
Simultaneous Compliance and Registration
Estimation for Robotic Surgery

Siddharth Sanan∗, Stephen Tully∗, Andrea Bajo†, Nabil Simaan† and Howie Choset∗
∗The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

Email: sanan@cmu.edu, stully@ece.cmu.edu, choset@cs.cmu.edu
†Dept. of Mechanical Engineering

Vanderbilt University
Nashville, TN

Email: andrea.bajo@gmail.com, nabil.simaan@vanderbilt.edu

Abstract—Leveraging techniques pioneered by the SLAM com-
munity, we present a new filtering approach called simultaneous
compliance and registration estimation or CARE. CARE is like
SLAM in that it simultaneously determines the pose of a surgical
robot while creating a map, but in this case, the map is a
compliance map associated with a preoperative model of an organ
as opposed to just positional information like landmark locations.
The problem assumes that the robot is forcefully contacting and
deforming the environment. This palpation has a dual purpose:
1) it provides the necessary geometric information to align or
register the robot to a priori models, and 2) with palpation at
varying forces, the stiffness/compliance of the environment can be
computed. By allowing the robot to palpate its environment with
varying forces, we create a force balanced spring model within a
Kalman filter framework to estimate both tissue and robot posi-
tion. The probabilistic framework allows for information fusion
and computational efficiency. The algorithm is experimentally
evaluated using a continuum robot interacting with two bench-
top flexible structures.

I. I NTRODUCTION

Minimally invasive surgery (MIS) offers patients many
benefits including fast recovery, reduced pain and improved
cosmesis compared to open surgery. These advantages, how-
ever, come at the cost of increased challenges to the surgeons
in terms of manipulation dexterity, diminished haptic presence,
and limited situational awareness. The limited situational
awareness during MIS stems from the loss of visualization
due to the extremely narrow field of view imposed by the
necessary use of thin endoscopes. Added to the narrow field of
view is the lack of haptic sensory immersion which precludes
the detection and use of surface and stiffness features to
deduce correlations between the intraoperative scene and the
preoperative imaging.

Robot-assisted MIS and computer-aided surgery were intro-
duced to assist surgeons in overcoming the limitations of MIS.
Robot-assisted MIS allows surgeons to augment their skills
with the dexterity and precision of the robots (e.g. [8, 18]).
Newer systems allow surgeons to extend their reach deeper
into the patient’s anatomy (e.g. [4, 22]). Computer-aided
surgery allowed surgeons to achieve intra-operative navigation

Fig. 1. The registration parameters define the transformationbetween the
coordinate frame S of the surface model and the coordinate frameR of the
robot.

and assistance in maintaining correspondence between pre-
operative surgical plans and their execution.

Computer-aided image overlay augments surgeon’s under-
standing of the anatomy and its correspondence with pre-
operative images though an overlay of 3D reconstructed
pre-operative images on the visible anatomy[16]. Successful
image-guided robot-assisted surgery hinges on registering the
surgical tool to the coordinate frame of a knowna priori
3D surface model (as obtained from pre-operative 3D image
reconstruction), depicted in Fig. 1.

Registration to rigid anatomy such as bones is easy and
does not require intraoperative update due to organ shifting,
swelling or gravitational pull. When operating on flexible
anatomy this task becomes more challenging. Organ shifting
distorts the mapping between intraoperative sensitive anatomy
and its corresponding interpretation in image space. This
further complicates the task of the surgeon in avoiding critical
anatomy such as nerves, arteries, billary duct, etc.

While there are approaches to overcome organ shift using
deformable registration from intraoperative surface scanning
(e.g. [10, 13]), these approaches typically work using white-



light based imaging data. In cases where the critical anatomy
is obfuscated by blood or is underneath tissue layers one can
use either intraoperative imaging or mechanical palpationdata.
For example, mechanical stiffness imaging has been shown to
allow surgeons to detect hidden features based on probing for
changes in relative stiffness [11, 20, 23, 21, 17].

A common approach to achieve registration is to use an
iterative closest point (ICP) algorithm [3] which typically
assumes the surrounding environment is rigid and does not
account for tool-tissue interaction. Unfortunately ICP istoo
computationally expensive to update registration parameters in
real time. Probabilistic filtering based approaches have been
developed to perform registration [15, 12]. These techniques
primarily use line of sight measurements, i.e, 3D vision or
range scanning, to output a map of locations of anatomical
structures and landmarks. There has also been prior work in
estimating tissue compliance using palpation, without solving
the registration problem, using filtering methods [9, 23].

Our approach is to use contact between the tool and the
environment to estimate the alignment between the tool and the
anatomical structure. If the environment were rigid, estimating
registration using geometric contact constraints alone would
be possible. However, since we are dealing with flexible
environments with unknown elastic properties, the parameters
defining the elastic properties must also be estimated. In
our formulation, we incorporate contact force measurement
to estimate both the environment stiffness and registration
parameters simultaneously using an iterated extended Kalman
filter (IEKF) based algorithm. In this work, we extend the
approach of [19] by relaxing two assumptions made in that
work: 1) the environment has uniform stiffness everywhere,2)
the environment stiffness is known. In this work, we initialize
our IEKF with a distribution of stiffness and then we use
contact and force information to estimate the stiffness map
and register the robot frame to thea-priori model of the
environment.

The contribution of this work is a new method capable of
“on the fly” registration of a robot to a flexible environment.
We have adopted a probabilistic method that allows us to
readily estimate the compliance or stiffness of the environment
while simultaneously aligning the robot to an organ. Such
information can be used for image-guided surgery and haptic
feedback during MIS. The identified environment stiffness can
be used to locate tumors and major arteries at the surgical field.

The outline of the remainder of the paper is as follows: in
Sec. II we outline the problem statement and assumptions,
in Sec. III we introduce our registration and compliance
estimation approach, in Sec. IV we test the observability ofour
problem using a simple test case, and in Sec. V we discuss the
experiments we performed. Finally, in Sec. VI, we conclude
the paper with a discussion of the contributions we have made
and future work.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Problem Statement: Given ana priori model of the en-
vironment and a set of robot end effector locations with

associated contact force magnitudes do the following: 1) create
a set of estimated stiffness normal to the surface, 2) find the
registration parameters relating the robot frame to the model
of the environment. In the following discussion, we make
few simplifying assumptions. The following list provides the
simplifying assumptions and the rationale behind making these
assumptions:

1) Palpation data is obtained using a robot capable of force
sensing. For example, we use a continuum robot with
force sensing algorithms as demonstrated in [21].

2) The position data of the robot tip is accurate. If the
robot kinematic model is not accurate then the robot
tip is tracked using external measurements such as a
magnetic tracker.

3) The forces that the robot applies on the environment
during palpation are small enough not to cause a large
deformation of the surface. Although this assumption
limits the ability of palpation to discern deep underlying
stiffness features, we are still able to detect stiffness
features close to the surface of the environment. A
typical case where detection of a shallow underlying
stiffness feature is useful is during the final stages of
resection around an artery with the aim of avoiding
inadvertent cutting of the artery.

4) The friction between the robot tip and the environment
are negligible. The rationale for this assumption is that
the anatomy is typically lubricious and also the robot
tip may be equipped with a rolling/spherical bearing in
a manner similar to the work of [14].

5) The deformation of the model is predominantly in the
direction normal to the surface at contact point. This
assumption follows from the previous one since lack of
friction eliminates tangential forces on the environment.

We also emphasize that the motivation for estimating the
environment stiffness from contact detection is for detecting
relative stiffness changes as the robot probe tip moves along
the surface. We are not interested in exact data of stiffness
for diagnosis. Instead, relative stiffness changes can be used
to detect nodules, cysts, arteries, etc. Examples of works
using relative stiffness changes for stiffness imaging include
[14, 20, 5]. Since the exact value of the environment stiffness
in not important and since we limit the palpation forces to
levels associated with small deformations of the tissue we use
a simple linear model of the environment stiffness.

III. F ILTERING FOR REGISTRATION AND COMPLIANCE

ESTIMATION

The goal of the CARE algorithm is to estimate a state
vector that encodes the alignment of the robot as well as the
compliance of the surface. We therefore definex as follows,

x = [xk,robot θk,robot sk xk,tip]
T , (1)

wherexk,robot andθk,robot represent the position and orien-
tation vectors, respectively, of the robot base in the coordinate
frame of the surface model,sk is a vector defining the stiffness



in a direction normal to the surface, andxk,tip represents the
position of the robot tip in the base frame.

During data collection for generating the input to the CARE
algorithm, the robot may be telemanipulated using hybrid
position-force control ensuring a regulated force on the surface
subject to a rough estimate of the surface normal. The robot
detects that it is in contact with a surface using an imple-
mentation similar to [1] or by using a threshold on the force
estimated at the tip of the robot. The robot infers the contact
force by observing the joint actuation forces and solving the
inverse statics problem in a manner similar to [21]. For our
implementation, the surface is assumed to be locally planar
and the contact force is assumed to be normal to the surface.
In addition to measuring force, the robot also measures its tip
position in the base frame of the robot.

There are two components of the filtering process: a pre-
diction step that evolves the state estimate based on a motion
model and a measurement update step that corrects the state
estimate with live sensor data. For our implementation, we
have designed the prediction step assuming that the parameters
are static, with a large uncertainty added to the tip position
due to tool movement.

Measurement Function: We assume a simple linear spring
model governs the tool-environment interaction forces. This
assumption holds within the surgical context even though
tissue is highly non-linear because we are interested in map-
ping relative changes in stiffness and the absolute estimates
of stiffness are not important to the problem. For example,
an artery is detected by a change in the stiffness from the
surrounding tissue. Since we care only about detecting the
change between the tissue and artery, absolute stiffness values
are unnecessary and we therefore avoid using complex non-
linear models. Additionally, this assumption is valid because
we apply only small forces on the environment so as to
produce minimal local impingement on the surface without
a substantial deformation of the organ. This ensures that we
are able to estimate the shape and relative stiffness, and that
our measurement technique does not change the environment
in a way that makes the problem intractable.

Therefore, the measurement function used to predict the
expected measurements (force and tip position) at time-step
k given xk is as follows,

h(xk) =

(

−nT (xS
k,tip − p)s(xk)

xk,tip

)

(2)

wheren is the surface normal,p is a point on the (relaxed)
surface, ands(xk) is a function that extracts the appropriate
surface stiffness given the statexk. xS

k,tip is the current
estimate of the robot tip in the coordinate frame of the surface
given by:

xS
k,tip = R(xk)xk,tip + t(xk), (3)

R(xk) andt(xk) are the rotation matrix and translation vector
respectively, that perform this transformation based on the

robot base positionxk,robot and the robot base orientation
θk,robot.

In (2), the surface normaln is obtained by finding the nor-
mal associated with the plane on the surface that is closest to
the current estimate of the robot tip positionxS

k,tip. Similarly,
the functions(xk) extracts the stiffness corresponding to the
plane closest toxS

k,tip.
For the measurement update step, we use an iterative

algorithm that prevents divergence of the state estimate. The
approach is similar to the iterated extended Kalman filter (IKF)
described in [2]. After each new measurement is obtained, the
IEKF attempts to update the state meanx̂k|k to minimize the
following cost function:

x̂+ = argmin
x

[

x̂k|k − x
]T

P−1

k|k+[zk−h(x)]TR−1[zk−h(x)]

(4)
wherezk is thek-th observation,Pk|k is the state covariance
andR is the measurement noise covariance.

The above optimization problem corresponds to finding the
maximum likelihood estimate given the current observation
zk. IEKF minimizes the cost function (4)using a recursive
Gauss-Newton update procedure. The update equations are as
follows:

x0 = x̂k|k (5)

Ki = Pk|kH
T
i

[

HiPk|kH
T
i

]−1
(6)

xi+1 = x̂k|k−1 + (7)

Ki

[

zk − h(x̂i)−Hi

(

x̂k|k−1 − xi

)]

,

whereHi is the Jacobian ofh(x) linearized aboutxi. The
above recursion is continued until convergence. We say the
filter has converged when the‖xi+1−xi‖ < ǫ, whereǫ << 1.
At convergence, the state mean is updated asx̂+

k|k = xi. While
we do not have a guarantee of convergence, in our experiments
the filter has converged every time. It should be noted that
a single iteration of the above procedure corresponds to the
standard EKF update step.

Once the mean has been updated using the iterative proce-
dure described above, the covariance matrix is updated using
the standard EKF covariance update equation,

Ki = Pk|kH
T
[

HPk|kH
T
]−1

(8)

P+

k|k = Pk|k −KHPk|k (9)

whereH is the Jacobian ofh(x) linearized about the updated
meanx̂+

k|k.
It should be noted that a key distinguishing feature of our

filtering approach to registration is that we update our registra-
tion to minimize the residual force (i.e, the difference between
the measured force and predicted force) at each contact point
instead of minimizing a geometric quantity such as distance
between the contact point and surface. We note that we choose
to instantiate a number of these Kalman filters, each of which
attempts to estimate the unknown registration parameters.
When the filter has utilized all the available observations, we
take the hypothesis with the highest measurement likelihood
as the final result.



IV. OBSERVABILITY

In order to apply the filter described in the previous section,
the state must be observable. We test observability through
the use of a simple test case, described below. Assume an
environment with three planes of different orientation, indexed
by i = (1, 2, 3). Each plane is defined by a normal vectorni

and a plane pointpi. For this test case, we assume we have
knowledge of which plane we are contacting and that bothni

and pi are known. Each plane has an unknown stiffnesssi
that is encoded within the state vector for estimation.

The state vector is of length9, which defines the position
and orientation of the robot base in the coordinate frame of the
surface model and encodes the stiffness of each of the three
planes.

xk = [ x y z rz ry rx s1 s2 s3 ]T

We obtain three measurements from palpating the three
planes. We next obtain three additional measurements through
palpating the same three planes with a different force. The
point on the plane where contact occurs does not affect the
analysis. Let us assume that all of these force measurements
are obtained and collected together. We will use the term
hj(xk) to represent thej-th element of the measurement
function

h(xk) = [ h1(xk) h2(xk) · · · h6(xk) ]
T

and the force measurement model can be written as follows:

hj(xk) = −nT
i (R(xk)qj + t(xk)− pi) si

where, for a measurement indexj, the associated plane that
is being contacted isi-th plane.qj is the robot tip position
corresponding to thej-th observation, measured in the robot
frame. Using Lie derivatives, we can define two different
observability functions as follows,

o
0(xk,uk) =


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where,uk is the input at stepk. The zero-th Lie derivative of
a function is the function itself,

(L0
f
hj)(xk,uk) = hj(xk), (10)

and the first Lie derivative of a function is as follows,

(L1
f
hj)(xk,uk) =

∂hj(xk)

∂xk

f(xk,uk). (11)

Substituting Eq. 10 and 11 into the functionso0(xk,uk) and
o1(xk,uk), we can write a combined observability function,

o(xk,uk) =

[

o0(xk,uk)
o1(xk,uk)

]

=

[

h(xk)
Hkf(xk,uk)

]

,

where the functionf(xk,uk) assumes the state parameters are
static, i.e.f(xk,uk) = xk. We can then compute the Observ-
ability matrix by differentiating the observability function with
respect to the Kalman state vector

O(xk,uk) =
∂

∂xk

o(xk,uk).

To test whether the system is observable, we must determine if
the observability matrix is invertible. This can be determined
by looking at the rank of the matrix,

rank(O(xk,uk)) = 9.

We obtained this value through the use of symbolic analysis
using Matlab (The Mathworks Inc., Natick, MA). The result-
ing rank of9 means that all9 parameters in the Kalman state
vector are observable.

V. EXPERIMENTAL EVALUATION

The experimental evaluation involved using a5-mm di-
ameter two-segment continuum snake robot. This robot uses
several NiTi backbones in each one of its bendable segments.
Each segment consists from a central backbone surrounded by
several secondary backbones that are pushed or pulled on to
bend the segment. Our robot uses three circumferentially dis-
tributed NiTi secondary backbones for actuation in a manner
similar to [7]. The robot tip is a spherical probe equipped
with a magnetic tracker allowing for exact measurement of
the robot tip location.

Figure 2 shows the robot with its spherical probe. An
Ascension 3D guidance trackSTARTMmagnetic tracker with
metal immune magnetic transmitter was used for tracking the
location of the 0.9 mm magnetic coil embedded in the probe
contacting the environment. We assume the magnetic tracker
measurement noise is normally distributed with zero mean and
standard deviationσt = 3 mm. The robot is also equipped with
load cells for measuring the actuation forces on the secondary
backbones. Using algorithms such as [21] for estimating the
force at the robot tip from measurement of the forces on the
load cells, we obtained estimates of the forces at the robot tip.
The force sensor noise is assumed to be normally distributed
with zero mean and standard deviationσf = 1 g (0.01 N).
Evaluation of the force estimation accuracy is reported in
[21]. The control environment was implemented on a real-time
control system using Matlab xPC. This system was used to
palpate the object with varying force levels at multiple points
on its surface.

We evaluated our probabilistic filtering-based approach us-
ing two experiments. The first experiment utilized a simple
planar surface consisting of two different materials. We used
this as a proof of concept experiment and to develop an
intuitive understanding of our approach. We then applied
our algorithm to a more complex setup, where inclusions
stiffer than the surrounding environment were embedded in
the material. We describe the methodology and results of the
two experiments in the following sections.



A. Planar Surface

The experimental model, shown in Fig. 2 was made from
silicone. The stiffer inclusions were made from rubber wire
with 80 Shore A hardness. The experimental model was
palpated with two force levels of 5 g (0.049 N) and 25 g
(0.245 N) and tip position data was collected during each
palpation.

Dataset and Experiment: We split the palpation data from
the experiment into two data sets. The first was used to infer
a best approximation to the relaxed position of the surface
(shown in Fig. 3 as a gray plane). This data was also used
to infer the ground truth stiffness (0.089 N/mm and 0.196
N/mm) for the outer and inner regions, respectively. The
second dataset was used for testing CARE. The test data was
artificially disturbed with a translation in x and z-directions,
resulting in a large registration error with respect to the
surface. This was done to create a challenging registrationtest
for our approach. CARE was applied to this data by iterating
through all the contact points in the test dataset using equations
outlined in Sec. III.

Fig. 2. The flexible planar surface consisting of two regionsof different
material. The inner region is stiffer than the outer region. The robot contacts
the surface with a spherical probe at its end.

The registration result of our probabilistic filtering method,
CARE, compared to the initial registration, is shown in Fig.3.
The initially perturbed point cloud of contact points is shown
in green and are poorly registered to the surface. After the
filter applies the contact force measurements, the algorithm
correctly aligns the contact points to the surface such thatthe
points are properly displaced “into” the surface to generate
forces that agree with the applied palpation force. Note that
points to the right of the surface in Fig. 3 are inside the surface
while points to the left of the surface are outside the surface.

We note that, during the experiment, the estimate of thex

dimension of the robot registration becomes highly correlated
with the estimate of the surface compliance. This occurs
because the estimation problem is not observable until the
surface is palpated at two different forces. In Fig. 4, an error
plot is shown that depicts the error between the estimated
compliance and the true compliance of the surface for the two
(inner and outer) regions. The data illustrates the sudden drop

Fig. 3. The contact points using the initial guess registration (shown in
green) and after the registration parameters have been estimated using our
filtering algorithm (shown in blue). After application of the filter all the tip
positions are ‘inside’ the planar surface.
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Fig. 4. This figure shows the error history of the stiffness estimates for both
the inner and outer regions as measurements are incrementally included in
the filtering algorithm.

in error when the surface is palpated at a second contact force
at the 250-th time step. The final registration error in terms
of aligning the robot to thea priori surface was 0.55mm. The
stiffness estimation error is larger in the inner region because
there are fewer data points in that region.

It should be noted that for the experiment described above it
would be impossible for any registration method that utilizes
geometric information alone to correctly register the robot
frame along the z direction. This is because the problem is
ill-posed due to the geometric symmetry that exists in the
object along the z-direction. The compliance map breaks this
symmetry and therefore allows registration in the z-direction.

For the purpose of comparison, we applied the standard
ICP algorithm to the above problem. The initial point cloud
obtained via the palpation experiment (green in Fig. 5) has
registration error along both the x and z-directions. The



Fig. 5. The point cloud obtained by palpating the surface is registered
to the surface using ICP. The green point cloud corresponds to the initial
guess registration, the red point cloud corresponds to the ICP registration
estimate and the blue point cloud corresponds to the ground truth registration.
Registration error in X is reduced while registration errorin Y does not
decrease.

point cloud obtained after application of ICP is shown in
blue. As can be seen in Fig. 5, ICP minimizes the distance
between the point cloud and the surface plane leading to an
improved registration estimate in the x-direction. However,
as surface compliance and/or palpation forces become larger
the registration accuracy in terms of aligning the robot and
surface frames will decrease because ICP will attempt to align
the deformed surface to the undeformed surface. Additionally,
registration along the z-direction is not improved becauseof
the inherent geometric symmetry in the problem. An accurate
prior compliance map can address this issue by utilizing the
palpation forces and compliance information to generate a de-
formed target surface for registration. However, our algorithm
attempts to solve for both the compliance map and registration
simultaneously.

B. 3D Soft Volume

The previous experiment involving the planar surface served
as a relatively simple test to verify the feasibility of our
approach. We also tested our filtering algorithm on a more
complex soft object with 3D geometry and embedded hard
material, shown in Fig. 6. The surface geometry was obtained
by scanning the surface with a magnetically tracked probe
dragged over the surface with only the probe self weight acting
on the surface (the probe weighed less than 0.5 grams).

Experiment details: After obtaining the surface geometry of
the object, the surface was palpated with two force levels of5 g
(0.049 N) and 25 g (0.245 N) using the continuum snake. The
tip of the snake was tracked using the magnetic tracker. As the
surface scan and palpation were done with the same tracker
setup, the robot frame R and surface frame S are coincident
and therefore the ground truth registration parameters of the
robot are known. Using the known ground truth registration
we estimate the ground truth surface stiffness. Figure 7 shows
the ground truth stiffness distribution on the pyramid surface.
The state vector for this problem is considerably larger as the

Fig. 6. A pyramid shaped silicone specimen with embedded hard material
used in the experiments.
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Fig. 7. Ground truth stiffness distribution on the pyramid surface. High
stiffness is indicated in red and low stiffness in dark blue.

size of the stiffness vectorsk is equal to the number of facets
in the surface model, i.e, each face has an associated stiffness.
The total number of facets in our surface model are 236.

For testing, we artificially perturbed the palpation data
contact points with a rigid transformationTpert. The cor-
responding ground truth registration for the perturbed data
set is T−1

pert. Using CARE we simultaneously estimated the
registration of the robot and surface stiffness parametersof
the object. We also estimated the registration parameters by
registering the perturbed contact point cloud to the surface
using ICP.

Figure 8 shows a perturbed contact point cloud based on
the initial registration parameters. The initial registration error
is 10mm in the z-direction. As a result all initial contact
points are above the surface. Once the algorithm has iterated
through all the observations in the data set, all contact points
are below the relaxed surface, as shown in Fig. 9. Fig. 10
shows the error in the registration and stiffness estimatesas
the algorithm iterates through the data. Fig. 11 shows the error
in the registration and stiffness estimates when an orientation
error of 11.5◦ about the Y-axis is applied to the data set. The
stiffness error is computed by taking the Euclidean distance
between the ground truth stiffness vector and the estimated
stiffness vector. The distribution of the estimated stiffness on
the surface model is also shown for both the experiments in
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Fig. 9. Data points after registration.

Fig. 12 and 13. It can be seen from direct observation that the
estimated stiffness distribution is qualitatively similar to the
ground truth stiffness distribution.

VI. CONCLUSION AND FUTURE WORK

The results of our experiments show that we can use
palpation as an effective strategy for registering the robot “on
the fly” to a flexible environment and to infer the surface com-
pliance or stiffness of the environment. Unlike conventional
approaches, CARE uses probabilistic filtering with forceful
contact, allowing us to estimate the compliance/stiffnessof
the environment while simultaneously aligning the robot toan
organ. The registration and compliance information estimated
by CARE can be of significant assistance during the use of
image guidance and haptic feedback for minimally invasive
surgery.

The significance of our approach is apparent as it relates to
a “chicken-and-egg problem”: if the compliance of the envi-
ronment is known, the expected displacement of each contact
point into the surface can be determined, thus simplifying reg-
istration. Conversely, if the registration is known, the stiffness
can be determined by observing the surface displacement for
a given contact force. We believe that solving for both the
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Fig. 10. Registration and stiffness estimation errors when an initial registra-
tion error of 10mm in the z-direction is applied to the data set.

registration and compliance requires a probabilistic approach
such as the one presented in this paper.

The work we presented relies on the use of probabilistic
filtering for the estimation of uncertain data. The real world
is noisy and so it is crucial to model and estimate this
uncertainty via sensor fusion techniques. Probabilistic filtering
methods like CARE allow us to report confidence measures
to the surgeon during image-guided interventions for increased
situational awareness and more advanced visual feedback. A
promising application of our approach is to provide feedback
to the surgeon regarding the location of hard and soft regions
in the surgical field.

Our approach does not aim to substitute the use of med-
ical imaging for registration but to augment it. Rigid and
deformable registration techniques that have been studied
extensively in medical imaging can be combined with the
approach described in our paper to leverage sub-surface fea-
tures using palpation force data. It is also worth noting that
any probabilistic filtering technique can be adopted withinthe
CARE framework. While we have chosen to use the IEKF in
our implementation due to our prior experience and success
with it, other filtering techniques such as those based on the
unscented Kalman filter can also be easily adopted within the
CARE framework.

The limitations of our proposed approach stem partly from
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Fig. 11. Registration and stiffness estimation errors when an initial registra-
tion error of11◦ about the Y-axis is applied to the data set.

our simplifying assumptions. Because we assume that the
robot does not deform the environment significantly we are
currently limited in our ability to detect stiffness features
embedded deep inside the model. Another limitation is that
our force controller needs some estimate of the surface normal.
In this work we have not attempted online estimation of the
surface normal during the implementation of force control.

Future work will include adoption of well known methods
for surface normal algorithms during force control (such as
[6]). Another possible direction for future research is to not
only estimate surface properties as we have done in this paper
but to also estimate volumetric properties of the tissue. This
will allow us to not only identify regions on the surface of
an organ that are soft or hard but to also localize, in 3D,
embedded features such as arteries and tumors.

Finally, although in this work we register the robot to the
environment using contact force data while not accounting for
underlying stiffness features, the eventual goal of our approach
will be to also include such information by using a stiffness
distribution prior which could be obtained from imaging (e.g.
ultrasound elastography).
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