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Abstract—This paper is about localising across extreme light-
ing and weather conditions. We depart from the traditional
point-feature-based approach since matching under dramatic
appearance changes is a brittle and hard. Point-feature detectors
are rigid procedures which pass over an image examining small,
low-level structure such as corners or blobs. They apply the
same criteria to all images of all places. This paper takes a
contrary view and asks what is possible if instead we learn a
bespoke detector for every place. Our localisation task then turns
into curating a large bank of spatially indexed detectors and
we show that this yields vastly superior performance in terms
of robustness in exchange for a reduced but tolerable metric
precision. We present an unsupervised system that produces
broad-region detectors for distinctive visual elements, called scene
signatures, which can be associated across almost all appearance
changes. We show, using 21 km of data collected over a period
of 3 months, that our system is capable of producing metric
estimates from night-to-day or summer-to-winter conditions.

I. INTRODUCTION

Matching point features between different images is the
standard approach in visual motion estimation and has led to a
number of impressive systems for pose estimation and/or map-
ping over large scales (e.g., Visual Teach & Repeat (VT&R)
[1], and Visual Simultaneous Localisation And Mapping (VS-
LAM) [2]). Matching low-level features such as edges, blobs,
or corners works well when observing the same scene under
similar conditions (e.g., for online ego-motion estimation).
However, when trying to match images taken at different times
of day or in different seasons, these low-level features often
look utterly different. Larger image structures on the other
hand, such as windows, signs, or doors, offer more hope as
they capture shape and texture on a broader scale. We will
show that if we are careful about how we identify suitable
structures – which we shall refer to as scene signatures –
then they can be reliably matched under large variations in
appearance, thus opening the door to robust localisation.

Low-level point features can be thought of as being on
one extreme of a localisation paradigm, while using whole-
image information, such as SeqSLAM [3], can be thought of
as being on the opposite end of that spectrum. However, it
should be noted that SeqSLAM just provides an estimate on
the topological location of the vehicle and not a metric pose
estimate. If we wish to provide a vehicle controller with a
metric pose estimate, we need something in between these
two approaches.
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(a) By matching scene signatures from a live stream (left) to a memory (right),
we are able to successfully localise our vehicle.

(b) By matching point features from a live stream (left) to a memory (right),
we are unable to successfully localise our vehicle.

Fig. 1. An illustration of the benefits of matching scene signatures, which are
distinctive visual elements such as fences, windows, tree lines, etc., versus the
traditional point-feature approach. Using point features for data association
under extreme appearance changes often fails because point features only
consider low-level structure, like edges, corners, or blobs. Scene signatures
are more robust since they are large, distinctive elements.

In this paper, we present an unsupervised approach to find
distinctive visual elements, such as windows, signs, doors, or
tree silhouettes (see Figure 1), in a given place, πp, which is a
node in a hybrid topological/metric map. These are distinctive
signatures specific to the scene, and so we refer to them as
scene signatures. We wish to stress that the benefit of using
scene signatures over point features is that we can associate
these scene signatures across extreme appearance changes,
such as night to day or sunny to winter.

We shall constrain ourselves to the task of teaching a
vehicle, for example an autonomous car, to localise using
vision. We assume that the vehicle has or will be driven
through the environment on multiple occasions and so we
have many examples of the appearance of the places the
vehicle drives through. Rather than building a map of point
features against which to match point features detected at
run time, we will construct, in an unsupervised way, a large



set of spatially indexed classifiers, which are associated with
topological locations in the world. Each of these classifiers
is carefully constructed to fire on a particular and distinctive
aspect of the environment at that particular place, πp. As the
vehicle progresses through its environment, we will retrieve
the classifiers, {ci}p, relevant to its location, πp, and use them
to identify known structure in the live image feed. These broad
level features are used to create a “weak localiser” of sufficient
accuracy to provide coarse local, metric information about the
vehicle’s pose.

Immediately we should ask, “for what tasks is such preci-
sion adequate?” We envision a hierarchical system in which at
the top level we have very crude topological localiser which
outputs the gross location of the vehicle. This output drives
the localiser described in this work which takes a topological
hint and returns a metric position accurate in orientation but
with perhaps tens of centimeters in translational error. We
assert that for autonomous road-vehicle navigation and control,
we only need a coarse metric estimate of the vehicle’s pose,
after which, lower level lane following and/or curb detection
algorithms can be applied to refine the estimate for a vehicle
controller. This is a shift from the traditional methods that
try and obtain centimeter-level accuracy. For a road vehicle
with on-board obstacle avoidance and lane following software,
global localisation accuracy to the half metre is sufficient.

The novel contributions of this paper are the following:
(i) the introduction of “weak localisers,” which use scene
signatures to perform metric estimation, (ii) an unsupervised
method which finds distinctive scene signatures, and (iii) the
validation on challenging datasets displaying extreme appear-
ance changes, from full light to deep darkness.

II. BACKGROUND

Decades of work have been focused on designing interest-
point detectors and descriptors that can identify repeatable
features and describe them using unique, compact representa-
tions. The output of these systems has enabled efficient feature
correspondence across images taken at different viewpoints.
Popular corner detectors include Harris Corners [4] and FAST
[5], while blob detection can be performed with the Laplacian
of Gaussian or MSER [6]. A range of image-point descriptors
also exist, for example SIFT [7], SURF [8], BRIEF [9], and
ORB [10] to name a few. However, all of these interest-point
detectors/descriptors operate on small image patches, which
can look entirely different under different lighting and/or
weather conditions. We will show that scene signatures enable
matching across extreme changes in appearance because they
contain large, distinctive elements in the image. Note that our
approach is very different from the localisation and mapping
systems of Davison et al. [11], [12], which use image patches
as their landmarks. These methods still rely on interest-point
detection to find the patches and they use small patches (e.g.,
11× 11 pixels in size). By construction, scene signatures are
large distinctive elements in the scene that can be matched
across extreme appearance changes.

Recently, there has been a number of attempts to shift
away from the traditional, straight forward approach of blindly
applying an out-of-the-box point-feature detector/descriptor
for egomotion estimation and/or localisation. Richardson et al.
[13] present a method for learning an optimal feature detector
for Visual Odometry (VO) tasks. Their method searches the
space of convolution filters to find the detector that minimises
reprojection error. Although this method is aimed at improving
standard detection methods for an application specific task, it
still focused on using point features, which works well for VO,
but not for localisation (e.g., matching a sunny day against a
rainy day).

Lategahn et al. [14] present a method for learning an optimal
whole-image descriptor for place recognition. They use a
genetic optimisation approach to find the optimal combina-
tion of fundamental feature blocks to construct their optimal
descriptor. However, as with other methods, such as SeqSLAM
[3], this can only inform the system of the topological position
of the vehicle; it does not provide a metric estimate, which is
important for us as we are interested in controlling a vehicle.

Rublee et al. [10] developed a new feature called ORB,
which builds upon the FAST [15] detector and the BRIEF
[9] descriptor. They use a greedy learning algorithm for
de-correlating BRIEF features under rotational invariance.
However, as this is still based on low-level structure, data
association remains hard under extreme appearance change.
Hundelshausen et al. [16] present a noteworthy descriptor that
goes beyond point features and instead constructs a network
of nodes and directed edges, where each edge is a descriptor
in the network, referred to as a “d-token”. However, because
these descriptors directly sample pixel intensities, this would
not be suitable for the types of extreme appearance changes
we are considering.

Ultimately, we are concerned with the problem of long-term,
robust localisation in outdoor environments, which experience
a great deal of appearance changes (e.g., time of day and/or
time of year). One approach to this problem would be a
system like experience-based navigation [17], which records
distinct visual experiences of the environment as the vehicle
traverses. If the live video stream cannot be matched to a prior
experience, it means the appearance of the world has changed
enough to warrant the creation of a new experience. Although
this is a feasible approach, we offer an alternative that tries
to learn what elements in the environment are stable across
all appearances. In this way, localisation is not done against
numerous experiences, but rather just a collection of distinctive
scene elements.

Recently, Doersch et al. [18] presented a method for extract-
ing geo-distinctive image patches from a collection of images
of London and Paris. Their method was able to find image
patches, or visual elements, of windows, balconies, and street
signs which clearly distinguished the Parisian streets from the
London streets. The method is, in principle, very simple and
relies on a large amount of data and a cross-validation training
scheme. This will be discussed further in the next section.
We have applied this idea to the localisation problem to find



distinctive visual elements that are stable across a wide range
of appearance changes, such as lighting differences and/or
seasonal changes. We call these scene signatures. The benefit
of using scene signatures instead of low-level point features,
which look for corners, edges, or blobs, is that the data
association problem becomes less challenging, since scene
signatures are very distinctive (e.g., doors, signs, windows,
etc). As we use a stereo camera as the primary sensor, we
can perform left-to-right matching and obtain 3D position
information for each scene signature. This allows us to swap
out point features for scene signatures in a VO framework, in
order to produce metric pose estimates.

III. SYSTEM OVERVIEW

Here we describe the two main components of our system:
(i) the notion of a “weak localiser” that uses scene signatures
for pose estimation, and (ii) the offline training algorithm
which produces the scene signatures. As we will show, using
scene signatures instead of point features offers vast improve-
ments in robustness to extreme appearance changes, resulting
in a more robust localisation system.

At a high level, the steps involved in our localisation system
work as follows:

1) Initialisation in the map (e.g., place recognition system),
2) Use dead reckoning (e.g., wheel odometry) to predict

what place, πp, the vehicle is close to and load the bank
of SVM classifiers, {ci}p, associated with that place,

3) Provided that the vehicle is sufficiently close to that
place (e.g., within several meters), we use each SVM
classifier at multiple scales to search for associations in
the live image,

4) For each association, we compute the 3D stereo land-
marks and solve for the optimal transformation estimate
against the map.

An illustration of our system is shown in Figure 2.

A. WEAK LOCALISERS

For a given place, πp, scene signatures represent distinctive
visual elements, such as buildings, trees, or distinctive struc-
ture boundaries in the scene. Examples of scene signatures
can be seen in Figure 3. Note that each place is associated
with a set of SVM classifiers trained on distinctive scene
signatures. We will show in the next section how these scene
signatures can be learned offline in an unsupervised manner.
However, let us assume that for now we have access to a
bank of spatially indexed (for example by distance along a
road) SVM classifiers of scene signatures, {ci}p.

Although these scene signatures represent large areas in the
image, they can still provide a good metric idea of where the
vehicle is locally. Additionally, because we can perform left-
to-right matching between the stereo pair, each scene signature
has an associated 3D point, allowing us to produce metric
estimates local to each place.

In order to obtain sensible solutions, careful handling of
the measurement uncertainties is required. The positional
uncertainty of a visual element in image space, Pzi , will be
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Fig. 2. Offline, we learn scene signatures in the form of SVM classifiers.
Each classifier is associated with a particular place, πp, and spatial region
in the image (i.e., the region that it’s most likely to fire in). At run-time,
we use the bank of pretrained classifiers associated with πp to perform data
association and then localisation. By using larger, distinctive visual elements,
we are able to localise in regions with extreme appearance change, where the
point-feature-based counterpart fails.

a function of the scale, s, at which it was detected, the area
of the patch, a, the search resolution used when detecting the
feature, r, and the SVM detection probability, λ:

Pzi = f(a, r, s, λ). (1)

The relationship between the scale and search resolution is
given by,

Pzi ∝
1

s
Pr, (2)

where Pr is the noise covariance on the search resolution,
which is scaled according to the pyramid level at which the
detector fires. The relationship with the other parameters,
however, is less clear. Intuitively, we expect that the lower
the probability of being a scene signature and the larger the
area of the patch, the less certain the keypoint position should
be. Thus, as a heuristic, we assume that the covariance takes
the following form,

Pzi :=
a

λs
Pr. (3)

Although not considered here, another factor that may be
useful would be a level of confidence in the SVM score [19].

Since each patch feature, zj , has an associated 3D landmark,
pj , we can use the standard stereo model, h(·), to predict the
location of a landmark in frame b relative to some other frame
a, according to the transformation matrix, Ta,b:

zja = h(Ta,b,p
j
b) + nj

a, nj
a ∼ N (0,Pzj

a
). (4)

Additionally, we use a strong prior, T̂a,b, with a small
uncertainty in the vertical offset between the live frame and
the map, as well as roll and pitch, since we know that these
positional differences would be small for a road vehicle. The
prior is important because the translational component of the
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Fig. 3. Example scene signatures learned by our algorithm. Image sets from the same place with varying appearances (represented by run-times in this
figure) are used offline to learn these distinctive scene signatures. SVM classifiers are trained for each cluster of scene signatures and can be used at run-time
on the live image stream to perform data association, followed by metric pose estimation. Note that the shapes vary in size and dimension and tend to pick
up things like changes in structure boundaries, as these are very distinctive (e.g., from road, to grass, to building, to sky).



localisation estimate will not be very accurate owing to the low
number of patches in the foreground. However, we note that
we obtain very good orientation estimates, so combined with
a reasonable egomotion estimate from, say, wheel odometry
or VO, the weak localisers are sufficient in providing pose
estimates with similar accuracy as our INS system (i.e., sub
meters) in large outdoor environments. Including the prior
estimate, T̂a,b, the final least-squares system we seek to
optimize is given by the following:

O(Ta,b) = (5)

1

2

[
q(Ta,b, T̂a,b)

za − g(Ta,b,pb)

]T [
P−1

x 0
0 P−1

z

] [
q(Ta,b, T̂a,b)

za − g(Ta,b,pb)

]
,

where

za :=

 z0a
...

zMa

 , pa :=

p
0
a
...

zMp

 , Pz := diag(Pz0
a
, . . . ,PzM

a
),

(6)
and q(·) is a function that takes two SE3 transformation
matrices and computes a 6×1 error vector, which depends on
the choice of the orientation parameterisation. Note that we
also use the Geman-McClure [20] robust cost function, which
leaves us with the following objective function:

O(Ta,b) =
1

2

∑
i

eTi P
−1
i ei

σ2
i + eTi P

−1
i ei

, (7)

where σi are the M-estimator parameters and each ei rep-
resents an error term (e.g., the prior or measurement). This
has the effect of scaling the covariance to down weight the
contribution of potential outliers during the iterative solve,
which is done using Levenberg Marquardt [21].

B. UNSUPERVISED LEARNING OF SCENE SIGNATURES

This section will describe our unsupervised approach to
learning scene signatures, which are locally distinctive and
stable visual elements. Locally distinctive means that the visual
element is distinct in a local region in image space. Given that
we have a reasonable prior on the motion of the vehicle, it does
not matter if the visual element occurs elsewhere in the image,
it need only be locally distinctive for data association. Stable
means that the visual element can be identified across multiple
images of the same area, under a variety of appearances.

The training algorithm can be divided into the following
steps, where the main adaption of the algorithm described in
[18] occurs in steps 1-3d.

1) Collect a set of N images with a variety of appearances
at a particular location in the world (we have N=31 in
our experiments).

2) For each image, partition it into M tiles (see Figure 4;
we have M=4 in our experiments).

3) For all M tiles, do the following (we refer to each
iteration here as a “round”):

a) Set the same tile in all N images as the “positive”
tile, meaning that all patches sampled from this tile
are in the positive set (light brown in Figure 4).

b) Sample K patches of varying dimension from the
positive tile (i.e., positive set for this round).

c) Select a band around the positive tile; patches
sampled in these regions are put in the negative
set (the blue band in Figure 4).

d) Sample K patches of varying dimension from the
negative band (i.e., the negative set for this round).

e) Split the positive and negative patches sampled
from all the tiles into l positive/negative datasets
(we use l = 3 in our method).

f) For each patch, compute a HOG descriptor [22]
and compute the top 20 nearest neighbours for each
of the positive patches. Note that each grouping of
20 patches represents the seed for a candidate scene
signature cluster.

g) Prune by discarding candidates where more than
half of the nearest neighbours belong to the nega-
tive set, or if there are more than 2 overlaps with
any of the other clusters. This reduces the number
of candidate clusters to approximately 200.

h) Perform cross-validation training on l datasets to
produce a set of SVM classifiers.

In each iteration, we train an SVM detector using the top
k nearest neighbours for each candidate cluster and all of
the negative-set patches as negative examples (k = 5 in our
experiments). Then, the newly trained detectors are applied
to one of the other datasets to select the top k detections for
retraining the SVM. After retraining the SVM, the process
continues: applying the detectors trained on the previous round
to the other datasets. If the top k detections for each dataset
stop changing, then the detector has converged and the image
patches are deemed sufficiently distinctive and stable. As in
[18], we use a maximum of three iterations for convergence.
Note that the output of this process is a set of bespoke SVM
classifiers tuned to a particular place, {ci}p per region in our
map, πp.

Figure 3 shows example clusters that were generated from
this algorithm (note that this is a small subset; typically we find
around 30-40 patches for each image). Each scene signature
has been colour coded to show which cluster it belongs to. As
can be seen, many of the clusters are things like distinctive tree
silhouettes, corners of doors, fences, windows, etc. Another
interesting observation to make is that the road is typically
ignored, which is to be expected as it is mainly a homogeneous
texture and not very distinctive between datasets.

IV. EXPERIMENTS AND RESULTS

In this section, we compare our weak-localiser approach
to a typical point-feature-based approach (SURF [8] in our
case) for the task of localisation. We trained our system with
31 datasets of a 750 m outdoor loop. Places were defined
every 20 m along the route according to an INS system, which
resulted in 31 locations. Thus, for each of the 31 locations
there were 31 training images. Scene signatures were then
generated according to Section III-B. We note however, that
places can be defined by other means, either manually or by
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Fig. 4. Our strategy for partitioning the data to produce scene signatures. We
take a collection of images at a particular location in the world and partition
each image into a number of tiles. In this example, patches (black rectangles)
drawn from the light brown regions are placed in the positive set and patches
drawn from the blue regions are placed in the negative set. Since we have the
same pattern for every image and each image has roughly the same viewpoint,
we are able to seed the training algorithm with elements subject to varying
appearance changes.

(a) Canonical map image: clear and
sunny; noon.

(b) Test image: clear and sunny;
morning.

(c) Test image: clear; evening. (d) Test image: rainy; evening.

(e) Test image: clear and snowy;
morning.

(f) Test image: foggy and snowy;
noon.

Fig. 5. Example test images used in our localisation experiments. These
were chosen due to their large visual variability.
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(a) Feature matches using scene signatures.
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(b) Feature matches for use point features.

Fig. 7. Feature matches for each place over all 5 runs for both the point-
feature system and our scene-signature system. Note how the number of
matches using scene signatures stays relatively consistent across all 5 runs
while point features struggle greatly for the foggy and rainy runs.
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(a) Translational estimation error using scene signatures.
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(b) Translational estimation error using point features.

Fig. 8. Translational estimates errors for the scene signatures and point
features at each place. Note that gaps in the point feature plots represent
localisation failures (i.e., either a failure to match or a divergent solution).

using place recognition techniques. The only important factor
is that the training images for a particular place have roughly
the same viewpoint in the area.

Our code was implemented in MATLAB and takes approx-
imately one hour of learning per place. We note that we did
not exploit any parallel processing, which would significantly
reduce processing times as the training in each image tile
can be done independently. As each place is represented by a
collection of SVM classifiers, the total storage size per place
is 10 ∼ 15MB.

For our test data, we used 5 separate datasets that included
a sunny day run, an evening run, a rainy evening run, a snowy
run, and a snowy and foggy run. Examples of some test images
are shown in Figure 5. The goal of these experiments is to
show that we can use scene signatures and a weak localiser to
produce metric estimates regardless of the appearance changes.
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(a) Clear, evening run.
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(b) Rainy, evening run.
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(c) Clear and snowy run.
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(d) Foggy and snowy run.

Fig. 6. Localisation results, where the arrows represent 2D projections of the vehicle coordinate frames for both methods. As both the point-feature and our
scene-signature method were able to localise all frames for the first dataset, we omitted the plots here and turn to the more challenging cases. Our scene-
signature approach was able to localise all frames, whereas the point-feature-based system failed on 33% of the places. These failures have been indicated on
the plots with a large black circle. Note that almost all estimates agree to the INS ground truth within meters.

To reiterate, our localisation strategy is as follows. After
initialising in the map, we use dead reckoning to predict when
we are within a couple meters of a place, after which we load
the SVM classifiers associated with that place and run them
on the live image to detect the scene signatures. Once we
have associated these scene signatures, we can perform local,
metric, pose estimation. This approach of predicting where
the nearest topological node is and then localising against the
map is similar to teach-and-repeat systems such as McManus
et al. [23] and Furgale and Barfoot [1], except that our map
keyframes are separated by larger distances.

Figure 6 presents the localisation results for the 5 live runs
against our map that contains a bank of trained classifiers per
place. The results show the live and reference INS trajectories
as well as the localisation estimates for both our system and
the baseline. Unfortunately, as our INS system drifts on
the order of meters from one dataset to the next, it proved
to be ill-suited to asses the accuracy of the estimates. We
instead exploit the fact that the training images are gathered at
approximately the same position and use a generous tolerance
on the translational/rotational estimates to define a localisation

TABLE I
NUMBER OF FRAMES LOCALISED AGAINST OUT OF 31 PLACES.

Live Run Scene Signatures Point Features
Clear and sunny morning 31 31

Clear evening 31 28
Rainy evening 31 9

Clear and snowy morning 31 24
Foggy and snowy afternoon 31 12

failure. Letting x̂ := [t̂T , θ̂T ]T represent our estimate, we
define a localisation failure if ||t̂||2 > α or ||θ̂||2 > β, where
we chose α = 4m and β = 30◦.

Table I shows the number of frames localised against for
each run (according to INS ground truth), where we see that
our system was able to localise all frames in all 5 datasets,
despite extreme variations in appearance. The point-feature-
based system was unable to localise a majority of the frames
for the rainy evening run and the foggy snowy run. Figure 7
shows the number of feature matches for each place over all
5 runs. Figure 8 shows the estimation errors for each place.
Figure 9 shows examples of our system succeeding where the
point-feature system failed.



Fig. 9. Examples where our method was able to localise the live run (left image of each pair) with the map (right image of each pair), while point-features
failed. Only a subset of the matches are being shown for clarity. On average, we obtained 24 matches per place across all five datasets using scene signatures.
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Fig. 10. Illustration of our runtime localisation approach. Localisation
updates occur at 2-5 Hz, while Visual Odometry updates occur at 15-20 Hz.
After we receive a localisation update, we perform posegraph relaxation over
a sliding window, indicated by the active region in green.

V. SYSTEMS WORK

The results and method described in this paper represent
our initial iteration of the scene-signature approach, which
was coded in Matlab and ran offline. We have since ported
the code to C++ to obtain realtime performance. Our linear-
SVM detection class uses OpenCV’s OpenCL HOG for feature
extraction. Our scene-signature detection block runs in a
separate thread at approximately 2-5 Hz. Our main thread runs
Visual Odometry at approximately 15-20 Hz to predict poses
in between localisations. As the localisation updates occur at
a slower rate, we perform posegraph relaxation over a sliding
window to obtain our final estimate (see Figure 10).

VI. DISCUSSION AND CONCLUSION

We have demonstrated a new approach to the localisation
task, which departs from the traditional point-feature system
by learning spatially indexed classifiers of distinctive visual
elements called scene signatures. Although we are unable to
obtain accuracy on the order of centimeters, we are more
robust to extreme appearance change and obtain the same
type of coverage as a topological localisation system, like
SeqSLAM [3], but with the added benefit of metric pose.

Scene signatures enable robust, metric localisation where
traditional systems simply fail. Each bank of place-dependant
SVM classifiers is run on the live image stream to perform
the data association, and a standard frame-to-frame localisation
framework is used to obtain the metric pose estimate. We have
shown that our approach can successfully localise the vehicle
across very challenging lighting and/or weather conditions. We
believe that point features alone are simply not enough for
robust, long-term localisation systems and that our approach
is a step in the right direction.
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