
Robust Policies via Meshing for
Metastable Rough Terrain Walking

Cenk Oguz Saglam and Katie Byl
University of California, Santa Barbara
{saglam, katiebyl}@ece.ucsb.edu

Abstract—In this paper, we present and verify methods for
developing robust, high-level policies for metastable (i.e., rarely
falling) rough-terrain robot walking. We focus on simultaneously
addressing the important, real-world challenges of (1) use of
a tractable mesh, to avoid the curse of dimensionality and
(2) maintaining near-optimal performance that is robust to
uncertainties. Toward our first goal, we present an improved
meshing technique, which captures the step-to-step dynamics of
robot walking as a discrete-time Markov chain with a small
number of points. We keep our methods and analysis generic,
and illustrate robustness by quantifying the stability of resulting
control policies derived through our methods. To demonstrate
our approach, we focus on the challenge of optimally switching
among a finite set of low-level controllers for underactuated,
rough-terrain walking. Via appropriate meshing techniques, we
see that even terrain-blind switching between multiple controllers
increases the stability of the robot, while lookahead (terrain
information) makes this improvement dramatic. We deal with
both noise on the lookahead information and on the state of the
robot. These two robustness requirements are essential for our
methods to be applicable to real high-DOF robots, which is the
primary motivation of the authors.

I. INTRODUCTION

Legged robots may potentially replace or assist humans in
tasks involving difficult and/or dangerous environments not
suitable for wheels, but where mobility is essential. As highly
dynamic solutions to legged mobility, both hopping/running
robots [16] and passive dynamic inspired bipeds [10] have
been extensively researched and demonstrated. Stability is a
major concern for such robots, and one aspect of perfor-
mance that has not been widely studied is the optimal use
of upcoming terrain information. Instead, work to date has
typically focused either on remaining robust when blind to
upcoming terrain [15, 13] or on achieving particular footstep
lengths [7], without more generally addressing the issue of
planning on partly-known terrain. A major reason such control
problems are not yet adequately addressed in robotics, we
argue, is the need for better methods to model legged systems
and to quantify their stability. In this work, we present new
methods to represent a high-dimensional, nonlinear dynamic
system with a relatively small mesh and robustly employ the
resulting meshes to optimize high-level policies for highly
reliable (metastable) walking. We also apply these robust
policies derived through meshing to the problem of walking
with noisy terrain knowledge as a case example.

Demonstrations of stable limit cycles for passive walk-
ers [10] have motivated the development of underactuated

dynamic powered walkers. One approach in control of such
walkers is to minimize energy use [4, 2, 5]. However, opti-
mizing for energetics often results in poor stability on rough
terrain; such methods lack sufficient robustness. To plan on
terrain with limited footholds, Zero Moment Point (ZMP)
planning has become very popular. Here, walking motions
are planned deliberately to avoid underactuation [23, 21, 14].
While very prominent in humanoid walking research, this
approach often results in slow and inefficient walking, moti-
vating many researchers to focus on improving robustness for
dynamic walking solutions that more closely resemble human
walking. One notable control method for dynamic walking is
the Hybrid Zero Dynamics (HZD) approach [24, 25], which
has been shown to be successful on a boom-mounted robot
and is currently being tested on a 3D robot [6].

Recent work on underactuated bipeds has demonstrated
tractable strategies for switching among multiple controllers
to cope with rough terrain [19, 13]. A blind (to the terrain
information) finite-state machine approach has been shown to
increase robustness greatly [13], and switching control based
on a one-step lookahead to the terrain slope is shown to be
advantageous [19]. While robustness to unexpected (blind)
perturbations is definitely useful, lookahead knowledge should
also be used if it can improve performance. Our intuition and
experience tells us that when we walk blindly, we are not
as safe, comfortable, fast, or efficient as in sighted walking.
Our work aims to quantify this perhaps obvious intuition more
scientifically. In this work, we argue through modeling that
sighted walking is dramatically better than optimal state-based
switching with blind walking. However, the main focus will be
on demonstrating robustness of our modeling, which is needed
for our methods to be applicable to an experimental robot.

Although our goal is to keep our methods and results generic
for all legged robots, the ideas will be illustrated on a planar,
five-link, underactuated biped in this paper. We will assume
there are qualitatively different low-level controllers, which
might be designed using different control schemes. What is
important is that they should behave differently and that we
can make use of all of them effectively. We then mesh the state
space to approximate hybrid dynamics in discontinuous time.
Our algorithm differs from many others by being deterministic
as opposed to being random as in [9]. To come up with
high-level walking policies, we use dynamic programming. In
this sense, our methods are aimed in particular at a machine-
learning framework, which is shown to be useful for bipedal



locomotion research [11, 12, 22, 26].
In addition to our particular results on sighted walking

presented in [19], key contributions of this work include
(1) new methods for tractable meshing of high dimensional
(10D) dynamics, (2) techniques for improving policy robust-
ness, and (3) quantifying the validity of both our meshing
and the resulting policy. The rest of the paper is organized as
follows. Sec. II describes our problem statement and walking
model, followed by a brief description of low-level controllers
in III. Sections IV and V describe our meshing methods
and value iteration algorithm, respectively, and VI investigates
robustness. Finally, conclusions and comments on applicability
and future work are presented in VII,and VIII.

II. PROBLEM STATEMENT AND MODEL

Consider a legged robot that is walking, running, and/or
hopping. Furthermore, assume there are multiple controllers
available, each having advantages and disadvantages under
different circumstances. Each of them might be obtained by
different methods, and/or optimal for different cost functions.
The problem we address is: How can the robot optimally
switch among them?

We will consider biped walking, and our concern will be
stability. There will be three controllers, designed for flat,
downhill, and uphill grounds. Both state and noisy information
about the terrain ahead will be available to the controller. The
goal is to find a robust, near-optimal control policy.

A. Model
The analysis in this paper will be carried out with a 5-

link biped as shown in Figure 1. It has point feet and it
is underactuated by 1 DOF. The angles shown in the figure
form q := [q1 q2 q3 q4 q5]

T . The ten dimensional state of
the robot is defined as x := [qT q̇T ]T .
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Fig. 1. Illustration of the five-link biped

Depending on the number of legs in contact with the ground,
the robot will be either in the single or double support phase.
Walking consists of these two phases in sequence. The single
support phase has continuous dynamics, which can be derived
in the following canonical form using a Lagrangian approach.

D(q)q̈+C(q, q̇)q̇+G(q) = Bu, (1)

where u is the input. As the robot has point feet, the double
support phase can be well captured as an impact event.

x+ = ∆(x−), (2)

where x− and x+ are the states just before and after the
impact respectively. Conservation of energy and the principle
of virtual work gives the mapping ∆ [25], [8].

III. CONTROL

In this paper, we propose a general framework that is
independent of the structure of the controllers. We anticipate
that the same ideas will apply when different control schemes
are used. However, we will still provide a short explanation
of the particular input-output feedback linearizing controller
design used in this work, which is taken from [19].

One challenge for the control of bipedal locomotion is un-
deractuation: q is 5-dimensional, whereas u is 4-dimensional.
The latter suggests selecting 4 variables to be controlled, which
we name as qc.

qc := [q2 +q5 q3 q4 q5]
T (3)

Other definitions for qc are possible, but this choice is verified
to work well. Then, adopting an input u in the following form

u = (ED−1B)−1(v+ED−1(Cq̇+G)), (4)

where E =


0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,
will lead to

q̈c = v. (5)

The way v is controlled is a matter of choice. Here, we
use the sliding mode controller (SMC) scheme as explained
in [17] for finite time convergence. The error is defined by

e = qc−qre f
c . (6)

And generalized error is given as

σi = ėi + ei/τi, i = {1,2,3,4}. (7)

Then v in (4) can be chosen to be

vi =−ki|σi|2αi−1sign(σi), i = {1,2,3,4}. (8)

Below is the list of controller parameters used, which were
obtained by trial and error. For space considerations, we refer
interested readers to the appendix of [20] for an explanation
of these parameters.

TABLE I
CONTROLLER PARAMETERS

α1=0.7, α2=0.7, α3=0.7, α4=0.7

τ1=1/10, τ2=1/10, τ3=1/20, τ4=1/5

k1=50, k2=100, k3=75, k4=10



In this study, we will obtain different controllers using
the same controller parameters, but different references. All
references are piece-wise constant and time-invariant. Details
of reference design are left out, due to space constraints,
but qualitatively, each is designed to bias the walker toward
suitability for uphill (leaning forward and smaller steps), flat,
or downhill (more upright and larger steps) walking. We note
that despite these general design goals, heuristic switching
among controllers is far from optimal, and optimal policies
are not trivial [19].

IV. MESH

This section describes our meshing method, which uses a
distance metric to adjust the total mesh size as desired within
the 10D (5 angles and their velocities) state space. We also
review theory for estimating the mean steps to failure for the
system and provide numerical evidence that our estimation
error converges as the mesh resolution improves. Our eventual
meshing goals are to create one mesh with a small number of
elements for value iteration and to use a much larger mesh
as a means of verifying performance (of the sparse mesh
policies), since the true dynamics are captured more accurately
as meshing resolution increases.

For the rest of the paper, we are interested in states
just before the impact. We define a Poincaré section at the
transition from single support phase to double support phase,
and refer to those ‘states just before the impact’ simply as
states. So, for the rest of the paper, the term ’state’ refers to
a discrete-time variable for the walking system.

A. Distance Metric

As the distance metric for meshing, we will be using
standardized (normalized) Euclidean distance in this study:
When a is a vector, and B is a set of vectors (growing in
size, during meshing) each with the same dimension as a, the
distance of a from B is calculated as

d(a,B) := min
b∈B

{√
∑

i

(
ai−bi

ri

)2
}
, (9)

where ri is the standard deviation of bi elements. In addition,
the closest point in B to a is given by

c(a,B) := argmin
b∈B

{
∑

i

(
ai−bi

ri

)2
}
. (10)

B. Terrain Profile

We will assume the terrain profile is angular, i.e., that it
consists of slopes, noted by γ . The slope ahead only changes
at impacts; i.e., it remains constant until the next step. This
terrain assumption captures the fact that to calculate the pre-
impact state, the terrain for each step can simply be interpreted
as a ramp with the appropriate slope. Our general method is
still applicable to more complicated terrain models, and we
note briefly that the most important modeling detail for future
work is to consider vertical (tripping) obstacles in between the
footholds.

For our piecewise-sloped terrain profile model, the next state
of the robot, x[n+ 1], is a function of the current state x[n],
the slope ahead γ[n], and the controller used ζ [n], i.e.

x[n+1] = ht(x[n],γ[n],ζ [n]). (11)

C. Methodology

Consider a slope set, S, and a controller set, Z. Two key
goals in meshing are: First, we want to have a set of states,
Y , which well covers the (reachable) part of the state space
the robot visits. Secondly, we want to learn what ht(y,s,ζ ) is
for all y ∈Y , s ∈ S, and ζ ∈ Z. To achieve these, we must first
select what the controller set and slope set are. The controller
set, Z, consists of the controllers designed and available to
the robot. In this paper, we have a controller set with three
controllers.

Z = {ζ1, ζ2, ζ3} (12)

As the slope set, S, we begin by considering all the integer
values from -8 up to 8, in degrees.

S = {k◦ | k ∈ Z, −8≤ k ≤ 8} (13)

The difference between γ and s is that s must be in the slope
set S for the learned policy, whereas the actual slope ahead, γ ,
might be any real value. The range and density of the slope
set can be chosen depending on the controllers’ performance,
and on the robot. Also, the slope set does not have to be
evenly spaced, it may be denser around slopes of particular
interest. As we increase the density of the slope set, we are
able to capture the dynamics more accurately at the expense
of higher numbers of points in the final mesh, Y .

Next, an initial mesh, Yi, should be chosen. In this study,
we use an initial mesh consisting of only two points. One of
these points (y1) represents all (conservatively defined) failure
states, no matter how the robot failed, e.g. a foot slipped, or
the torso touched the ground. The other point is the stable
fixed point of the robot model when the terrain is flat and
only ζ1 was used. Then the process explained in Algorithm 1
is used. This algorithm is taken directly from [19], except that
the mesh can be grown here in one pass, using only two initial
mesh points, due to our distance metric.

D. Deterministic State-Transition Matrix

Recall the step-to-step dynamics of walking are given by
(11) and, thanks to the meshing (state-transition map), that
we know ht(y,s,ζ ) for all y ∈Y , s ∈ S, and ζ ∈ Z. We define

ha(x[n],γ[n],ζ [n]) := c(ht(x[n],γ[n],ζ [n]),Y ). (14)

where (10) is used, and the superscript a stands for approxi-
mation. Then we write the approximate step-to-step dynamics:

y[n+1] = ha(y[n],s[n],ζ [n]) (15)

After that, the deterministic state transition matrix can be
written as

T d
i j (s,ζ ) =

{
1, if y j = ha(yi,s,ζ )
0, otherwise.

(16)



Algorithm 1 Meshing algorithm
Input: Initial set of states Yi, Slope set S, Controller set Z and

threshold distance dthr
Output: Final set of states Y , and state-transition map

1: Y ← Yi (except y1)
2: Y ← Yi
3: while Y is non-empty do
4: Y 2← Y
5: empty Y
6: for each state y ∈ Y 2 do
7: for each slope s ∈ S do
8: for each controller ζ ∈ Z do
9: Simulate a single step to get the final state x,

when initial state is y, slope ahead is s,
and controller ζ is used. Store this information
in the state-transition map

10: if robot did not fall and d(x,Y )> dthr then
11: add x to Y
12: add x to Y
13: end if
14: end for
15: end for
16: end for
17: end while
18: return Y , state-transition map

Note that (16) is the result of our basic, nearest-neighbor ap-
proximation, which appears to work well. More sophisticated
approximations are left as a topic for future work and would
result with the matrix not just having one or zero elements,
but also fractional values in between.

E. Stochastic State-Transition Matrix

The stochastic state-transition matrix T s is defined by

T s
i j := Pr(y[n+1] = y j | y[n] = yi). (17)

To calculate this matrix, the first thing we need to do is assume
a distribution over slope set, noted by PS.

PS(s) = Pr(s[n] = s) (18)

In this paper, we will assume a normal distribution for PS,
with mean µs, and standard deviation σs.

s[n]∼ N (µs,σ
2
s ) (19)

When only one of the controllers, say ζi is used (no switching),
T s can be calculated as

T s = ∑
s∈S

PS(s) T d(s,ζi) (20)

The definition of T s will always remain the same, but its cal-
culation will be updated when we consider switching between
controllers.

F. Mean First Passage Time

As mentioned, we will be illustrating our methods by opti-
mizing stability of bipedal walking in this paper. To measure
stability, we will be looking at the average number of steps
before falling. The more steps a robot takes on average, the
more stable we consider it to be. To describe the average

number of steps before falling, we borrow the somewhat
misleading term Mean First Passage Time (MFPT) in [3],
which we note actually characterizes average steps (not time)
to failure. First, it is assumed that once the robot falls, it
stays that way. The failure state, noted by y1 in this work,
is an absorbing state, and it is associated with the largest
eigenvalue of T s, λ1 = 1. When the second-largest eigenvalue,
λ2, is very close to unity, its corresponding time constant, τ2,
approximately equals the MFPT:

MFPT ≈ τ2 =
−1

log(λ2)
≈ 1

1−λ2
, (21)

and the system is considered “metastable”, with failures events
being both inevitable but also very rare. Thus, the number of
steps the robot is going to take on average can be approxi-
mated using the stochastic state transition matrix. For space
considerations we are skipping further details which can be
found in [3]. In this paper, we will use (21) as the basis for
the graphs of the following sections.

G. Convergence of the Mesh

Note that the number of points in the final mesh, and the
accuracy obtained from (15) with this mesh are inversely
related to parameter dthr and directly related to the density
of the slope set. We argue that, for a dense enough slope
set, as dthr → 0, the accuracy of the mesh, and as a result,
the MFPT of the controllers, converges to a result capturing
the true, hybrid dynamic system dynamics. For (13), we
illustrate convergence numerically by first fixing σs = 1.5 (deg)
and plotting six independently obtained meshes with dthr =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In all plots that follow, each
location on the x-axis assumes a different long-term mean
in slope, resulting in a different stochastic transition matrix,
from (17).

Figure 2 shows the difference in results for dthr = 0.1 (more
refined) versus dthr = 0.5 (more coarse). Here, solid lines are
associated with dthr = 0.1. Table II shows the convergence. The
second row gives the number of points in the mesh, while the
third row shows the total area of the difference with dthr = 0.1
plot.

TABLE II
MESH CONVERGENCE

dthr 0.1 0.2 0.3 0.4 0.5 0.6

Size 394,420 65,066 21,726 10,531 6,126 4,154
err 0 3.3078 5.1959 7.9576 11.6452 14.4813

V. VALUE ITERATION

For the following sections, the dthr = 0.5 mesh, which has
6,126 points, will be used to solve for optimal policies.



−8 −6 −4 −2 0 2 4 6 8
10

0

10
1

10
2

10
3

10
4

10
5

Mean Slope of the Terrain Ahead (    ) (degrees)

M
ea

n 
Fi

rs
t P

as
sa

ge
 T

im
e 

(M
FP

T)
 (s

te
ps

)

ζ1

ζ2

ζ3

µs

Fig. 2. Slopes ahead of the robot are assumed to be normally distributed
as noted in (19) with σs = 1.5. Figure shows average number of steps before
falling calculated using (21) versus µs for two independently obtained meshes.
Solid line represents the mesh with 394,420 states (obtained using Algorithm 1
with dthr = 0.1), whereas the dashed line is a result of choosing dthr = 0.5,
which results in 6,126 states.

A. Blind Walking

We define policy, π , as the function determining the choice
of controller, ζ [n]. It is typical to assume a policy is a function
of the state in Markov Decision Processes.

ζ [n] = π(y[n]) (22)

When this policy is applied, the approximate dynamics in
(15) will become the following.

y[n+1] = ha(y[n],s[n],π(y[n])) (23)

In this case, (20) should be also updated as

T s
i j = ∑

s∈S
PS(s) T d

i j (s,π(yi)). (24)

We then use value iteration [1] to get the optimal policy.

V (i) := max
ζ

{ ∑
j

Pi j(ζ ) (R( j)+α V ( j)) } (25)

where V is the value, Pi j(ζ ) is the probability of transitioning
from yi to y j when ζ is used, R( j) is the reward for transi-
tioning to y j, and α is the discount factor, which is chosen
to be 0.9. This equation is iterated until convergence to get
the optimal policy. Remember that the failure state is y1. The
value of the failure state will initially be zero, i.e.,

V (1) = 0, (26)

and it will always stay as zero due to the following: the reward
for taking a successful step is one, while falling has zero
reward.

R( j) =

{
0, j = 1
1, otherwise

(27)

Note that the reward function we use does not depend
on the controller, slope ahead, or current state. Use of more
sophisticated reward functions (e.g., considering energy, speed,

step width) is a topic of [20]. Substituting (26) and (27) into
(25), we obtain

V (i) := max
ζ

{ ∑
j 6=1

Pi j(ζ ) (1+α V ( j)) }. (28)

What is left is to write the probability term.

Pi j(ζ ) = ∑
s∈S

PS(s) T d
i j (s,ζ ) (29)

The optimization is done for each µs ∈ S and σs = 1.5.
Figure 3 presents the results.
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Fig. 3. Slopes ahead of the robot are assumed to be normally distributed
as noted in (19) with σs = 1.5. Figure shows average number of steps before
falling calculated using (21) versus µs for the mesh obtained via dthr = 0.5. In
addition to the three fixed controllers, there are three different policies, which
walk “blindly”, i.e., they have no information about the next slope ahead.
The dark green (top) plot assumes mean is known to the controller, while
the other two assume µs = 0 when deciding the policy. Unlike the other two,
the orange (bottom) plot uses only ζ1 and ζ2 for optimization. In the light of
the performance degradation indicated by this plot, we conclude that use of
a third controller, ζ3, is very helpful for blind walking.

B. Sighted Walking with One-Step Lookahead

[19] investigates policies obtained using only sight infor-
mation, without regard for the current state, and shows that
this performs very poorly. Next, we consider policies that are
functions of both the current state, and the slope ahead, i.e.

ζ [n] = π(y[n],s[n]). (30)

In this case, the approximate dynamics in (15) becomes

y[n+1] = ha(y[n],s[n],π(y[n],s[n])), (31)

and T s should also be updated as

T s
i j = ∑

s∈S
PS(s) T d

i j (s,π(yi,s)). (32)

To use the one-step lookahead in deriving policy, we will
modify the value iteration.

V (i) := ∑
s∈S

max
ζ

{
∑
j 6=1

Pi j(ζ ,s) (1+α V ( j))

}
(33)

Instead of modifying the value iteration algorithm, we could
define a new 11-dimensional state, including the slope in



addition. However, (33) makes the analysis of the following
parts easier, reduces computational cost, and requires less
memory. The probability of ’having s as the slope ahead’ and
’transitioning from yi to y j when ζ is used’ is simply the
multiplication of these two probabilities.

Pi j(ζ ,s) = PS(s) T d
i j (s,ζ ) (34)

We optimize with µs = 0 and σs = 1.5 to get Figure 4.
Noting the logarithmic y-axis, it is clear that sighted walking
is significantly better than blind walking, as one might expect.
In the sighted walking case, we also found that knowing the
mean helps very little, and we correspondingly only present a
µs = 0 plot. We note that not needing to know the long-term
mean is a desirable result.
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Fig. 4. Slopes ahead of the robot are assumed to be normally distributed
as noted in (19) with σs = 1.5. Figure shows average number of steps before
falling calculated using (21) versus µs for the mesh obtained via dthr = 0.5.
Three fixed controllers are repeated for reference. The best policy from
Figure 3 (when µs is assumed to be known, but not the one-step lookahead)
is also shown for reference. The top (orange) plot shows the optimal policy
when only the state and the next slope are perfectly known.

VI. ROBUSTNESS

Although the results of the previous section seem impres-
sive, for this methodology to be applicable to real-life prob-
lems, the policies must also be robust to uncertainties. In this
section, we describe several modifications that significantly
improve several aspects of policy robustness.

A. Noisy Slope Estimation

We start our study of robustness by considering the addition
of noise to slope information. The slope ahead will still be
defined by variable s, but the controller will think it is (closest
to) s̃∈ S, due to the noise l ∈ S. Their relationship will be given
by

s̃ = max(min(S),min(max(S),s+ l)). (35)

The noise will be normally distributed with zero mean and
standard deviation σl . PL(l) will be defined similarly to (18).
In the presence of noise, the policy will be a function of s̃,
not s.

ζ [n] = π(y[n], s̃[n]) (36)

Then the approximate dynamics (15) will be

y[n+1] = ha(y[n],s[n],π(y[n], s̃[n])) (37)

The stochastic state-transition matrix must also be updated to
consider noise.

T s
i j = ∑

s∈S
∑
l∈S

PS(s) PL(l) T d
i j (s,π(yi, s̃)) (38)

Figure 5 shows what happens to the policy we obtained
in the previous section (orange-top plot), in the presence of
σl = 1 noise (magenta-bottom plot). We lose almost all the
improvements gained by switching! To account for noise in
the slope information while optimizing, we first rewrite the
modified value iteration algorithm.

V (i) := ∑
s̃∈S

max
ζ

{
∑
j 6=1

Pi j(ζ , s̃) (1+α V ( j))

}
(39)

The equation is essentially the same as (33), except we
made clear s̃ is available to the controller instead of s. The
probability of ’thinking s̃ is the slope ahead’ and ’transitioning
from yi to y j when ζ is used’ is then

Pi j(ζ , s̃) = ∑
s∈S

∑
l∈S

PS(s)PL(l) fS(s, l, s̃) T d
i j (s,ζ ), (40)

where

fS(s, l, s̃) =

{
1, s̃ = max(min(S),min(max(S),s+ l))
0, otherwise.

(41)

The green (middle) plot in Fig. 5 is the policy obtained and
plotted by assuming σl = 1. Note that the new policy performs
almost as well now with noisy slope information as the original
policy did using noise-free data. Not surprisingly, as the noise
goes down, the new policy performs better. More importantly,
as the magnitude of the noise increases, we find performance
does not suddenly drop. These data support our hypothesis that
accounting for lookahead uncertainty is extremely important
and can be done well without a precise noise model.

B. Small Mesh Policy on Big (Refined) Mesh

Up until now, we optimized policies and plotted resulting
performance using the same (dthr = 0.5) mesh. In this sec-
tion, we keep optimizing on the coarse (dthr = 0.5) mesh,
but we estimate performance using a bigger, more refined
(dthr = 0.1) mesh, intended to better approximate the true
system dynamics. As presented in Table II, the small mesh has
6,126 points, while the big mesh has 394,420 points, meaning
the small mesh requires significantly lower computational cost
in meshing process and policy optimization. Thus, quantifying
and improving robustness to mesh size are important issues.

As before, we will assume the small (dthr = 0.5) mesh used
to derive a policy is completely known. However, we will
assume the larger, high-resolution mesh is not known during
value iteration, thus it cannot be used while finding the policy.
The larger mesh will be only used to estimate how well the
small-mesh policy would work on the true system, i.e., it
approximates how the policy behaves when substituted to (11).
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Fig. 5. Slopes ahead of the robot are assumed to be normally distributed
as noted in (19) with σs = 1.5. Slope information experiences a noise with
zero mean and standard deviation σl = 1. Figure shows average number of
steps before falling calculated using (21) versus µs for the mesh obtained via
dthr = 0.5. The top plot of Figure 4 is repeated for reference. This policy
performs poorly due to the noise (bottom plot). However, as the middle plot
shows, we can recover the loss greatly by using (39).

First, we need to explain how the small-mesh policy can be
applied when the slope ahead, γ , may not be in the slope set,
and/or state x may not be in the mesh. In these cases, we
will apply the most basic idea: The controller will be picked
assuming the slope ahead is s ∈ S closest to γ and the current
state is y ∈ Y closest to x. So the policy now is

ζ [n] = π(c(x[n],Y ),c(γ̃[n],S)), (42)

where γ̃[n] is the noisy slope ahead information, and function
c is as defined in (10). In its general form, let us denote the
big mesh by Yb, which is obtained from a slope set Sb. Using
this mesh, we can approximate how (42) would behave in the
higher fidelity mesh.

ζ [n] = π(c(yb[n],Y ),c(s̃b[n],S)), (43)

The definition and calculation of T s remain the same, but
this time Yb and Sb will be used in obtaining it. Figure 6 shows
the policy from the last section for reference (green-top plot).
The magenta (bottom) plot shows what happens when this
policy is applied on Yb, when Yb is obtained with Sb = S, but
dthr = 0.1. (We consider Sb 6= S later, in VI-D.) Comparing the
purple and green curves in the figure we immediately note that
there is a huge drop. We must once again refine our algorithm,
this time to improve robustness to meshing discretization.

In our approach to fix this issue, we consider the following:
While the actual state is yi, the robot thinks it is yk. To make
this clear, we rewrite the value iteration algorithm.

V (k) := ∑
s̃∈S

max
ζ

{
∑
j 6=1

Pk j(ζ , s̃) (1+α V ( j))

}
(44)

Note that we only exchanged i with k, but this will make future
notation easier to follow. The probability of ‘thinking s̃ is the
slope ahead’, ’thinking the state is yk’, and ‘transitioning to y j

when ζ is used’ is

Pk j(ζ , s̃) = ∑
s∈S

∑
l∈S

∑
i

PS(s)PL(l) fS(s, l, s̃) PP
ik T d

i j (s,ζ ), (45)

where PP
ik is the probability of being at state yi when robot

thinks the state is yk.

PP
ik := Pr(y[n] = yi | ỹ[n] = yk) (46)

Finding the best calculation for PP is a question we want
to answer in future work. However, it is intuitive that for a
given state k (the robot thinks the state is yk), PP

ik should be
smaller for i for which d(yi,yk) is larger. In this paper, we try
the following

PP
ik = PC(c)/∑

c
PC(c), (47)

where yi is the cth closest state to yk, and PC has the following
form

PC(c) =

{
exp(−λcc), if exp(−λcc)> 10−5

0, otherwise.
(48)

In this work, we use λc = 1 as the distribution parameter.
These calculations result with the orange curve in Figure 6
(new policy).
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Fig. 6. Slopes ahead of the robot are assumed to be normally distributed
as noted in (19) with σs = 1.5. Slope information experiences a noise with
zero mean and standard deviation σl = 1. All polices are obtained using the
mesh via dthr = 0.5. However, Figure shows the results when these policies
are evaluated on the dthr = 0.1 mesh to estimate the actual performance. The
green (top) plot is the middle plot of Figure 4 shown for reference. This policy
performs poorly (bottom plot) on the denser mesh. However, as the middle
two plot show, we can recover the loss greatly by using (44).

C. A Final Adjustment

It is important to note that robustness to slope and state
information is somewhat similar in the following sense: If the
slope ahead or the current state is different from what the robot
thinks, it may end up at a different point than it estimated be-
forehand. So in both cases, the optimization tries to account for
this ending up in a different state. Since the approach in (47) is
only ad hoc, we will also try increasing the robustness to slope
information to see whether this actually helps when evaluating



MFPT on the big mesh. While optimizing policy, instead of a
normal distribution for PS we assume a uniform distribution.
Thus, we will optimize assuming the probability of having
−7◦ as the slope ahead is the same as the probability of having
2◦. This idea eliminates the need to choose both µs and σs for
optimization. We also assume sensing noise is σl = 3 (deg) and
use λc = 1/5 in (48) while optimizing to increase robustness.
These adjustments do improve performance, as shown by the
dark blue curve in Figure 6 (final policy). We also tested the
performance of this “final policy” using both smaller and larger
magnitude terrain noise than the nominal σs = 1.5 assumption.
Plots are not included, due to space limitations. However,
when we test on terrain σs = 1 and σs = 2, we observe that
the performance for the policy derived assuming σs = 1.5 still
gives near-optimal stability results for the actual terrain noise
present.

D. Increasing Mesh Resolution for Slope Set, Sb

We finally show what happens if the slope set is different for
optimization than for the system under evaluation, i.e., Sb 6= S.
We now apply the final policy from Section VI-C on a new
mesh obtained using dthr = 0.2, and

Sb = {(k/3)◦ | k ∈ Z, −24≤ k ≤ 24}. (49)

This new big mesh has 226,489 points, and plotting is done
with σs = 1.5, and σl = 1. Figure 7 presents the results, where
final policy from Figure 6 is shown for reference. We see
that the policy is quite similar when the slope set is denser,
which encourages us to think that the final policy would also
yield similar performance when simulating the full dynamics
(Eq. 1). Monte Carlo simulations are not a computationally
practical means of verifying this prediction when MFPT is
very high, which has motivated our testing methodology
throughout, using more refined meshing. However, a Monte
Carlo study was presented in [18] for smaller number of steps
and fixed controllers.

VII. CONCLUSIONS

In this paper, we present methods for capturing the approx-
imate dynamics of a walking model using a tractable mesh
size, and we develop and test approaches for deriving robust,
near-optimal switching control. To illustrate, we consider
an underactuated five-link (10-state) walker with noisy one-
step lookahead information. Our results quantify the intuition
that even a one-step lookahead on terrain improves walking
stability significantly. However, it is important to also use the
current state information to set the policy. Using only slope
information yields poor performance.

To estimate the number of steps before falling, we mesh
the step-to-step dynamics of the system. With the meshing
technique explained in this paper, we were able to do this
accurately using only around six thousand points.

After getting the mesh, we use value iteration to make use
of qualitatively different controllers and maximize number of
steps before falling. We highlight that use of only three such
controllers on rough terrain improves stability significantly,
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Fig. 7. Slopes ahead of the robot are assumed to be normally distributed
as noted in (19) with σs = 1.5. Slope information experiences a noise with
zero mean and standard deviation σl = 1. The policy was obtained using the
mesh via dthr = 0.5. However, Figure shows the results when this policy is
evaluated on the mesh obtained with dthr = 0.2 and denser slope set (as in
(49)) to estimate the actual performance. The final policy from Figure 6 is
shown for reference. This policy performs even better on an even denser mesh.

compared with using any one; in fact, eliminating any one of
the three degrades stability significantly.

Our primary concern in this paper is to estimate how these
policies would do in reality, on the true dynamic system.
Thus, we focus on robustness. We were able to deal with both
the effects of noise on slope information and of estimating
MFPT on a big mesh using the policy obtained on a much
smaller mesh. The drastic reduction in required mesh size in
our work here (6,126 points, compared with over 139,000 in
[19]) provides an important step toward eventually applying
these methods to improve the number of steps before falling
of an actual robot dramatically.

VIII. APPLICABILITY AND FUTURE WORK

As illustrated in [18], the step-to-step dynamics of a planar
biped with one degree of underactuation fall on a set of quasi-
2D surfaces as a result of switching among a set of low-level
controllers, no matter how many DOF the actual robot has.
This is the key concept that allows for high accuracy with
a small number of mesh points. A more detailed explanation
is outside the scope of this paper but is planned for future
publication. Based on this, we argue that the methods of
this paper are already applicable to higher dimensional robot
models. As for experimental applicability, we anticipate that
a mesh obtained via simulation can be updated on the fly
to improve performance, although initial performance would
certainly depend on the accuracy of the hybrid model and
terrain assumption.
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