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Abstract—Leveraging techniques pioneered by the SLAM com-
munity, we present a new filtering approach called simultaneous
compliance and registration estimation or CARE. CARE is like
SLAM in that it simultaneously determines the pose of a surgical
robot while creating a map, but in this case, the map is a

compliance map associated with a preoperative model of an organ Surface
as opposed to just positional information like landmark locations. modelof ~_
The problem assumes that the robot is forcefully contacting and anatomy

deforming the environment. This palpation has a dual purpose:
1) it provides the necessary geometric information to align or
register the robot to a priori models, and 2) with palpation at
varying forces, the stiffness/compliance of the environment caneb
computed. By allowing the robot to palpate its environment with
varying forces, we create a force balanced spring model within a {R}
Kalman filter framework to estimate both tissue and robot posi-

tion. The probabilistic framework allows for information fusion Fig. 1. The registration parameters define the transformdi@mween the

and computa_ltional effic_:iency. The algorithr_n is _experimentally coordinate frame S of the surface model and the coordinate fRarokthe
evaluated using a continuum robot interacting with two bench- | gpot.

top flexible structures.
. INTRODUCTION and assistance in maintaining correspondence between pre-

Minimally invasive surgery (MIS) offers patients manyoperative surgical plans and their execution.
benefits including fast recovery, reduced pain and improvedComputer-aided image overlay augments surgeon’s under-
cosmesis compared to open surgery. These advantages, hetanding of the anatomy and its correspondence with pre-
ever, come at the cost of increased challenges to the swwgeoperative images though an overlay of 3D reconstructed
in terms of manipulation dexterity, diminished haptic gnese, pre-operative images on the visible anatomy[16]. Sucaéssf
and limited situational awareness. The limited situationanage-guided robot-assisted surgery hinges on regigtéhnia
awareness during MIS stems from the loss of visualizati®urgical tool to the coordinate frame of a knownpriori
due to the extremely narrow field of view imposed by th8D surface model (as obtained from pre-operative 3D image
necessary use of thin endoscopes. Added to the narrow field@fonstruction), depicted in Figl 1.
view is the lack of haptic sensory immersion which precludes Registration to rigid anatomy such as bones is easy and
the detection and use of surface and stiffness featuresdimes not require intraoperative update due to organ shjftin
deduce correlations between the intraoperative scenehend swelling or gravitational pull. When operating on flexible
preoperative imaging. anatomy this task becomes more challenging. Organ shifting

Robot-assisted MIS and computer-aided surgery were intistorts the mapping between intraoperative sensitivéoama
duced to assist surgeons in overcoming the limitations &.Mland its corresponding interpretation in image space. This
Robot-assisted MIS allows surgeons to augment their skiflather complicates the task of the surgeon in avoidingoatit
with the dexterity and precision of the robots (e.d.[[8, 18]anatomy such as nerves, arteries, billary duct, etc.
Newer systems allow surgeons to extend their reach deepewhile there are approaches to overcome organ shift using
into the patient's anatomy (e.gll[4,.22]). Computer-aidedeformable registration from intraoperative surface sgam
surgery allowed surgeons to achieve intra-operative adioiy (e.g. [10, 18]), these approaches typically work using @it



light based imaging data. In cases where the critical anatomssociated contact force magnitudes do the following: dater
is obfuscated by blood or is underneath tissue layers one @aset of estimated stiffness normal to the surface, 2) find the
use either intraoperative imaging or mechanical palpatata. registration parameters relating the robot frame to theehod
For example, mechanical stiffness imaging has been showrofothe environment. In the following discussion, we make
allow surgeons to detect hidden features based on probing flew simplifying assumptions. The following list provideset
changes in relative stiffness [11,120, 23| 21, 17]. simplifying assumptions and the rationale behind makirg¢h

A common approach to achieve registration is to use assumptions:

iterative closest point (ICP) algorithm.[3] which typicall 1) palpation data is obtained using a robot capable of force
assumes the surrounding environment is rigid and does not  sensing. For example, we use a continuum robot with

account for tool-tissue interaction. Unfortunately ICPti® force sensing algorithms as demonstrated in [21].
computationally expensive to update registration pararséh  2) The position data of the robot tip is accurate. If the
real time. Probabilistic filtering based approaches hawnbe robot kinematic model is not accurate then the robot
developed to perform registration [15./ 12]. These techesqu tip is tracked using external measurements such as a

primarily use line of sight measurements, i.e, 3D vision or  magnetic tracker.

range scanning, to output a map of locations of anatomicalz) The forces that the robot applies on the environment
structures and landmarks. There has also been prior work in " quring palpation are small enough not to cause a large
estimating tissue compliance using palpation, withoutiagl deformation of the surface. Although this assumption
the registration problem, using filtering methodsl[9, 23]. limits the ability of palpation to discern deep underlying

Our approach is to use contact between the tool and the stiffness features, we are still able to detect stiffness
environment to estimate the alignment between the toollaad t features close to the surface of the environment. A

anatomical structure. If the environment were rigid, eating typical case where detection of a shallow underlying
registration using geometric contact constraints alonelevo stiffness feature is useful is during the final stages of
be pOSSIble. However, since we are deallng with flexible resection around an artery with the aim of avoiding
environments with unknown elastic properties, the pararset inadvertent cutting of the artery.

defining the elastic properties must also be estimated. Ing) The friction between the robot tip and the environment
our formulation, we inCOfporate contact force measurement are neg||g|b|e The rationale for this assumption is that

to estimate both the environment stiffness and registratio the anatomy is typically lubricious and also the robot
parameters simultaneously using an iterated extendeddfalm tip may be equipped with a rolling/spherical bearing in
filter (IEKF) based algorithm. In this work, we extend the a manner similar to the work of [14].

approach of[19] by relaxing two assumptions made in thats) The deformation of the model is predominantly in the

work: 1) the environment has uniform stiffness everywh@je, direction normal to the surface at contact point. This
the environment stiffness is known. In this Work, we initzal assumption follows from the previous one since lack of

our IEKF with a distribution of stiffness and then we use friction eliminates tangential forces on the environment.
contact and force information to estimate the stiffness map

and' reg|stetr the robot frame to trepriori model of the environment stiffness from contact detection is for detect
en_\lflr:onmertw '.b i  thi Ki thod bl rﬁlative stiffness changes as the robot probe tip moves along
" N COI”l”I’I ution of this work 1S a new method capable Qhe o, face. We are not interested in exact data of stiffness
on the fly” registration of a robot to a flexible enwronmentfor diagnosis. Instead, relative stiffness changes canseel

We have adopted a probabilistic method that allows us f8 detect nodules, cysts, arteries, etc. Examples of works

rea_dlly _estlmate the com_pllgnce or stiffness of the envirent using relative stiffness changes for stiffness imaginduite
while simultaneously aligning the robot to an organ. Su 14 20

. . . : 5]. Since the exact value of the environment stiffne

information can be used fqr |m§1.ge-gu|d.ed surgery.and hapi © not important and since we limit the palpation forces to
feedback during MIS. The |dent|f!ed enwronment stn‘fngae € levels associated with small deformations of the tissue see u
be used to llocate tumors apd major arteries at_the surgitl fl% simple linear model of the environment stiffness.

The outline of the remainder of the paper is as follows: in
Sec.[Il we outline the problem statement and assumptionsj||. FILTERING FOR REGISTRATION AND COMPLIANCE

in Sec.[dll we introduce our registration and compliance ESTIMATION

estimation approach, in Séc.]JIV we test the observabilityusf ) . )

problem using a simple test case, and in §éc. V we discuss th(Ihe goal of the CARE_ algorithm is to estimate a state

experiments we performed. Finally, in S&C] VI, we conclud\éeCtor_ that encodes the alignment of the rok_Jot as well as the
the paper with a discussion of the contributions we have maﬁ%mpllance of the surface. We therefore definas follows,

and future work.

We also emphasize that the motivation for estimating the

X:[Xkﬁrobot ak,robot Sk Xk,tip]Tv (1)

Il. PROBLEM STATEMENT AND ASSUMPTIONS wherexy, robor @nd 8, ,o0¢ TEPresent the position and orien-

Problem Statement: Given ana priori model of the en- tation vectors, respectively, of the robot base in the coatd
vironment and a set of robot end effector locations witframe of the surface moded;, is a vector defining the stiffness



in a direction normal to the surface, amd ;, represents the robot base positiornk, ...« and the robot base orientation
position of the robot tip in the base frame. Ok robot -

During data collection for generating the input to the CARE In (@), the surface normal is obtained by finding the nor-
algorithm, the robot may be telemanipulated using hybritial associated with the plane on the surface that is closest t
position-force control ensuring a regulated force on théase the current estimate of the robot tip positia;jtip. Similarly,
subject to a rough estimate of the surface normal. The rodbe functions(x;) extracts the stiffness corresponding to the
detects that it is in contact with a surface using an impl@lane closest tcxf,tip.
mentation similar tol[1] or by using a threshold on the force For the measurement update step, we use an iterative
estimated at the tip of the robot. The robot infers the cdntaglgorithm that prevents divergence of the state estimdte. T
force by observing the joint actuation forces and solving trapproach is similar to the iterated extended Kalman filt€Fj|
inverse statics problem in a manner similar |tol [21]. For owlescribed inl[2]. After each new measurement is obtaine, th
implementation, the surface is assumed to be locally plan&KF attempts to update the state megy, to minimize the
and the contact force is assumed to be normal to the surfaigdlowing cost function:

In addition to measuring force, the robot also measurespits t.
position in the base frame of the robot. x

There are two components of the filtering process: a pre- . . . .(4)
diction step that evolves the state estimate based on amo erezy 1S the k-th observatlopPk‘k 1S t_he state covariance
model and a measurement update step that corrects the & R is the mea}sgrement noise covariance. -
estimate with live sensor data. For our implementation, we 1€ aboye o.ptlmlzatlo.n proble_m corresponds to finding Fhe
have designed the prediction step assuming that the p&mmetpaxmum likelihood estimate given the current observation

are static, with a large uncertainty added to the tip pcn;iticé’“' IEKNF vrctmlmlzzs tthe cos(tj func%(:rﬂmzjustmg a rte_zcurswe
due to tool movement. auss-Newton update procedure. The update equations are as

= arg m}in [f{k“c — X}T P;‘}C—&—[zk—h(x)}TR_l[zk—h(x)]

follows:
Measurement Function We assume a simple linear spring Xo = Xpk (5)
model governs the tool-environment interaction forcesisTh T r1-1
assumption holds within the surgical context even though K; = Py H; [H;PyH; | (6)
tissue is highly non-linear because we are interested in- map Xiy1 = Xgjh—1 T )]
ping relative changes in stiffness and the absolute estBnat K; [zk —h(x;) — H; (ﬁk|k—1 — Xl)] ,

of stiffness are not important to the problem. For example, ) . ) .
an artery is detected by a change in the stifiness from thiere Hi is the Jacobian oh(x) linearized aboutx;. The

surrounding tissue. Since we care only about detecting t1’;}Qove recursion is continued until convergence. We say the
change between the tissue and artery, absolute stiffnésasvallter has converged when thiec;.. —x;|| <, +wheree << 1

are unnecessary and we therefore avoid using complex néh.convergence, the state mean is updatesgs = x;. While
linear models. Additionally, this assumption is valid besa we d9 not have a guarantee of convergence, in our experiments
we apply only small forces on the environment so as the filter has converged every time. It should be noted that

produce minimal local impingement on the surface witho single iteration of the above procedure corresponds to the

a substantial deformation of the organ. This ensures that wghdard EKF update step. _ o
are able to estimate the shape and relative stiffness, ad th ONce the mean has been updated using the iterative proce-

our measurement technique does not change the environrrgsﬁj‘ﬂ3 dezaned above, the covarg;mce matrix is updated usin
in a way that makes the problem intractable. the standard EKF covariance update equation,

Therefore, the measurement function used to predict the K, = Pk|kHT [HPk‘kHT]fl (8)
expected measurements (force and tip position) at tinye-ste

p . ( pp ) at time P}, = Py - KHPy, )
k givenxy is as follows,

whereH is the Jacobian oh(x) linearized about the updated

X7 . —P)s(Xk) ot

k,tip — P)S\Xk ) (2) meanx;,.

Xk, tip It should be noted that a key distinguishing feature of our
; . ; filtering approach to registration is that we update ourgtegi
wheren is the surface normap is a point on the (relaxed) . R . : :

N b b ( )élon to minimize the residual force (i.e, the differencevisetn

surface, and(xy) is a function that extracts the appropriatth qf d dicted f 1 h tadt DO
surface stiffness given the state,. Xf,tip is the current - 'c Measured jorce and predicte orce) at each contat poin

estimate of the robot tip in the coordinate frame of the smfa'nStead of minimizing a geometric quantity such as distance
given by: between the contact point and surface. We note that we choose

to instantiate a number of these Kalman filters, each of which
Xf,n'p = R(xp)Xp 1ip + t(X1), (3) attempts to estimate_ _the unknown r_egistration parameters.

When the filter has utilized all the available observations, w
R(x) andt(xy) are the rotation matrix and translation vectotake the hypothesis with the highest measurement liketihoo
respectively, that perform this transformation based am tlas the final result.

—nT(

h(zy) = (



IV. OBSERVABILITY where the functiorf (x, ux) assumes the state parameters are

In order to apply the filter described in the previous sectioﬁtat.lc’ . £(x, u) = x;. We can then compute the Observ-
. akﬁmty matrix by differentiating the observability furich with

the state must be observable. We test observability throu

. ; spect to the Kalman state vector

the use of a simple test case, described below. Assume an

environment with three planes of different orientatiordared

by i = (1,2,3). Each plane is defined by a normal vecigr

and a plane poinp;. For this test case, we assume we ha . .
knowledge of which plane we are contacting and that bqth\LFo test whether the system is observable, we must deterimine i

and p; are known. Each plane has an unknown stiffness Lheloblf'ervalil![l;y matEx ]lcsﬂ:nvertl?l'e. This can be detaved
that is encoded within the state vector for estimation. y looking at the rank of the matnx,
The state vector is of length, which defines the position rank O (xz, ug)) = 9.

and orientation of the robot base in the coordinate framaef t
surface model and encodes the stiffness of each of the thie obtained this value through the use of symbolic analysis

O(xp,ux) = a—Xk o(x, ug).

planes. using Matlab (The Mathworks Inc., Natick, MA). The result-
- ing rank of9 means that alp) parameters in the Kalman state
xp=[x y z 121y T8 S1 S2 53] vector are observable.
We obtain three measurements from palpating the three V. EXPERIMENTAL EVALUATION

planes. We next obtain three additional measurementsdhrou

palpating the same three planes with a different force. TheThe experimental evaluation involved using5amm di-

point on the plane where contact occurs does not affect t@eter two-segment continuum snake robot. This robot uses
analysis. Let us assume that all of these force measuremé@¥eral NiTi backbones in each one of its bendable segments.
are obtained and collected together. We will use the terdrCh segment consists from a central backbone surrounded by
hj(xx) to represent thej-th element of the measuremengeveral secondary backbones that are pushed or pulled on to

function bend the segment. Our robot uses three circumferentiadly di
. tributed NiTi secondary backbones for actuation in a manner
h(xy) = [ hi(xx) he(xk) -+ he(xk) ] similar to [7]. The robot tip is a spherical probe equipped

) with a magnetic tracker allowing for exact measurement of

and the force measurement model can be written as followg;a ropot tip location.

_ _ T ‘ N Figure 2 shows the robot with its spherical probe. An

halxn) = =0 (R{xe)ay +(xx) = pa) 5 Ascension 3D guidance trackSTARmagnetic tracker with

where, for a measurement indgx the associated plane thatmetal inimune magnetic transmitter was used for tracking the
is being contacted is-th plane.q; is the robot tip position location of the 0.9 mm magnetic coil embedded in the probe
corresponding to thg-th observation, measured in the robogontacting the environment. We assume the magnetic tracker
frame. Using Lie derivatives, we can define two differenneasurement noise is normally distributed with zero meai an
observability functions as follows, standard deviation;, = 3 mm. The robot is also equipped with
load cells for measuring the actuation forces on the seecgnda
backbones. Using algorithms such as| [21] for estimating the

(Lgh1) (x, up) (E%M)(Xk,mc) ¢

(£%72) (x5, ug) (l:{hg)(xk,uk) force at the robot tip from measurement of the forces on the
o ug) = | (EEII0kUR) | gty = | (Egha)(xkoui) | load cells, we obtained estimates of the forces at the rapot t

Eﬁshiggizzg chhigg',iﬁﬁi; The force sensor noise is assumed to be normally distributed

(L0he) (i ) (Cihe)(xpupy/  With zero mean and standard deviatiop = 1 g (0.01 N).

) ) ) o Evaluation of the force estimation accuracy is reported in
where, uy, is the input at ste. The zero-th Lie derivative of [57] The control environment was implemented on a reaktim
a function is the function itself, control system using Matlab xPC. This system was used to
palpate the object with varying force levels at multiplergsi

0g . — B
(Lehy) (e, i) = b (x), (10) on its surface.
and the first Lie derivative of a function is as follows, We evaluated our probabilistic filtering-based approach us
ing two experiments. The first experiment utilized a simple
(Lh;) (xp, up) = Oh (Xk)f(xk,uk). (11) planar surface consisting of two different materials. Wedus
o0x;, this as a proof of concept experiment and to develop an

intuitive understanding of our approach. We then applied
our algorithm to a more complex setup, where inclusions
stiffer than the surrounding environment were embedded in
o' (xp,ug) | h(xy) the material. We describe the methodology and results of the
} - [ H f(xg, ug) } ’ two experiments in the following sections.

Substituting EqZI0 and 11 into the functioa®(xy, u;) and
o!(xy,u;), we can write a combined observability function,

o(xg, ux) = { o' (xk, u)



A. Planar Surface

The experimental model, shown in F[d. 2 was made from €0
silicone. The stiffer inclusions were made from rubber wire 55
with 80 Shore A hardness. The experimental model was
palpated with two force levels of 5 g (0.049 N) and 25 g

3 [_Isurface {Quter)
[surface (inner)

(0.245 N) and tip position data was collected during each 5 Initial Registration

palpation. Eduf *  Final Registeration
Dataset and Experiment: We split the palpation data from "357

the experiment into two data sets. The first was used to infer iR

a best approximation to the relaxed position of the surface 307 ¥

(shown in Fig[B as a gray plane). This data was also used 25 0

to infer the ground truth stiffness (0.089 N/mm and 0.196 20 /4:

N/mm) for the outer and inner regions, respectively. The o w0 w w ¥ o)

second dataset was used for testing CARE. The test data was X (mm)

artificially disturbed with a translation in x and z-direuts,

resulting in a large registration error with respect to thg9: 3.  The contact points using the initial guess regigtra(shown in
. . ) ) green) and after the registration parameters have been &stimaing our

surface. This was done to create a challenging registré¢&in fijering algorithm (shown in blue). After application ofeHilter all the tip

for our approach. CARE was applied to this data by iteratingsitions are ‘inside’ the planar surface.

through all the contact points in the test dataset usingtemsa

outlined in SecTll.

0.2

Stiffness outer ||

Outer region

Stiffness inner

0.15}

0.1}

0.05 t

Stiffness estimate errdiNV/mm)

0 100 200 300 400 500

Inner region time step

Fig. 2. The flexible planar surface consisting of two regiafidifferent
material. The inner region is stiffer than the outer regiohe Tobot contacts Fig. 4. This figure shows the error history of the stiffnestineates for both
the surface with a spherical probe at its end. the inner and outer regions as measurements are incrememtelligéd in
the filtering algorithm.

The registration result of our probabilistic filtering meth
CARE, compared to the initial registration, is shown in Bg.
The initially perturbed point cloud of contact points is o in error when the surface is palpated at a second contac forc
in green and are poor|y registered to the surface. After tigé the 250-th time step. The final registration error in terms
filter applies the contact force measurements, the algorittf aligning the robot to the priori surface was 0.55mm. The
correctly aligns the contact points to the surface suchttit stiffness estimation error is larger in the inner regionsbese
points are properly displaced “into” the surface to gererathere are fewer data points in that region.
forces that agree with the applied palpation force. Noté tha It should be noted that for the experiment described above it
points to the right of the surface in F[g. 3 are inside theaef would be impossible for any registration method that e#iz
while points to the left of the surface are outside the serfacggeometric information alone to correctly register the tobo

We note that, during the experiment, the estimate ofistheframe along the z direction. This is because the problem is
dimension of the robot registration becomes highly cotegla ill-posed due to the geometric symmetry that exists in the
with the estimate of the surface compliance. This occu@dject along the z-direction. The compliance map breals thi
because the estimation problem is not observable until thgmmetry and therefore allows registration in the z-digect
surface is palpated at two different forces. In [iy. 4, amrerr For the purpose of comparison, we applied the standard
plot is shown that depicts the error between the estimat@P algorithm to the above problem. The initial point cloud
compliance and the true compliance of the surface for the twbtained via the palpation experiment (green in Fig. 5) has
(inner and outer) regions. The data illustrates the suddem dregistration error along both the x and z-directions. The
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2E|n 10 0 Ell 10 l? Fig. 6. A pyramid shaped silicone specimen with embedded hardrialat
X ) ¥ () used in the experiments.
Fig. 5. The point cloud obtained by palpating the surfaceegistered 20 -
to the surface using ICP. The green point cloud correspoodé initial
guess registration, the red point cloud corresponds to @ registration 15
estimate and the blue point cloud corresponds to the grouttd tegistration.
Registration error in X is reduced while registration eriorY does not 10
decrease.
—_ O
IS
é 0
point cloud obtained after application of ICP is shown in o _5
blue. As can be seen in Figl 5, ICP minimizes the distance
between the point cloud and the surface plane leading to an  —10}
improved registration estimate in the x-direction. Howeve —15
as surface compliance and/or palpation forces becomerlarge . ‘ . . ‘
the registration accuracy in terms of aligning the robot and 20 —10 0 10 20 30
surface frames will decrease because ICP will attempt ¢mali X (mm)

the deformed surface to the undeformed surface. Additipnal ) o ) )
registration along the z-directon is not improved becase £, 1. S [ e dscbutonon e pramicte. it
the inherent geometric symmetry in the problem. An accurate

prior compliance map can address this issue by utilizing the

palpation forces and compliance information to generate-a cize of the stiffness vectay;, is equal to the number of facets
formed target surface for registration. However, our atgar in the surface model, i.e, each face has an associatedessffn

attempts to solve for both the compliance map and registratiThe total number of facets in our surface model are 236.

simultaneously. For testing, we artificially perturbed the palpation data
contact points with a rigid transformatiofi,.,.. The cor-
B. 3D Soft Volume responding ground truth registration for the perturbedadat

The previous experiment involving the planar surface sbrveet is Tp_e}.t. Using CARE we simultaneously estimated the
as a relatively simple test to verify the feasibility of ouregistration of the robot and surface stiffness parametérs
approach. We also tested our filtering algorithm on a motke object. We also estimated the registration parameters b
complex soft object with 3D geometry and embedded hardgistering the perturbed contact point cloud to the serfac
material, shown in Fid.]6. The surface geometry was obtainaging ICP.
by scanning the surface with a magnetically tracked probeFigure[8 shows a perturbed contact point cloud based on
dragged over the surface with only the probe self weighthgctithe initial registration parameters. The initial registra error
on the surface (the probe weighed less than 0.5 grams). is 10mm in the z-direction. As a result all initial contact

Experiment details. After obtaining the surface geometry ofpoints are above the surface. Once the algorithm has iterate
the object, the surface was palpated with two force levesgf through all the observations in the data set, all contaatpoi
(0.049 N) and 25 g (0.245 N) using the continuum snake. Thee below the relaxed surface, as shown in Eig. 9. Eig. 10
tip of the snake was tracked using the magnetic tracker. &s tshows the error in the registration and stiffness estimates
surface scan and palpation were done with the same tracke algorithm iterates through the data. FFig. 11 shows ttwe er
setup, the robot frame R and surface frame S are coincidémthe registration and stiffness estimates when an otiienta
and therefore the ground truth registration parameterdi@f terror of 11.5° about the Y-axis is applied to the data set. The
robot are known. Using the known ground truth registratiostiffness error is computed by taking the Euclidean distanc
we estimate the ground truth surface stiffness. Figlire Wwshobetween the ground truth stiffness vector and the estimated
the ground truth stiffness distribution on the pyramid acef. stiffness vector. The distribution of the estimated s&ffa on
The state vector for this problem is considerably largeihas tthe surface model is also shown for both the experiments in
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Fig. 9. Data points after registration. registration and compliance requires a probabilistic apgin
such as the one presented in this paper.

Fig.[12 andIB. It can be seen from direct observation that the! "€ Work we presented relies on the use of probabilistic
estimated stiffness distribution is qualitatively similm the filtering for the estimation of uncertain data. The real orl
ground truth stiffness distribution. is noisy and so it is crucial to model and estimate this

uncertainty via sensor fusion techniques. Probabilistierfing
VI. CONCLUSION AND FUTURE WORK methods like CARE allow us to report confidence measures
The results of our experiments show that we can uethe surgeon during image-guided interventions for iaseel
palpation as an effective strategy for registering the t6bn  Situational awareness and more advanced visual feedback. A
the fly” to a flexible environment and to infer the surface conPromising application of our approach is to provide feedbac
pliance or stiffness of the environment. Unlike converdion to the surgeon regarding the location of hard and soft region
approaches, CARE uses probabilistic filtering with fortefun the surgical field.
contact, allowing us to estimate the compliance/stiffneks Our approach does not aim to substitute the use of med-
the environment while simultaneously aligning the robofito ical imaging for registration but to augment it. Rigid and
organ. The registration and compliance information edtitha deformable registration techniques that have been studied
by CARE can be of significant assistance during the use @ftensively in medical imaging can be combined with the
image guidance and haptic feedback for minimally invasivapproach described in our paper to leverage sub-surface fea
surgery. tures using palpation force data. It is also worth noting tha
The significance of our approach is apparent as it relatesawy probabilistic filtering technique can be adopted wittie
a “chicken-and-egg problem”: if the compliance of the envicARE framework. While we have chosen to use the IEKF in
ronment is known, the expected displacement of each contaot implementation due to our prior experience and success
point into the surface can be determined, thus simplifyegy r with it, other filtering techniques such as those based on the
istration. Conversely, if the registration is known, thiffrsess unscented Kalman filter can also be easily adopted within the
can be determined by observing the surface displacement @A&RE framework.
a given contact force. We believe that solving for both the The limitations of our proposed approach stem partly from
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