 4. For k = 1..3, we use the same
parameters as in (a). For the forth element, the following values
are used: µ4

s
= [−0.1; 0.5], S4 = [4 − 2;−2 7], ℓ4 = 0.5.

Fig. 4: Illustration of the energy function for two 2D examples. The target point and the spring fixed-points are shown with a star and
cross, respectively. Note the energy functions are only depicted for the positional part, i.e. assumed ṡ = 0 (for d = 2, V (s, ṡ) : R4 7→ R

+

which is not possible to illustrate for all situations). As we can see, complex energy functions can be created by varying the number of
spring-damper systems K and the value of their parameters.

analogous to classical spring-damper systems. Note that
the damping matrices need not to be symmetric. The
skew-symmetric part of each Dk represents the so-called
conservative gyroscopic forces, which transfers energy
from one direction to another without any dissipation
[27]. Considering Eq. (13), a negative ℓk could cause the
influence function goes to infinity, yielding unbounded
control. The last constraint Eq. (16f) is also essential
to avoid energy pumping to the system, which can also
cause instability.
Note that Theorem 1 guarantees global asymptotic

stability of the robot for free-space motion. As is
shown in Appendix B in the supplementary document,
Theorem 1 also implies a passive map from external force
τext to ṡ, hence guaranteeing that i-MOGIC remains
stable (but not asymptotically stable) in contact with
any passive environment.

V. Simulation Results

In this paper we consider two simulation experiments
that are performed on the 7-DoF KUKA LWR arm to
highlight different aspects of the proposed approach. In
both experiments, control is performed in the opera-
tional space formulation [28].
In the first experiment, we show how the user can

interactively modify the behavior of the system in two
dimension, i.e. d = 2. In this example, the first objective
is to reach a target point located on a table by following a
single curvy movement. The movement is defined in the
vertical plane, i.e. x− z with s1 = x, s2 = z, and y = 0.
The surface of the table is at s2 = z = 0. This movement
can be achieved by using a single spring-damper system
with S0 = [4 0; 0 1] and D0 = [4 0; 0 2] as shown in
Fig. 5b. For this system, the stiffness and damping are
fixed throughout the motion.



(a) Simulator of the 7-DOF DLR-IV robot.
The target point is marked with the blue
ball.
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(b) A one-curve reaching movement de-
rived solely by the base DS S0 and D0. The
initial point is s = [1; 1] and ṡ = [0; 0]
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(c) Adding the first spring-damper system
to modify both the motion and stiffness at
the beginning of the task.
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(d) Addition of the second spring-damper
system to modify the damping in the region
close to the target.
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(e) Comparing the energy of the motion
between the cases (b), (c), and (d).
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(f) Generalization of the model in (d) to
different initial conditions.

Fig. 5: In this example the user interactively modifies the behavior of a 2D motion to have different stiffness or trajectory while
approaching the target. The effective gains S̄(s) =

∑

K

k=1 ω
k(s)Sk and D̄(s) =

∑

K

k=1 ω
k(s)Dk are shown with superimposed ellipses

on the trajectory. The center of each ellipse represents the point at which S̄ and D̄ are evaluated.

Now let us consider a situation where it is necessary to
achieve a high velocity along the s1-axis at the beginning
of the motion. To reach this goal we could add, for
example, a spring-damper element with the following
parameters: µ1

s
= [0.4; 0.0], ℓ1 = 0.1, S1 = [10 0; 0 0],

and D1 = 0. With this element, the velocity increases
as long as s1 > 2µs = 0.8. As we are interested in
increasing the velocity solely along the s1-axis, we set
the eigenvalue of S1 along s2 to zero. We also consider
D1 = 0 to achieve a higher acceleration. Figure 5c shows
the behavior of the new system. As can be seen the
effective gain S̄(s) at the beginning of the motion is
increased and as a result the velocity reaches a higher
peak (about ṡ1 = −1.4m/s) compared to Fig. 5b. This
example highlights the coupling effect between the mo-
tion generation and impedance control.

Now consider another case where it is desired to
increase the damping along the s2-axis near the target
while retaining the velocity profile similar to the previous
situation. This behavior could be useful to improve
perturbation rejection along the s2-axis near the target,
where a vertical disturbance could cause hitting the
table. For this objective, we add another spring-damper
element with D2 = [0 0; 0 25]. We also consider S2 =
[0 0; 0 10] to avoid decrease in the velocity due to the
added damper. We tune the influence of this element
near the target by defining µ2

s
= [0.0;−0.3] and ℓ2 = 0.5.

As can be seen in Fig. 5d, the damping along the vertical
axis is increased, while the velocity profile is preserved
as closely as possible to Fig. 5c. This example shows the
possibility to decouple the two behaviors through proper
tuning of the stiffness and damping matrices.

Figure 5e compares the change in the energy of the
motion between the above three cases. As can be seen,

addition of each spring-damper system increases the
initial energy of the motion. However, the way the
energy drops to zero significantly depends on how the
spring-damper parameters are defined. For example here
the energy of the motion in the second case drops to
zero faster than in the first case (even though it starts
at a higher value). Figure 5f shows the generalization
of the 2D model shown in Fig. 5d to different initial
conditions. Since the model is defined in the task space,
the motion could follow different behaviors when it starts
from different parts of the task space. In this example,
the movements that start from the top-right of the
target follow a completely different position and velocity
profiles, compared to those that start from the top-left.
Consequently, they will also have different stiffness and
damping profiles along the motion.

In the second experiment we consider a case where
two 3D DS are sequenced to create a cyclic pattern.
We choose this experiment to highlight ‘the movement
primitive’ property of our control policy, i.e. it can be
sequenced or superimposed to create new behaviors [29].
The first DS is modeled with the following parameters:
S0 = [2 0 0; 0 1 0; 0 0 1] and D0 =

√
4S0, µ1

s
=

[0;−0.1; 0], ℓ1 = 0.5, S1 = [2 2 0; 2 4 0; 0 0 2],
and D1 =

√
4S1. This DS is used to generate

the upward motion. The second DS is modeled with:
S0 = [1 0 0; 0 3 0; 0 0 1] and D0 =

√
4S0, µ1

s
=

[0;−0.1; 0], ℓ1 = 2, S1 = [4 2 0; 2 6 0; 0 0 2], and
D1 =

√
4S1. This DS generates the downward motion.

The first DS switches to the second DS at ss|1→2 =
[0.1; 0.3; 0.3] with ṡ∗ = [0.1; 0; 0]. The second DS
switches to the first one at ss|2→1 = [0; 0; 0] with
ṡ∗ = [−0.1; 0; 0]. For both dynamics s̈∗ = 0. In order
to pass the switching points with the desired veloci-



ties, we employ a moving target approach similarly to
[30]. Note that to reach a moving target, we need to
augment Eq. (3) with the term C(s, ṡ)ṡ∗, i.e. defining
τ = τIC + g(s) + C(s, ṡ)ṡ∗ (see [14] for more details).
The motion starts at s0 = [−0.2; 0; 0] with zero velocity.
Figure 6a shows the initial point, switching points, and
the position and velocity profiles of the movement. After
the first switch, the motion keep moving on the cyclic
pattern. Figure 6b shows the time-evolution of position,
velocity, acceleration, energy, and effective gains. As can
be seen, the position and velocity profiles are continuous.
At the switching points, as expected, there is a jump
in the acceleration and also the energy function. As we
defined the damping matrices in relation to the stiffness
matrices, they both follow the same pattern.
To further investigate the robustness of the system,

we perturb the motion at t = 26sec with the amplitude
ṡp = [0.3; 0.2; 0.1], which is about four times higher than
the motion velocity at the time of perturbation. As can
be seen, the motion can successfully recover from this
perturbation and continue its cyclic behavior. Note that
in our approach there is no reference trajectory. When
perturbed, the motion planner just provides a new path
on the fly while still ensuring it reaches the target point.

VI. Summary & Conclusion

In this paper, we have presented the theoretical foun-
dations of i-MOGIC, an approach to unify motion plan-
ning and interaction control into one single control law.
I-MOGIC is formulated as a second order autonomous
DS and has a similar structure to GMR. It has the
following two properties: 1) It can represent both in-
teractive behavior and motion generation, while having
a clear physical interpretation, and 2) It is globally
(asymptotically) stable. We highlighted these properties
through various illustrations and validated it based on
two simulation experiments.
The presented approach at its current form is not

without its limitations. One possible side-effect of using
i-MOGIC is related to the fact that the interaction
behavior and the motion generator are determined by
the same set of parameters. Although this allows us
to ensure stability of the system, it makes it more
difficult to modify each of these behaviors independently.
Furthermore, the theoretical stability proof of i-MOGIC
comes at a cost: i-MOGIC is less flexible in learning
complex motions compared to the conventional two-loop
control architecture.
The choice of a state-varying (i.e. time-invariant) as

opposed to a time-varying impedance controller depends
on the task at hand. For many manipulation tasks,
the time invariance property is beneficial as it offers
robustness in the face of delays during task completion.
A time-varying formulation may fail to provide adequate
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Fig. 6: Generating cyclic motions with combination of two DS.
Please refer to Section V for further information.

impedance parameters at the right time and place if the
robot is moving at a slower pace than originally planned,
for example, due to inaccuracy in the friction model.
However, if the task by itself is time-varying, then the
choice of a time-varying impedance controller could be
beneficial.
Transfer of skills to the robot including impedance

variation information is a field of active research in the
robot learning community. Since i-MOGIC is built upon
a probabilistic model, with some modifications, existing
machine learning techniques (such as the one presented
in our previous work [23]) can be exploited to learn an
estimate of the control policy from demonstrations.
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