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Abstract—We propose a new formulation and algorithms for
the Vehicle Routing Problem (VRP). To accommodate persistent
surveillance missions, which require executions in infinite time,
we define Persistent VRP (P-VRP). The vehicles consume a
resource, such as gas or battery charge, which can be replenished
when they visit replenish stations. The mission specifications
are given as rich, temporal logic statements about the sites,
their service durations, and the time intervals in which services
should be provided. We define a temporal logic, called Time-
Window Temporal Logic (TWTL), whose formulae allow for
simple, intuitive descriptions of such specifications. Two different
optimization criteria are considered. The first is the infinite-time
limit of the duration needed for the completion of a surveillance
round. The second penalizes the long-term average of the same
quantity. The proposed algorithms, which are based on concepts
and tools from formal verification and optimization, generate
collision-free motion plans automatically from the temporal logic
statements and vehicle characteristics such as maximum opera-
tion time and minimum replenish time. Illustrative simulations
and experimental trials for a team of quadrotors involved in
persistent surveillance missions are included.

I. INTRODUCTION

The Vehicle Routing Problem (VRP) was first formulated
in [4] as a distribution problem for gasoline from a terminal to
service stations using trucks. The basic formulation of VRP is
as follows [12, 9]: given N identical vehicles initially located
at a depot, a set of sites, and a distance matrix between the
sites and the depot, compute a tour for each vehicle such that
each tour starts and ends at the depot, every site is visited
exactly once, and the overall travelled distance is minimized.
The VRP is known to be NP-hard [6]. Several versions of
this problem, which incorporate constraints on the carrying
capacity, delivery time frames, and delivery order have been
developed [22]. With particular relevance to this paper is the
VRP with Time Windows (VRPTW), in which a service time
interval (window) is specified for each site [22].

In this paper, we introduce P-VRP, a persistent surveillance
version of VRP. The new problem formulation can be seen as
a four-fold extension of a relaxed version of VRPTW, in which
no restriction is implicitly assumed about the number of visits
to the sites. First, we allow for rich, temporal logic constraints
on the order in which sites are to be visited. Second, to ac-
commodate persistent surveillance missions, our problem has
infinite-time semantics. For example, in our new, user-friendly

specification language, called Time-Window Temporal Logic
(TWTL), we can describe missions such as “Service sites A,
B, and C infinitely often within time windows [2,7], [6,12],
and [5,20], respectively. The service times for A, B, and C
are 2, 3, and 1, respectively.” 1 Third, we incorporate resource
constraints. We assume that, while moving in the environment,
each vehicle consumes a resource (e.g., battery charge or
fuel) proportionally to the time away from a depot. There is
an upper limit on the quantity of the resource each vehicle
can store. To replenish their reserves, the vehicles need to
return to the depots. Finally, to allow for many revisits to
a particular location, we explicitly model and deal with the
collision avoidance problem.

Our proposed technical approach brings together concepts
and tools from automata theory, formal verification, and op-
timization. Given a specification as a formula of TWTL, we
first translate it to a formula in an off-the-shelf temporal logic
called syntactically co-safe Linear Temporal Logic (scLTL)
[16], and then to a finite state automaton that accepts the
satisfying language. This is then composed with finite tran-
sition systems modeling the motion of the vehicles in the
environment and the charging constraints. In this product
automaton, among all the collision-free motion plans that
satisfy the specification and the charging constraints, we select
an optimal one. We explore two different optimization criteria.
The first is the infinite-time limit of the duration needed for
the completion of a surveillance round. The second penalizes
the long-term average of the same quantity. These criteria lead
to NP-complete problems. We impose some additional restric-
tions to reduce the problems to manageable sizes. We present
simulation case studies and experimental trials with a team of
quadrotors involved in a temporal logic persistent surveillance
mission with deadlines. The quadrotors can automatically land
and charge at a set of fixed charging stations.

This work is related to (and inspired from) several recent
works that promote the use of temporal logics and formal
methods [1] for robot motion planning and control [15, 24,
3, 11, 5, 20, 23]. In particular, [20, 23] consider optimal persis-
tent surveillance problems with temporal logic constraints and

1The “classical” VRP constraint that all sites need to be visited exactly
once can be easily enforced as a TWTL formula.



optimality guarantees. However, resource constraints are not
considered. In addition, the specification language, which is
off-the-shelf LTL, does not capture time windows. Resource
constraints for the routing problem restricted to one vehicle
and the classical setup of servicing all sites (i.e., no temporal
logic specifications) are considered in [21].

The closest related work is [10], which contains a mixed
integer linear programming formulation of VRP called VRP-
MTL. The specifications are given as formulas in a fragment
of Metric Temporal Logic (MTL) [14], where the temporal
operators can only be applied to atomic propositions or their
negations. The durations of the transition between sites are
fixed and each site can be visited at most once. Our logic,
TWTL, strictly contains the MTL fragment used in [10]. In
our approach, a site can be serviced multiple times during a
tour if it is required by the specification, and bounds (intervals)
on transition durations are allowed. VRL-MTL does not take
into account resource constraints related to vehicle movement,
such as fuel or battery life, considers a single task over a
finite horizon, and optimizes a weighted sum of the distances
traveled by the vehicles.

II. ENVIRONMENT AND VEHICLE MODELS

For simplicity of presentation, we assume the team is made
of N identical vehicles. At the end of the paper, we discuss
how this assumption can be relaxed. Let E = (Q = S ∪
C,∆, $) be a graph environment, where S is the set of sites
and C is the set of replenish stations or depos. An edge e ∈
∆ ⊆ Q × Q denotes that a vehicle can move between the
source and destination of the edge. We assume that the vehicles
can deterministically choose to traverse the edges of E , stay at
a site for service, or stay docked in a charging station. Each
edge has an associated duration given by $ : ∆ → Z≥1.
We assume that the duration associated to an edge includes
the time for obstacle avoidance maneuvers and docking or
undocking, if applicable. For now, we assume that this value is
the exact time that a vehicle needs to travel the corresponding
edge. However, the method developed in this paper also works
for the case when this value is an upper bound for the travel
time.

We assume that a collision between two vehicles can occur
in one of the following three situations: (1) both are at the
same node at the same time; (2) both traverse the same edge
at the same time (they may start the motion at different times);
(3) a vehicle arrives at a node less that tcol after the departure
of another vehicle from the same node.

Each vehicle has a limited amount of a resource, such as
fuel or battery charge, and must regularly return to a replenish
station. For simplicity, we assume that the resource is battery
charge (level), and we will refer to the replenish stations
as charging stations. We use top to denote the maximum
operation time for a vehicle starting with a fully charged
battery and tch to denote the charging time starting with
an empty battery. For simplicity, we assume that time is
discretized, and all durations (e.g., $(∆), tcol, top, tch) are

expressed as an integer multiple of a time interval ∆t. Let
γ = tch

top
≥ 1 be the charge-discharge (integer) ratio.

The battery state bt(i) of vehicle i ∈ {1, . . . , N} at time
t ∈ Z≥0 is discretized such that bt(i) ∈ {0, . . . , tch}. The
update rule for bt(i) after d time units is defined as follows:

bt+d(i) =

{
min{bt(i) + d, tch} vehicle i is docked
bt(i)− γd otherwise

(1)

The batteries may be charged at any of the charging stations
C. Charging may start and stop at any battery state. Once a
vehicle is fully charged, it will remain fully charged until it
leaves the charging station. We assume that at the start of the
mission all vehicles are fully charged and docked.

At each time, each vehicle may be in one of the following
four states: (1) moving between sites and charging stations, (2)
servicing a request at a site, (3) charging or (4) idle if docked
and fully charged. If a vehicle is either moving or servicing a
request, we will say that the vehicle is active. A time interval
such that all vehicles are docked and at least one is charging
is called no flight time (NFT). A time interval in which all
vehicles are idle is called idle time. We require that NFTs
and idle times are maximal time intervals, i.e. they may not
be extended on either side while maintaining their defining
property.

For q ∈ Q, we use ~q to denote that a vehicle is moving
towards q. Let ~Q = {~q | q ∈ Q}. A control policy for the
N vehicle system is a sequence v = v1v2 . . . where vt ∈
(Q∪ ~Q)N specifies at each time t ∈ Z≥0 and for each vehicle
i ∈ {1, . . . , N} if vehicle i is at a site or charging station or
if it is moving. Let vt(i) and v(i), i ∈ {1, . . . , N}, denote the
control value for vehicle i at time t and the control policy for
vehicle i (i.e., the sequence of control values), respectively.
Then a transition (q1, q2) ∈ ∆ performed by vehicle i starting
at time t will correspond to vt(i) = q1, vt+d(i) = q2 and
vt+k(i) = ~q2, k ∈ {1, . . . , d − 1}, where d = $((q1, q2)) is
the duration of the transition. Servicing or charging for one
time interval (∆t time) by vehicle i at time t corresponds to
vt(i) = vt+1(i) ∈ Q.

For a control policy v = v1v2 . . . we define the
corresponding output word o = o1o2 . . ., where ot =
{vt(i)|vt(i) ∈ S, i ∈ {1, . . . , N}} is the set of all sites occu-
pied by the N vehicles at time t ∈ Z≥0. We use ε to denote
that no site is occupied. Let q[d] and qω denote d and infinitely
many repetitions of q, respectively.

Example II.1. An example for the case of N = 2 vehicles, 3
sites, and 3 charging stations is shown in Fig. 1. A possible
control policy v for vehicle 1 (blue) and vehicle 2 (red) is:

v(1) = Ch
[1]
3
~C [3]C [4] ~A[2], A[3] ~Ch

[3]

1 , Ch
[18]
1 Ch

[54]
1(

Ch
[1]
1
~C [3]C [4] ~A[2]A[3] ~Ch

[3]

1 Ch
[18]
1 Ch

[54]
1

)ω
v(2) = Ch

[1]
2 Ch

[17]
2

~B[3]B[3] ~C [4]C [3] ~Ch
[4]

3 Ch
[54]
3(

Ch
[1]
3 Ch

[17]
3

~B[3], B[3] ~C [4]C [3] ~Ch
[4]

3 Ch
[54]
3

)ω (2)

Under control strategy (2), the blue vehicle services sites C
and A and the red vehicle services sites B and A infinitely



often. The blue and red vehicles always return to Ch1 and
Ch3, respectively. The corresponding output word is

o =
(
ε[4]C [4]ε[2]A[3]ε[8]B[3]ε[4]C [3]ε[58]

)ω
.

Fig. 1: An environment with 3 sites, S = {A,B,C}, and 3 charging
stations, C = {Ch1, Ch2, Ch3}. The two numbers associated to
each edge correspond to the durations for the two directions of the
edge, e.g., the durations of edges (B,C) and (C,B) are 5 and 6,
respectively. The vehicles, shown in blue and red, start fully charged
from the charging stations Ch3 and Ch2, respectively. The charging
time is tch = 60, the operation time is top = 20 (γ = 3), and the
collision time is tcol = 2.

III. SPECIFICATION LANGUAGE: TWTL

Our goal in this work is to be able to deploy (generate
a control policy for) the N vehicles from rich, temporal
logic specifications about the service time windows and their
durations. In this section, we define a temporal logic, called
Time Window Temporal Logic (TWTL), whose semantics is
rich enough for a large class of robotic missions. In contrast
to off-the-shelf logics such as MTL and BLTL, which can, in
principle, be used to specify the same class of tasks, TWTL is
also easy to use (a comparison is provided at the end of this
section).

Formally, the syntax of TWTL is given defined as:

φ ::= > | s |φ1 ∧ φ2 |φ1 ∨ φ2 | ¬φ1 |φ1 · φ2 |Hdp | [φ1][a,b]

where > is the “true” constant; s ∈ S is a site label; ∧, ∨,
and ¬ are the conjunction, disjunction, and negation Boolean
operators, respectively; · is the concatenation operator; Hd

with d ∈ Z≥0 is the hold operator; and [ ][a,b] with 0 ≤ a ≤ b
is the within operator.

The semantics of the operators are defined with respect to
finite subsequences of an output word o. Let ot1,t2 be the
subsequence of o which starts at time t1 ≥ 0 and ends at time
t2 ≥ t1. Trivially, ot1,t2 |= s, s ∈ S, if ot1 |= s, where ot1 |= s
means s ∈ ot1 . ot1,t2 satisfies φ1∧φ2, φ1∨φ2, or ¬φ if ot1,t2
satisfies both formulae, at least one formula, or does not satisfy
the formula, respectively. Hds specifies that s ∈ S should be
repeated for d time intervals, i.e. ot1,t2 |= Hds, d ≤ t2 − t1,
if ot1+i |= s for i ∈ {0, . . . , d}. The within operator [φ][a,b]

bounds the satisfaction of φ to the time window [a, b]. We
define the time bound ‖φ‖ of a TWTL formula φ as follows:

‖φ‖ =



0 if φ ∈ {>, s}
max(‖φ1‖ , ‖φ2‖) if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}
‖φ1‖ if φ = ¬φ1

‖φ1‖+ ‖φ2‖+ 1 if φ = φ1 · φ2

d if φ = Hds

b− a ifφ = [φ1]
[a,b]

(3)

Formally, ot1,t2 |= [φ][a,b] if there is i ∈ {a, . . . , b−‖φ‖} such
that ot1+i,t2 |= φ. Concatenation φ1 ·φ2 specifies that first φ1

must be satisfied and then immediately φ2 must be satisfied.
Formally ot1,t2 |= φ1 · φ2 if there is i ∈ {0, . . . , ‖φ1‖} such
that ot1,i |= φ1 and oi+1,t2 |= φ2 and i has minimum value.
An output word o is said to satisfy a formula φ if o0,‖φ‖ |= φ.

TWTL formulae may be used to specify properties such as:
(1) servicing within a deadline: “service A for 2 time units
before 10” – [H2A][0,10]; (2) servicing within time windows:
“service A for 4 time units within [3, 8] and B for 2 time
units within [4, 7]” – [H4A][3,8] ∧ [H2B][4,7]; (3) servicing in
sequence: “service A for 3 time units within [0, 5] and after
this service B for 2 time units within [4, 9]” – [H3A][0,5] ·
[H2B][4,9]; (4) enabling conditions: “if A is serviced for 2
time units within 9 time units, then B should be serviced
for 3 time units within the same time interval (i.e., within
9 time units)” – [H2A ⇒ [H3B][2,5]][0,9], where ⇒ denotes
implication. Note that Boolean operators characterize parallel
execution or alternatives, concatenation serial tasks, while the
within and hold operators define satisfaction bounds.

It is important to note that, by using existing temporal
logics, it is difficult to specify missions such the ones exem-
plified above. For example, in BLTL, the formulae for specifi-
cations (2) and (3) above are F≤8−4G≤4A ∧ F≤7−2G≤2B
and F≤5−3(G≤3A ∧ F≤9−2+3G≤2B), respectively. In the
MTL fragment from [10], properties (2) and (3) translate
to
∨8−4
i=3 G[i,i+4]A ∧

∨7−2
i=4 G[i,i+2]B and

∨5−3
i=0 (G[i,i+3]A ∧∨i+3+9−2

j=i+3+4 G[j,j+2]B), respectively. In the above formulae, F
and G are the “classical” eventually and always operators.
Our experience, which motivates the introduction of TWTL,
shows that translating common robotics specifications to these
logics is also prone to errors. Another advantage of TWTL
is that the concatenation operator is explicitly defined. Under
some reasonable assumptions, we can show that concatenation
takes linear instead of quadratic time to translate to Finite State
Automaton (FSA), because the considered languages are com-
posed of bounded words. In BLTL and MTL, concatenation is
expressed in terms of the other operators and this advantage
is lost. Also, Finite State Cover Automata (FSCA), which are
specifically tailored to the structure of TWTL can lead to a
significant decrease in the size of the automata (in some cases
by an exponential factor).

IV. P-VRP FORMULATION

Let v be a control policy. We say that v is feasible if at
each moment in time the N vehicles are pairwise in collision



free states and have non-negative battery states, i.e., bt(i) ≥ 0
for all i ∈ {1, . . . , N} and t ∈ Z≥0.

Definition IV.1 (Persistent surveillance). A control policy is
said to satisfy the persistent surveillance specification Gφ,
where φ is a TWTL formula, if the generated output word
satisfies the TWTL formula φ infinitely often and there is no
idle time between any two consecutive satisfactions of φ.

Note that, while the satisfaction of Gφ does not allow for
idle time between successive satisfactions of φ, there may be
no flight time to allow for the vehicles to recharge.

Problem IV.2 (P-VRP Completeness). Given an environment
E = (Q = S ∪ C,∆, $), N vehicles, operation time top,
charging time tch, collision time tcol, and a TWTL formula φ
over S, find a feasible control policy that satisfies Gφ if one
exists, otherwise report failure.

Let v be a feasible control policy satisfying Gφ. We define a
loop as a finite subsequence of v starting with the satisfaction
of the formula φ and ending before the next satisfaction.

Example IV.3 (Ex. II.1 revisited). Consider a mission in
which it is required to service site A for 2 time units within
[0, 12] and site C for 3 time units within [0, 9]. In addition,
within [0, 32], site B needs to be serviced for 2 time units
followed by either A or C for 2 time units within [0, 8]. All
the above requirements need to be satisfied infinitely often.
The corresponding formula is Gφtw, where

φtw = [H2A][0,12] ∧ [H2B[H2A ∨ C][0,8]][0,32] ∧ [H3C][0,9]

The control policy from Eqn. (2) satisfies the above persis-
tent surveillance specification. It is easy to note that it is also
feasible because at most one vehicle is active at all times and
the battery states for both vehicles are always non-negative.
For each vehicle, the control policy has a loop ending after
a NFT, which is marked in gray. The NFTs ensure that the
vehicles start each loop fully charged.

Let T (k) be the start time of the k-th loop and ∆T (k) =
T (k + 1)− T (k) be the loop time. Let

J1(v) = lim sup
k→∞

∆T (k) (4)

and

J2(v) = lim
k→∞

T (k + 1)

k
= lim
k→∞

∑k
i=1 ∆T (i)

k
(5)

be two cost functions that penalize the asymptotic upper
bound of the loop time and the long-term average loop time,
respectively.

Problem IV.4 (Optimality). Under the same assumptions
stated in Prob. IV.2, find a satisfying and feasible control policy
that minimizes J1 (or J2) if one exists, otherwise report failure.

Our approach to Probs. IV.2 and IV.4 is inspired from
automata-based model checking. The TWTL formula is trans-
lated to a syntactically co-safe Linear Temporal Logic (scLTL)

[16], and then to a finite state automaton that accepts the
satisfying language. This is then composed with finite tran-
sition systems modeling the motion of the vehicles in the
environment and the charging constraints. The satisfiability
and optimality problems are solved on the resulting product
automaton.

V. CONTROL POLICY

For a finite set Σ, we use |Σ|, 2Σ, and Pk(Σ) to denote its
cardinality, power set, and set of k-permutations, respectively.
The empty set is denoted by ∅.

Algorithm 1: Product Automaton
Input: T – transition system
Input: φ – specification as a TWTL formula
Input: N – number of vehicles
Input: tcol – collision time
Input: top, tch – operation time and charging time

1 Construct product transition system T N for the ME or FC
operation mode

2 Generate charging FSA Ach with top, tch for N vehicles
3 Construct product Pch = T N ×Ach
4 Transform φ to an scLTL formula ψ
5 Construct the FSA Aspec corresponding to ψ
6 Construct product automaton P = Pch ×Aspec

Algorithm 2: Planning Algorithm – completeness
Input: T – transition system
Input: φ – specification as a TWTL formula
Input: N – number of vehicles
Input: tcol – collision time
Input: q0 ∈ PN (C) – initial vehicle locations
Input: top, tch – operation time and charging time
Output: v – control policy

1 P ← ConstructPA(T , φ,N, tcol, top, tch)
2 G = (V,E), V = PN (C), E = ∅
3 for (q1, q2) ∈ V × V do
4 if there is a satisfying path in P starting fully charged in

q1 and ending fully charged in q2 then E ← E ∪ (q1, q2)
and controlP(q1, q2) stores the computed path in P

5 if G is acyclic or no cycle is reachable from q0 then
6 return Failure
7 else
8 find a cycle qc and a path qp to the cycle in G
9 return βTN (controlP(qp)(controlP(qc))

ω)

A. Motion model

We consider two modes of operation: (1) mutually exclusive
mode, which assumes that at any given time at most one
vehicle is active (i.e., moving or servicing a request), and (2)
fully concurrent mode, which does not place any restrictions
except that the vehicles must be in collision free states at
all times. The mutually exclusive mode of operation has the
advantage that it guarantees collision free control policies and
also extended overall operation time for the vehicles. This is
a good fit for surveillance missions, but may not be desired



for rescue missions, where a parallel search approach may be
more effective. Also, as discussed at the end of the section,
the complexity of the presented algorithms is lower for the
mutually exclusive mode.

The motion of a single vehicle is captured by a weighted
transition system T = (Q, q0, ∆̄, $̄,Π, h), where Q = S∪C is
the set of states, q0 ∈ C is the initial state, ∆̄ = ∆∪{(q, q)|q ∈
Q} is the set of transitions, $̄ : ∆̄ → Z≥1 is the weight
function, Π = S ∪ {ε} is the alphabet, and h : Q → Π is
the labeling function. The weights represent the durations of
transitions such that $̄(q, q′) = $(q, q′), for q 6= q′, and
$̄(q, q′) = 1, for q = q′. Thus, servicing and docking are
modeled as self-loop transitions with duration 1. The labeling
function only assigns values to sites, i.e. h(q) = q for q ∈ S
and h(q) = ε otherwise.

1) Mutually exclusive (ME) operation mode: In order to
capture the motion of all vehicles at the same time, we define
a mutually-exclusive product transition system (PTS) as a
tuple T N = (Q̃, q̃0, ∆̃, ω̃,Π

N , h̃). The set of states is defined
such that there is at most one active vehicle, Q̃ = PN (C) ∪
(
⋃N
k=1{(q1, . . . , qN )|qk ∈ S, (q1, . . . , qk−1, qk+1, . . . , qN ) ∈

PN−1(C)}). At the initial state, it is assumed that all vehi-
cles are docked, q̃0 ∈ PN (C). A transition (q1, . . . , qN ) →
(q′1, . . . , q

′
N ) ∈ ∆̃ if: (1) qi = q′i, ∀i, or (2) qk → q′k ∈ ∆,

qi = q′i, ∀i 6= k and q′k 6= qj , ∀j 6= k. The weight of a
transition is 1 if the two endpoints are the same or equal to
the weight of the transition in ∆ corresponding to the second
case above. The labeling function is defined component-wise,
h̃(q1, . . . , qN ) = (h(q1), . . . , h(qN )).

2) Fully concurrent (FC) operation mode: We de-
fine a similar product transition system (PTS) T N =
(Q̃, q̃0, ∆̃, ω̃,Π

N , h̃) as before, but in this case we account for
simultaneous active vehicles and collisions. The simultaneous
motions of the vehicles lead to a synchronization problem. Due
to space constraints, we only include an informal description
of how this synchronization problem is solved. We split all the
edges of the single-vehicle transition system T into edges of
duration 1. We then proceed to compute the full PTS, which
captures all possible motions of the N vehicles, using this
modified transition system. The last step is to eliminate the
states and edges of the PTS that determine collisions according
to the description from Sec. II.

Note that we achieve collision avoidance using temporal
separation, instead of spatial separation as in the case of
geometric approaches such as RRT [19, 18] or PRM [13].
In our case, this is beneficial since it prunes the PTS of
undesired states and actually helps lower the computation time
in the fully concurrent mode. Also, for the case of quadrotors,
temporal separation also avoids undesired aerodynamic effects
which may arise due to close proximity of the vehicles. One
example is the loss of lift when a quadrotor is directly below
another one. These phenomena are somewhat hard to encode
in geometric approaches.

B. Charging model
The charging process is modeled as a Finite State Au-

tomaton (FSA). Recall that the charging time tch is an
integer multiple of ∆t and γ = tch

top
∈ Z≥1 (see Sec. IV).

For the ME operation mode, the charging FSA is Ach =
(SchA , s

ch
0 ,Σch, δchA , F

ch
A ). SchA = ({0, . . . , tch})N is the set

of states. A state stores the battery states for all vehicles. The
initial state is sch0 = (tch, . . . , tch) and corresponds to all ve-
hicles being fully charged. The alphabet is Σch = ({(i, 0)|1 ≤
i ≤ N} ∪ {(0, i)|1 ≤ i ≤ N} ∪ {(i, i)|0 ≤ i ≤ N}) × D,
where D is the set of the durations of all transition of T .
Each triple represents the current and previous active vehicle
and the duration of a transition from T . The value 0 for
the current or previous active fields indicates that no vehicle
is active. By this convention, the three sets of pairs in the
definition of the alphabet capture undocking, docking, and
moving or servicing performed by vehicle i, respectively. The
transition function is defined for two cases: (1) if all robots
are recharging (c = p = 0), then

δchA ((t1, . . . , tN ), (c, p, d)) =

(min(t1 + d, tch), . . . ,min(tN + d, tch));

(2) if one robot is active (c > 0 or p > 0), then

δchA ((t1, . . . , tN ), (c, p, d)) =

(min(t1 + d, tch), . . . , ta − γd, . . . ,min(tN + d, tch)),

where a = max(c, p). Note that the transition function
resembles the charging rule defined in Sec. II. The set of final
states F chA can be the whole set of states SchA if no restrictions
on the final battery states are defined. However, we will impose
some restrictions on F chA later in this section.

For the FC operation mode, we modify the alphabet to
Σch = {0, 1}N × {0, 1}N , which specifies for each vehicle if
it was docked or active in the current and previous time steps,
respectively. The transition function must also be adapted.
Let (t′1, . . . , t′N ) = δchA ((t1, . . . , tN ), ((c1, . . . , cN ), (p1, . . . , pN ))).
Then t′i = min(ti + 1, tch) if ci = pi = 0, or t′i = ti − γ
otherwise, for all i ∈ {1, . . . N}. Note that, in this case, we
do not include the durations of transitions in the alphabet,
because by construction all the transitions of the PTS have
duration one in the FC mode.

C. Specification

To enforce the specification, we encode it as an automaton.
We first translate the TWTL formula into a formula of a
fragment of LTL, called scLTL [16]. We then use an off-the-
shelf tool, such as scheck [17], to obtain a FSA Aspec that
accepts the language over 2S that satisfies the formula.

Formulas of scLTL use standard Boolean operators and tem-
poral operators such as X (next), U (until), and F (eventually).
Since we assume that all durations are given as integers, we
only use the X (next) operator to express the TWTL operators.
Specifically, Hdp :=

∧d
i=0 X

ip, [φ][a,b] :=
∨b−‖φ‖
i=a Xiφ̃ and

φ1 · φ2 := φ̃1 ∧
(∨‖φ1‖

i=0 ((φ̃1 ∧
∨
p∈S X

ip) =⇒ Xiφ̃2)
)

, where

Xi, i ≥ 0, is the iterated X operator, and φ̃ is the scLTL
version of the TWTL formula φ. Note that the size of obtained
scLTL formulae is of the order of the size of the TWTL



formula times its time bound, thus yielding formulae which are
too long to handle by an operator. Consider the example from
Sec. III, where the specification is to “satisfy A for 2 time units
before 10”. The TWTL is [H2A][0,10], while the corresponding
scLTL formula has 24 operands and 75 operators for a total
size of 99. Thus, a specification language such as TWTL,
which incorporates time bounds in the operators and avoids
the explosion of the formulae sizes, becomes necessity, rather
than convenience.

D. Completeness

To provide a solution to Problem IV.2, we first define a
product automaton that captures all feasible motions of the
team that satisfy the specification and the charging constraints.
First, we construct the product automaton Pch = T N × Ach
between the motion model T N and the charging FSA Ach.
We define it as Pch = (SchP , s

ch
P0,∆

ch
P , ω

ch
P ,Π

N , hchP ), where
SchP = Q̃×SchA is the set of states, schP0 = (q0, s

ch
0 ) is the initial

state, ∆ch
P ⊆ ∆̃× δchA is the transition function, ωchP : ∆ch

P →
Z≥1 is the weight function, and hchP : SchP → ΠN is the
labeling function. ωchP and hchP are inherited from the transition
system T N , i.e. for all (q, t) ∈ SchP and ((q, t), (q′, t′)) ∈ ∆ch

P
we have ωchP ((q, t), (q′, t′)) = ω̃(q, q′) and hchP (q, t) = h̃(q).

In the ME mode, a transition (q̃, t) → (q̃′, t′) is in ∆ch
P if

q̃ → q̃′ ∈ ∆̃, t →(c,p,d) t′, d = ω̃(q, q′) and c and p are the
indices of the active vehicle in states q′ and q, respectively. If
all vehicles are charging at state q or q′, then p = 0 or c = 0,
respectively. For the FC mode, a transition (q̃, t)→ (q̃′, t′) is
in ∆ch

P if q̃ → q̃′ ∈ ∆̃ and t→(c,p) t′, where c = (c1, . . . , cN )
and p = (p1, . . . , pN ) specify for each vehicle i ∈ {1, . . . N}
if it is active in states q′ and q, respectively.

Second, we construct the product automaton P = Pch ×
Aspec. This is defined as P = (SP , s0, δP , ωP , FP), where
SP = SchP × S

spec
A is the set of states, s0 = ((q0, s

ch
0 ), sspec0 )

is the initial state, δP ⊆ ∆ch
P ×δ

spec
A is the transition function,

ωP : δP → Z≥1 is the weight function and FP = SchP ×
F specA is the set of final states. A transition (p, s)→ (p′, s) ∈
∆P if p → p′ ∈ ∆ch

P and s →σ s′. In the ME mode, σ =
ε[d−1]hchP (q′c) if c > 0 and σ = ε[d] otherwise, where c is the
index of the active vehicle in p′ and d = ωchP ((p, s), (p′, s′)) is
the duration of the transition. For the FC mode, σ = {h(q′i)|i ∈
{1, . . . , N}} ∈ 2Π. As before, the weight function is inherited
from the product Pch, i.e. for every ((p, s), (p′, s′)) ∈ ∆P we
have ωP((p, s), (p′, s′)) = ωchP (p, p′).

The algorithm to compute the product automaton P is
outlined in Alg. 1. A feasible and satisfying control policy
is computed in Alg. 2 as a projection on T N of a path from
P . In Alg. 2, βT denotes the canonical projection on the T -
component of the product.

We now show that Alg. 2 produces a feasible and satisfying
control policy if one exists, thus solving Prob. IV.2. The
following statements are true for both modes of operation
(ME and FC). The only difference is in the construction of
the product automaton P , line 1 in Alg. 2.

In the following, for two vectors b and b′, b′ ≥ b if the
relationship holds component-wise. The following proposition

holds trivially.

Proposition V.1. Let v be a feasible control policy starting
with an initial charging state b. Then v is a feasible control
policy starting with any initial battery state b′ ≥ b.

Theorem V.2. Algorithm 2 is complete.

Proof: Let q0 be the initial state of the N vehicle system.
First, we reduce the problem using Prop. V.1, which implies
that if a control policy v is feasible then we can construct
another control policy from it by appending at the end of
each loop a NFT such that every loop starts with the vehicles
fully charged. Thus, in order to asses feasibility we only need
to check reachability between states where all vehicles are
docked and fully charged. Consider the graph G = (V =
PN (C), E) from Alg. 2. The existence of a control policy is
equivalent with the existence of an infinite path in G. This in
turn implies that there must be a cycle in G reachable from
the initial state q0. If we assume that there is no such cycle,
then all paths starting at q0 are finite, which implies that no
control policy exists. It follows that Alg. 2 is complete.

E. Optimality

In Sec. V-D, we showed that if Prob. IV.2 admits a solution,
then there is a feasible control policy which has a prefix-suffix
structure that can be computed on a finite graph. In this section,
we will establish the same result for the optimal version of the
problem (Prob. IV.4) corresponding to the two cost functions
J1 and J2.

Let Gopt = (V,E,w) be a weighted graph, where V = SchP
is the vertex set. As in Alg. 2, we proceed to construct the
edge set E such that (q, q′) ∈ E if there is a satisfying path
in P starting at (q, sspec0 ) and ending at (q′, sspecf ), sspecf ∈
F spec. The weight of w(q, q′) is equal to the minimum loop
time. Note that loops that are not minimal can be replaced by
the minimal ones to decrease the overall cost. To minimize
J1, a cycle in Gopt with minimum maximum weight must be
computed, because the objective is to minimize the maximum
loop time of any loop that is repeated infinitely often. The J2

criterion is attained by a cycle in Gopt of minimum average
weight as shown by Prop. V.3.

Proposition V.3. Let G = (V,E,w) be a strongly connected
graph with possible self-loops and a weight map w : E →
R+. Then there is a path v∗ = v1, . . . vp(vp+1, . . . vp+s)

ω

that minimizes J2 and J2(v∗) = 1
s (w(vp+s, vp+1) +∑s−1

i=1 w(vp+i, vp+i+1)).

Proof: It is easy to see that ignoring any finite prefix of
v does not change the value of J2. Let cs be the minimum
average weight cycle in G and v be an infinite path. Since
v is infinite and V is finite it follows that there is a node
vinf ∈ V such that vinf appears infinitely often in v. Any
finite sub-sequence of v delimited by vinf defines a cycle.
However, since cs has minimum average weight it follows
that each cycle in v delimited by vinf has a greater cost that
vs. This in turn implies that J2(v) ≥ J2((vs)

ω).



Remark V.4. Finding the minimum average weight cycle is
NP-complete. The reduction can be made from the Hamil-
tonian cycle problem. Therefore, we have to impose some
additional restrictions on the control policies in order to
reduce Gopt to a manageable size.

F. Complexity

The complexities of Alg. 1 are different for the ME and FC
modes. The construction of the product transition system is
O
(

|C|!
(N−|C|)! +N |R| |C|!

(N−|C|)! +N |∆|
)

for the ME mode and
O
(
((|Q|+ |∆|)dmaxtcol)N

)
for the FC mode, where dmax

is the maximum duration of an edge in ∆. Constructing the
charging FSA takes O

(
tNch(N2dmax)

)
and O

(
tNch2N

)
in ME

and FC modes, respectively. We describe the complexity of
the next steps of Alg. 1 in a unified manner. However, the
actual complexity differs between modes for steps 3 and 6,
because they depend on the size of the product transition
system and the charging FSA. The complexity of these steps
are as follows: O

(∣∣∣Q̃∣∣∣ ∣∣SchA ∣∣+
∣∣∣∆̃∣∣∣ ∣∣δchA ∣∣) for constructing the

first product, O (‖φ‖ |φ|) for converting the TWTL formula
φ to scLTL formula ψ, where |φ| is the length of the for-
mula (number of operators and propositions), O(2S22|ψ|

) for
converting the scLTL formula to an FSA using scheck and
O
(∣∣SchP ∣∣ |SspecA |+

∣∣δchP ∣∣ |δspecA |
)

for the final product automa-
ton.

The complexity of Alg. 2 is O
(

|C|!
(N−|C|)! (SP + δP)

)
for

constructing the graph G = (V,E) and O(V + E) to test if
there is a reachable cycle from the initial state. Obtaining an
optimal solution is NP-complete and therefore exponential in
|V |.

It is not surprising that the proposed algorithms have
exponential complexity, because the VRP problem itself is
NP-hard. However, the one outstanding question is how
our approach compares to a MILP formulation in terms of
scalability w.r.t. the number of vehicles N . The automata-
based approach is well suited for the persistent VRP problem
because it decreases the worst-case complexity over a MILP
implementation. In our approach, we compute a product
automaton once and from it we can compute control policies
for loops. We then solve an NP-complete problem on the
one-loop reachability graph, whose vertex set is polynomial
in the number of robots N. Thus, the overall procedure has
worst-case complexity O(2N + Nk+12N ), where k is the
fixed difference between the number of depos and robots.
On the other hand, a MILP approach does not reuse previous
computation and redundant operations may be performed. As
such, the worst-case complexity is O(2N + N2k2N ). This
analysis only considers N as a variable (the other parameters
are fixed) and that the robots are identical. If we lift the
latter assumption, the difference in complexity becomes even
greater, because the size of the vertex set of the one-loop
reachability graph becomes factorial in N . Thus, the automata-
based approach has complexity O(2N + N(N + k)!2N ) and
MILP has O(2N+(N+k)!22N ). In practice, a MILP approach
may be faster in computing a solution for a single loop,

but since we need to perform the operation repeatedly the
automata approach may be faster overall. Also, encoding the
whole problem as a MILP program leads to 2-EXPTIME(N )
complexity.

G. Generalizations

The presented framework can easily be modified to account
for differences among vehicles, with respect to both motion
and replenishing models. Different motion models can be spec-
ified as different individual transition systems {Ti}N1 , which
can be used to construct the product transition system T N . The
resource model can also be customized with vehicle specific
charging and operation times, each satisfying the assumptions
from Sec. V-B. The framework can also be minimally modified
to support the case when top

tch
∈ Z≥1, e.g., when the resource

is fuel. In this case, tch and top are interchanged in the
construction of the state set of the charging FSA Ach and
the inverse of γ is used in the update rule.

Also, the proposed algorithms can be used for the case
when the weights of the edges in ∆ are upper bounds for
travel times, rather than fixed durations. In this case, worst-
case feasible control policies are computed off-line, i.e. as
described above, and replanning is performed on-line when
the actual transition durations become available.

VI. IMPLEMENTATION, RESULTS, AND EXPERIMENTAL
VALIDATION

We implemented the algorithms developed in this paper in
a software tool that takes as input an environment topology
(i.e., the positions of the sites and charging stations), the
durations of the motions, the operation, charging times, and
collision times, and a mission specification in the form Gφ,
where φ is a TWTL formula. The output is a vehicle control
policy. The tool, which was implemented in Python2.7, uses
the LOMAP [23] and networkx [8] packages to manipulate
and process automata. Also, scheck [17] is used to translate to
FSA the scLTL formulae obtained from the TWTL formulae.
The tool has an input-output graphical user interface (Fig. 1
was generated using the tool).

The tool, running on a Linux system with a 2.1 GHz
processor and 32GB memory, was used to generate control
policies for the case study presented in Examples II.1 and IV.3.
The TWTL formula φtw was translated to an FSA with 1468
states and 5845 transitions. In the ME mode, the construction
of T N , Ach, Pch, and P took 1.7 msec, 491 msec, 13.5 sec,
and 16 sec to compute. Their sizes were 24, 3721, 89304,
75538 states and 108, 127734, 332328, 263144 transitions,
respectively. The test for feasibility took 11 sec to execute.
Note that the size of the final product automaton P is not larger
than the size of Pch. This is due to the implementation of the
construction of P , which contains only the states reachable
from the initial ones.

A ME control policy is given in Eqn. 2 from Ex. II.1.
The control policy is feasible and satisfies the specification.
Furthermore, it is also optimal with respect to both J1 and
J2 with the assumption that vehicles start each loop fully



charged. Without this assumption, the optimization problem
would have to be solved on a graph with 89304 vertices, which
is intractable (see Sec. V-E).

Using the FC mode and the same setup, but with top = 20
and tch = 40, the construction of T N , Ach, Pch, and P took
662 msec, 387 msec, 25.8 min and 35.2 min to compute. Their
sizes were 3066, 1681, 5153946, 6487656 states and 5200,
24964, 7942452, 9669808 transitions, respectively. Feasibility
was established in 6.65 min. A feasible and satisfying control
policy for the FC mode is

vFC(1) =
(
Ch

[2]
3
~Ch

[3]

3 C [4] ~A[2]A[3] ~Ch
[6]

2 Ch
[40]
2

Ch
[1]
2
~Ch

[3]

2 B[2] ~Ch
[3]

3 Ch
[49]
3

)ω
vFC(2) =

(
Ch

[1]
2
~Ch

[3]

2 B[2] ~Ch
[3]

3 Ch
[49]
3

Ch
[2]
3
~Ch

[3]

3 C [4] ~A[2]A[3] ~Ch
[6]

2 Ch
[40]
2

)ω
and the corresponding output word is

o =
(
ε[3]B[2]{B,C}[1]C [3]ε[2]A[3]ε[46]

)ω
,

where {B,C}[1] indicates that both sites B and C are occupied
at the same time.

The above case study was also implemented in our aerial
vehicle experimental setup, which consists of a team of
quadrotors flying autonomously in an indoor space equipped
with a motion capture system, short-throw projectors that
generate images on the floor, and fully automatic charging
stations that can detect the presence of a vehicle and its
charging level (see Figs. 3 and 2). To generate transitions
among sites and charging stations, the 3D space was parti-
tioned into small rectangular regions. Using the framework
developed in [2], vector fields were designed in each rectangle
to guarantee safe transitions between adjacent rectangles and
stabilization to the center of a rectangle (i.e., for servicing a
site, which corresponds to hover). The tool developed in [7]
was used to determine the (upper bounds for the) durations
of the transitions. The durations of the landing and take-
off maneuvers at the charging stations were included in the
durations of the transitions to and from the charging stations.
Quadrotor feedback control laws were generated to follow the
designed vector fields by using the framework developed in
[25].

We used the same setup as described in Ex. II.1 (Fig. 1)
with the specification from Ex. IV.3. We consider the MC
mode and a time interval ∆t of 6 sec. Four snapshots from a
successful experimental trial are shown in Fig. 2. Consider the
loop starting at Ch3 and Ch2 and ending at Ch1 and Ch3,
respectively.

In this loop, the blue quadrotor visits site C, services C for
at least 18 sec, visits site A, services A for at least 12 sec, and
lands at Ch1. After the first blue quadrotor lands, the red one
takes-off and visits site B, services B for at least 12 sec, visits
site C, services C for 12 sec, and lands at Ch3. The actual
transition and servicing durations were 21.47, 18.0, 5.55, 12.0,
23.9, 23.08, 12.0, 28.19, 12.01, 13.72 (all in sec and in the
order described above). These durations are bounded above by
the estimated durations that were used to compute the control

policy, which were 24, 18, 18, 12, 24, 24, 12, 30, 12, 30. Note
that specification φtw is satisfied, because: (1) A is serviced
in 57.01sec, before its deadline of 72 sec; (2) C is serviced
in 38.47 sec, before its deadline of 54 sec; (3) B followed by
C are serviced in 156.2 sec, before the deadline of 192 sec;
and (4) C is serviced in 42.2 sec after B, before the deadline
of 48 sec.

(a) Initial state (b) Servicing site A

(c) Docking at Ch1 (d) State at the end of the loop

Fig. 2: Two quadrotors in an environment with three sites and three
charging stations. Fig. 2(a): the quadrotors are fully charged and
docked at the start of the mission. Fig. 2(b): the blue quadrotor is
servicing site A, while the red quadrotor is still docked at charging
station Ch2. The docking procedure is shown in Fig. 2(c). The blue
quadrobot attempts to land on charging station Ch1. At the end of
the first loop (Fig. 2(d)), the quadrotors are docked at Ch1 and Ch3.

Fig. 3: Quadrotor docked at a charging station.
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