
Efficient Visual-Inertial Navigation using a
Rolling-Shutter Camera with Inaccurate Timestamps

Chao X. Guo, Dimitrios G. Kottas, Ryan C. DuToit, Ahmed Ahmed, Ruipeng Li, and Stergios I. Roumeliotis

Abstract—In order to develop Vision-aided Inertial Navigation
Systems (VINS) on mobile devices, such as cell phones and
tablets, one needs to consider two important issues, both due
to the commercial-grade underlying hardware: (i) The unknown
and varying time offset between the camera and IMU clocks
(ii) The rolling-shutter effect caused by CMOS sensors. Without
appropriately modelling their effect and compensating for them
online, the navigation accuracy will significantly degrade. In this
work, we introduce a linear-complexity algorithm for fusing in-
ertial measurements with time-misaligned, rolling-shutter images
using a highly efficient and precise linear interpolation model. As
a result, our algorithm achieves a better accuracy and improved
speed compared to existing methods. Finally, we validate the
superiority of the proposed algorithm through simulations and
real-time, online experiments on a cell phone.

I. INTRODUCTION AND RELATED WORK

Among the methods employed for tracking the six-degrees-
of-freedom (d.o.f.) position and orientation (pose) of a sensing
platform within GPS-denied environments, vision-aided iner-
tial navigation is one of the most established, primarily due
to its high precision and low cost. During the past decade,
VINS have been successfully applied to spacecraft [20], auto-
motive [17], and personal localization [9], demonstrating real-
time performance.

The increasing range of sensing capabilities offered by
modern cell phones, as well as their increasing computa-
tional resources make them ideal for applying VINS. Fusing
visual and inertial measurements on a cell phone, however,
requires addressing two key problems, both of which are
related to the low-cost, commercial-grade hardware used.
First, the camera and inertial measurement unit (IMU) have
separate clocks, which are not synchronized. Hence, visual
and inertial measurements which may correspond to the same
time instant, will be reported with a time difference between
them. Furthermore, this time offset may change over time
due to inaccuracies in the sensors’ clocks, or clock jitters
from CPU overloading. Therefore, high-accuracy navigation
on a cell phone requires modelling and online estimating such
time parameters. Second, commercial-grade CMOS sensors
suffer from the rolling-shutter effect; that is each pixel row
of the imager is read at a different time instant, resulting in
an ensemble distorted image. Thus, an image captured by
a rolling-shutter camera under motion will contain bearing
measurements to features which are recorded at different
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camera poses. Achieving high-accuracy navigation requires
properly modelling and compensating for this phenomenon.

Both the time synchronization and rolling-shutter effect
correspond to a time offset between visual and inertial mea-
surements. Previous works have demonstrated offline methods
for calibrating a constant time offset between a camera and
an IMU [13, 4], or the readout time of a rolling-shutter
camera [21, 2]. However, the equipment required for offline
calibration is not always available. Furthermore, since the time
offset between the two clocks may jitter, the result of an offline
calibration process may be of limited use in practice.

This motivates us to introduce a new measurement model
for fusing rolling-shutter images that have a time offset with
inertial measurements. Ideally, modelling the rolling-shutter
effect would require estimating the pose corresponding to each
pixel row. However, this would lead to an intractable compu-
tational cost. An efficient, real-time sensor fusion algorithm
taking into account the rolling shutter and time misalignment
effects requires an alternative, approximate, camera measure-
ment model.

By exploiting the underlying kinematic motion model, one
can employ the estimated linear and rotational velocity for
relating camera measurements with IMU poses corresponding
to different time instants. Following such an approach, in [1],
the authors proposed a vision-only structure from motion
algorithm, tailored to rolling-shutter images. In [12], an EKF
is employed for estimating the rotational velocity of a rolling-
shutter camera as an aid for video rectification. Recently, Li et
al. adapted this idea to the case of the Multi-State Constrained
Kalman Filter (MSC-KF) to account for the rolling shutter
and time synchronization effects [15, 16]. Such an approach,
however, has two main drawbacks: (i) Increased computational
cost due to the extra parameters (linear and rotational veloc-
ities) that need to be estimated for each processed camera
image. As we will show later on, this introduces a significant
computational burden to the MSC-KF. (ii) The requirement to
switch between two propagation models, which increases the
algorithm’s implementation complexity.

In this work, we propose an interpolation-based camera
measurement model, targeting vision-aided inertial navigation
using low-grade rolling-shutter cameras. In particular, the main
contributions of this paper are:
• We introduce an interpolation model for expressing the

camera pose of each visual measurement, as a function of
adjacent IMU poses, that are included in the estimator’s
optimization window.

• A significant speedup compared to [15, 16] for fusing
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Fig. 1. Time synchronization and rolling-shutter effect.

visual and inertial measurements while compensating for
varying time offset and rolling shutter.

• We determine the system’s unobservable directions when
applying our interpolation measurement model, and use
them to improve the VINS consistency and accuracy
by employing an Observability-Constrained Extended
Kalman filter (OC-EKF).

• We validate the proposed algorithm in simulation, as well
as through real-time, online and offline experiments using
a cell phone.

The rest of the paper is structured as follows. In Section II,
we explain how the camera-IMU lack of synchronization and
the rolling-shutter effect cause a time offset between camera
and IMU measurements. In Section III, we describe our
interpolation-based camera measurement model employed for
compensating for the time synchronization and rolling-shutter
effects. In Section IV, we present the modified MSCKF-based
algorithm for six d.o.f. sensor motion estimation. Furthermore,
we compare its computational complexity to that of [15, 16].
In Section V, we present our OC-EKF implementation that
uses an interpolation-based camera measurement model. In
Section VI, we evaluate the performance of our proposed
algorithm, both in simulation and experimentally. Finally, in
Section VII, we provide concluding remarks.

II. TIME MISALIGNMENT DUE TO TIME
SYNCHRONIZATION AND ROLLING-SHUTTER EFFECTS

Most prior work on VINS assumes a global shutter camera
perfectly synchronized with the IMU. In such a model, all
pixel measurements of an image are recorded at the same
time instant as a particular IMU measurement. However, this is
unrealistic for most consumer devices mainly for two reasons:
(i) The camera and IMU clocks may not be synchronized.
That is, when measuring the same event, the time stamp
reported by the camera and IMU will differ. (ii) The camera
and IMU may sample at a different frequency and phase,
meaning that measurements do not necessarily occur at the
same time instant. Thus, a varying time delay, td , between the
corresponding camera and IMU measurements exists, which
needs to be appropriately modelled.

In addition, if a rolling-shutter camera is used, an extra
time offset introduced by the rolling-shutter effect, should be
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Fig. 2. The cell phone’s trajectory between poses Ik and Ik+3. The camera
measurement, Ck , is recorded at the time instant k+ t between poses Ik and
Ik+1. (a) The real cell phone trajectory (b) The cell phone trajectory with
linear approximation.

accounted for. Specifically, the rolling-shutter camera reads the
imager row by row, so the time delay for a pixel measurement
in row m with image readout time tm can be computed as
tm = mtr, where tr is the read time of a single row.

As depicted in Fig. 1, both the time delay of the camera,
as well as the rolling-shutter effect can be represented by a
single time offset, corresponding to each row of pixels. For
a pixel measurement in the m-th row of the image, the time
difference can be written as: t = td + tm.

Ignoring such time delays can lead to significant perfor-
mance degradation (see Sec. VI-B). To address this problem,
we introduce a measurement model that approximates the pose
corresponding to a particular camera measurement as a linear
interpolation (or extrapolation, if necessary) of the closest (in
time) IMU poses, among the ones that comprise the estimator’s
optimization window (see Fig. 2).

III. CAMERA MODEL FOR TIME MISALIGNED
MEASUREMENTS

In this section, we present the proposed interpolation-based
measurement model for expressing the pose, Ik+t , corre-
sponding to image Ck (see Fig. 2(a)), as a function of the
poses comprising the estimator’s optimization window. Several
methods exist for approximating a 3D trajectory as a polyno-
mial function of time, such as the Spline method [23]. Rather
than using a high-order polynomial, we choose to employ a
linear interpolation model. Such a choice is motivated by the
short time period between two consecutive poses, Ik and Ik+1,
that are adjacent to the pose Ik+t , which corresponds to the
recorded camera image.

Specifically, defining {G} as the global frame of reference
and an interpolation ratio λk ∈ [0, 1] (in this case, λk is the
distance between Ik and Ik+t over the distance between Ik and
Ik+1), the translation interpolation GpIk+t

between two IMU
positions GpIk

and GpIk+1
expressed in {G}, can be easily

approximated as:
GpIk+t

= (1−λk)
GpIk

+λk
GpIk+1

(1)

In contrast, the interpolation of the frames’ orientations is
more complicated, due to the nonlinear representation of
rotations. In [23], Shoemaker proposed the SLERP model for
rotation interpolation, which is designed to apply interpolation
on the arc defined by two quaternions on the unit sphere.
Although it is geometrically elegant, such a model leads to
cumbersome expressions. Instead, in our case one can take
advantage of two characteristics of the problem at hand for
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designing a simpler model: (i) The IMU pose is cloned 1

at around 5 Hz (the same frequency as processing image
measurements), thus the rotation between consecutive poses,
Ik and Ik+1, is small during regular motion. (ii) We can always
clone the IMU pose at the time instant closest to the image’s
recording time, thus the interpolated pose Ik+t is very close to
the pose Ik and the rotation between them is very small.

Exploiting (i), the rotation between the consecutive IMU
orientations, described by the rotation matrices G

Ik
C and G

Ik+1
C,

respectively, expressed in {G}, can be written as:
Ik+1
G C G

Ik
C = cosαI− sinαbθc+(1− cosα)θθT

' I−αbθc (2)

where we have employed the small-angle approximation, bθc
denotes the skew-symmetric matrix of the 3×1 rotation axis,
θ, and α is the rotation angle. Similarly, according to (ii)
the rotation interpolation Ik+t

Ik
C between G

Ik
C and G

Ik+1
C can be

written as:
Ik+t
Ik

C = cos(λkα)I− sin(λkα)bθc+(1− cos(λkα))θθT

' I−λkαbθc (3)

If we substitute αbθc from (2) into (3), Ik+t
Ik

C can be expressed
in terms of two consecutive rotations:

Ik+t
Ik

C' (1−λk)I+λk
Ik
G C G

Ik+1
C (4)

This interpolation model is exact at the two end points (λk =
0 or 1), and less accurate for points in the middle of the
interpolation interval (i.e., the resulting rotation matrix does
not belong to SO(3)). Since we can always choose to place
the cloned IMU poses as close as possible to the reported
time of the image, such a model can fit the purposes of our
application.

IV. ESTIMATION ALGORITHM DESCRIPTION

In this section, we will introduce the proposed VINS that
utilizes a rolling-shutter camera with a varying time offset.
Our goal is to estimate the 3D position and orientation
of a device equipped with an IMU and a rolling-shutter
camera. The measurement frequencies of both sensors are
assumed known, while there exists an unknown time offset
between the IMU and the camera timestamps. Our algorithm
derives from the MSC-KF [20], which is a linear-complexity
(in the number of features tracked) visual-inertial odometry
algorithm, initially designed for inertial and global shutter
camera measurements that are perfectly time synchronized.
Rather than maintaining a map of the environment, the MSC-
KF marginalizes all observed features, exploiting all available
information for estimating a sliding window of past camera
poses. In what follows, we will first present the state vector,
and system propagation using inertial measurements. Then,
we will introduce the proposed measurement model and the
corresponding EKF measurement update.

1We refer to stochastic cloning [22], for maintaining past IMU poses in
the sliding window of the estimator.

A. System State

The state vector we estimate is:

x =
[
xI xIk+n−1 . . . xIk

]
(5)

where xI denotes the current robot pose, and xIi , for i =
k + n− 1, . . . ,k, are the cloned IMU poses in the sliding
window, corresponding to the time instants of the last n camera
measurements. Specifically, the current robot pose is defined
as: 2

xI =
[

IqT
G

GvT
I

GpT
I bT

a bT
g λd λr

]T
where IqG is the quaternion representation of the orientation
of {G} in the IMU’s frame of reference {I}, GvI and GpI are
the velocity and position of {I} in {G} respectively, while ba
and bg correspond to the gyroscope and accelerometer biases.
The interpolation ratio can be divided into a time-variant part,
λd , and a time-invariant part, λr. In our case, λd corresponds
to the IMU-camera time offset, td , while λr corresponds to the
readout time of an image-row, tr. Specifically,

λd =
td

tintvl
λr =

tr
tintvl

(6)

where tintvl is the time interval between two consecutive
IMU poses (known). Then, the interpolation ratio for a pixel
measurement in the m-th row of the image is written as:

λ = λd +mλr (7)

When a new image measurement arrives, we clone the IMU
pose at the time instant closest to the image recording time.
The cloned IMU poses xIi are defined as:

xIi =
[

IiqT
G

GpT
Ii

λdi

]T
where IiqG, GpT

Ii
, λdi are cloned at the time instant that the i-th

image was recorded. Note, that λdi is also cloned because the
time offset between the IMU and camera may change over
time.

According to (5), for a system with a fixed number of cloned
IMU poses, the size of the system’s state vector depends
on the dimension of each cloned IMU pose. In contrast to
Li et al.’s approach [15, 16], which requires to also clone
the linear and rotational velocities, our interpolation-based
measurement model reduces the dimension of the cloned state
from 13 to 7. As we will show later on, this smaller clone
state size significant minimizes the algorithm’s computational
complexity.

B. Propagation

When a new inertial measurement arrives, we use it to
propagate the EKF state and covariance. In this section, we
will present the state and covariance propagation of the current
robot pose and the cloned IMU poses.

2For clarity of presentation, we assume that the IMU and camera frames
spatially coincide, while in practice they can be extrinsically calibrated
following the approach of [14].
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(a) Current pose propagation: The continuous-time system
model describing the time evolution of the states is:3

Iq̇G(t) =
1
2
Ω(ωm(t)−bg(t)−ng(t))IqG(t)

Gv̇I(t) = C(IqG(t))T (am(t)−ba(t)−na(t))+ Gg
GṗI(t) = GvI(t) ḃa(t) = nwa ḃg(t) = nwg

λ̇d(t) = ntd λ̇r(t) = 0 (8)

where C(IqG(t)) denotes the rotation matrix corresponding to
IqG(t), ωm(t) and am(t) are the rotational velocity and linear
acceleration measurements provided by the IMU, while ng
and na are the corresponding white Gaussian measurement
noise components. Gg denotes the gravitational acceleration in
{G}, while nwa and nwg are zero-mean white Gaussian noise
processes driving the gyroscope and accelerometer biases bg
and ba. Finally, ntd is a zero-mean white Gaussian noise
process modelling the random walk of λd (corresponding
to the time offset between the IMU and camera). For state
propagation, we linearize around the current state estimate
and apply the expectation operator to (8), as shown in [20].
For propagating the covariance, we first define the error-state
vector of the current robot pose as: 4

x̃ =
[

IδθT
G

GṽT
I

Gp̃T
I

Gp̃T
f b̃T

a b̃T
g λ̃d λ̃r

]T
(9)

Then, as shown in [20], the linearized continuous-time error-
state equation can be written as:

˙̃x = FE x̃+GE w (10)

where w =
[
nT

g nT
wg nT

a nT
wa ntd

]T is modelled as a
zero-mean white Gaussian process with auto-correlation
E[w(t)wT (τ)] = QEδ (t− τ), and FE , GE are the continuous-
time error-state transition and input noise matrices, respec-
tively. Following [19], the discrete-time state transition matrix
Φk+1.k and the system covariance matrix Qk from time tk to
tk+1 can be computed as:

Φk+1,k =Φ(tk+1, tk) = exp
(∫ tk+1

tk
FE(τ)dτ

)
(11)

Qk =
∫ tk+1

tk
Φ(tk+1,τ)GEQEGT

EΦ
T (tk+1,τ)dτ

If we define the covariance corresponding to the current
pose as PEEk|k , the propagated covariance PEEk+1|k can be
determined as5

PEEk+1|k = Φk+1,kPEEk|kΦ
T
k+1,k +Qk (12)

(b) System propagation: During propagation, the state and
covariance estimates of the cloned robot poses do not change,

3Ω(ω) is defined as: Ω(ω),

[
−bωc ω
−ωT 0

]
4 For quaternion q we employ a multiplicative error model δ q̄ = q̄⊗

ˆ̄q−1 '
[ 1

2 δθT 1
]T , where δθ is a minimal representation of the attitude

error.
5xk|` denotes the estimate of x at time step k using measurements up to

time step `.

however their cross-correlations with the current IMU pose
need to be propagated. If we define P as the covariance matrix
of the whole state x, PCCk|k as the covariance matrix of the
cloned poses, and PECk|k as the correlation matrix between
the errors in the current pose and cloned poses, the system
covariance matrix is propagated as:

Pk+1|k =

[
PEEk+1|k Φk+1,kPECk|k

PT
ECk|k

ΦT
k+1,k PCCk|k

]
(13)

with Φk+1,k defined in (11).

C. MSC-KF Measurement Model For Rolling-Shutter & Time
Synchronization

Each time the camera records an image, a stochastic
clone [22] comprising the IMU pose, IqG, GpI , and the inter-
polation ratio, λd , describing its time offset from the image, is
created. This process enables the MSC-KF to utilize delayed
image measurements; in particular, it allows all observations
of a given feature f j to be processed during a single update
step (when the first pose that observed f j is about to be
marginalized), while avoiding to maintain estimates of this
feature, in the state vector.

For a feature f j observed in the m-th row of the image
associated with the IMU pose Ik, the interpolation ratio can
be expressed as λk = λdk +mλr, where λdk is the interpolation
ratio corresponding to the time offset between the clocks of the
two sensors at time step k, and mλr is the contribution from the
rolling-shutter effect. The corresponding measurement model
is given by:

z( j)
k = h(Ik+t p f j)+n( j)

k , n( j)
k ∼ N(0,Rk, j) (14)

where Ik+t p f j is the feature position expressed in the camera
frame of reference at the exact time instant that the m-th
image-row was read. Without loss of generality, we assume
that the camera is intrinsically calibrated with the camera
perspective measurement model, h, described by:

h(Ik+t p f j) =


Ik+t p f j (1)
Ik+t p f j (3)
Ik+t p f j (2)
Ik+t p f j (3)

 (15)

where Ik+t p f j(i), i = 1,2,3 represents the i-th element of
Ik+t p f j . Expressing Ik+t p f as a function of the states that we
estimate, results in:

Ik+t p f j
=

Ik+t
G C(Gp f j

− GpIk+t
) (16)

=
Ik+t
Ik

C Ik
G C(Gp f j

− GpIk+t
)

Substituting Ik+t
Ik

C and GpIk+t
from (4) and (1), (16) can be

rewritten as:
Ik+t p f j

=
(
(1−λk)I+λk

Ik
G C G

Ik+1
C
)

Ik
G C(

Gp f j
− ((1−λk)

GpIk
+λk

GpIk+1
)
)

(17)

Linearizing the measurement model about the filter estimates,
the residual corresponding to this measurement can be com-
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puted as:

r( j)
k = z( j)

k −h(Ik+t p̂ f j)

'H( j)
xIk

x̃Ik +H( j)
xIk+1

x̃Ik+1 +H( j)
fk

Gp̃ f j +H( j)
λrk

λ̃r +n( j)
k (18)

where H( j)
xIk

, H( j)
xIk+1

, H( j)
fk

and H( j)
λrk

are the Jacobians with
respect to the cloned poses xIk , xIk+1 , the feature position Gp f j ,
and the interpolation ratio corresponding to the image-row
readout time, λr, respectively.

By stacking the measurement residuals corresponding to the
same point feature, f j, we arrive at:

r( j) =


r( j)

k
...

r( j)
k+n−1

'H( j)
xclone x̃clone +H( j)

f
Gp̃ f j +H( j)

λr
λ̃r +n( j) (19)

where x̃clone =
[
x̃T

Ik+n−1
. . . x̃T

Ik

]T
is the error in the cloned

pose estimates, while H( j)
xclone is the corresponding Jacobian

matrix. Furthermore, H( j)
f and H( j)

λr
are the Jacobians corre-

sponding to the feature and interpolation ratio contributed by
the readout time error, respectively.

To avoid including feature f j in the state vector, we
marginalize its error term, Gp̃ f j by multiplying both sides of
(19) with the left nullspace, V, of the feature’s Jacobian matrix
H( j)

f , i.e.,

r( j)
o ' VT H( j)

xclone x̃clone +VT H( j)
f

Gp̃ f j +VT H( j)
λr

λ̃r +VT n( j)

, H( j)
o x̃+n( j)

o (20)

where r( j)
o , VT r( j). Note that we do not have to compute

V explicitly. Instead, this operation can be applied efficiently
using in-place Givens rotations [5].

D. Filter Updates

In the previous section, we formulated the measurement
model for each individual feature. Specifically, we compen-
sated for the time-misaligned camera measurements with the
interpolation ratio corresponding to both the time offset be-
tween sensors and the rolling shutter effect. Additionally, we
removed the dependence of our measurement model on the
feature positions. Hereafter, we will describe the EKF updates
using all the available measurements from L features.

Stacking measurements of the form (20), originating from
all features, f j, j = 1, . . . ,L, yields the residual vector:

r'Hx̃+n (21)

where H is a matrix with block rows the Jacobians H( j)
o ,

while r and n are the corresponding residual and noise vectors,
respectively.

In practice, H is a tall matrix. Following [20], we can reduce
the computational cost by employing the QR decomposition
of H denoted as:

H =
[
Q1 Q2

][RH
0

]
(22)

where
[
Q1 Q2

]
is an orthonormal matrix, and RH is an

upper triangular matrix. Then, if we multiply the transpose
of
[
Q1 Q2

]
to both sides of (21), we arrive at:[

QT
1 r

QT
2 r

]
=

[
RH
0

]
x̃+
[

QT
1 n

QT
2 n

]
(23)

It is clear that all information related to the error in the state
estimate is included in the first block row, while the residual
in the second block row corresponds to noise and can be
completely discarded. Therefore, we only need to keep the
first block row of (23) as residual for the EKF update:

rn = QT
1 r = RH x̃+QT

1 n (24)

The Kalman gain is computed as:

K = PRT
H(RHPRT

H +R)−1 (25)

where R is the measurement noise. If we define the covariance
of the noise n as σ2I, then R = σ2QT

1 Q1 = σ2I. Finally, the
state and covariance updates are determined as:

xk+1|k+1 = xk+1|k +Krn (26)

Pk+1|k+1 = P−PRT
H(RHPRT

H +R)−1RHP (27)

E. Computational Complexity Comparison

Defining the dimension of H to be m× n, the computa-
tional complexity for the measurement compression QR in
(22) will be O(2mn2− 2

3 n3), and roughly O(n3) for matrix
multiplications or inversions in (25) and (26). Since H is
a very tall matrix, and m is, typically, much larger than n,
the main computational cost of the MSC-KF corresponds to
the measurement compression QR [20]. It is important to
note that the number of columns n depends not only on the
number of cloned poses, but also on the dimension of each
clone. For the proposed approach this would correspond to
7 states per clone (i.e., 6 for the camera pose, and a scalar
parameter representing the time-synchronization). In contrast,
the method employed in [16] requires 13 states per clone
(i.e., 6 for the camera pose, 6 for its corresponding rotational
and linear velocities, and a scalar parameter representing the
time-synchronization). As we demonstrate experimentally in
Sec. VI-C, this key difference results in a 3-fold computational
speedup compared to [16], for this particular step of an MSC-
KF update. Furthermore, since the dimension of the system
is reduced to almost half through the proposed interpolation
model, all the operations in the EKF update will also gain a
significant speedup.

V. OBSERVABILITY-CONSTRAINED EKF

In [11], it is shown that the linearization error causes
the EKF to be inconsistent, thus also adversely affecting
the estimation accuracy. In this section, we will show the
methodology to address this issue by employing the OC-EKF
proposed in [10].

As shown in [19], a system’s unobservable directions, N,
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span the nullspace of the system’s observability matrix M:

MN = 0 (28)

where by defining Φk,1 ,Φk,k−1 · · ·Φ2,1 as the state transition
matrix from time step 1 to k, and Hk as the measurement
Jacobian at time step k, M can be expressed as:

M =


H1

H2Φ2,1
...

HkΦk,1

 (29)

However, when the system is linearized using the current
estimate, (28), in general, does not hold [11]. This means the
estimator gains spurious information along unobservable direc-
tions and becomes inconsistent. To address this problem, the
OC-EKF [10] enforces (28) by modifying the state transition
and measurement Jacobian matrices according to the following
two observability constraints:

Nk+1 =Φk+1,kNk (30)

HkNk = 0, ∀k > 0 (31)

where Nk and Nk+1 are the system’s unobservable directions
evaluated at time-steps k and k+1. Hereafter, we will describe
how this method is applied to our system to appropriately
modify Φk+1,k, as defined in (11), and Hk, and thus retain the
system’s observability properties.

(a) System Unobservable Directions: In [10], it is shown
that the inertial navigation system aided by time-aligned
global-shutter camera has four unobservable directions: one
corresponding to rotations about the gravity vector, and three
to a global translations. Specifically, the system’s unobservable
directions with respect to the IMU pose and feature position,[

IqT
G bT

g
GvT

I bT
a

GpT
I

GpT
f
]T

, can be written as:

N ,



I
GCg 03×3
03×1 03×3
−bG

I vcg 03×3
03×1 03×3
−bG

I pcg I3×3
−bGp f cg I3×3

=

[
Nr
N f

]
(32)

(b) Modification of the State Transition Matrix Φk+1,k: Once
we have determined the system’s unobservable directions,
we start by modifying the state transition matrix, Φk+1,k,
according to the observability constraint (30)

Nrk+1 =Φk+1,kNrk (33)

where Φk+1,k has the following structure:
Φ11 Φ12 03 03 03
03 I3 03 03 03
Φ31 Φ32 I3 Φ34 03
03 03 03 I3 03
Φ51 Φ52 δ tI3 Φ54 I3

 (34)

In [6], it is shown that (33) is equivalent to the following three

constraints:

Φ11
Ik
G Cg =

Ik+1
G Cg (35)

Φ31
Ik
G Cg = bGvIkcg−b

GvIk+1cg (36)

Φ51
Ik
G Cg = δ tbGvIkcg+ b

GpIkcg−b
GpIk+1cg (37)

in which (35) can be easily satisfied by modifying
Φ∗11 =

Ik+1
G C Ik

G CT .

Both (36) and (37) are in the form Au = w, where u and w
are fixed. We seek to select another matrix A∗ that is closest to
the A in the Frobenius norm sense, while satisfying constraints
(36) and (37). To do so, we can formulate the following
optimization problem:

A∗ = argmin
A∗
||A∗−A||2F (38)

s. t. A∗u = w

where || · ||F denotes the Frobenius matrix norm. The optimal
A∗, as shown in [9], can be determined by solving its KKT
optimality condition [3], whose solution is:

A∗ = A− (Au−w)(uT u)−1uT (39)

(c) Modification of the Measurement Jacobian Hk: Dur-
ing the update at time step k, the nonzero elements
of the measurement Jacobian Hk, as shown in (18),
are

[
HIk qG

HGpIk
HIk+1 qG

HGpIk+1
HGp f

Hλdk
Hλr

]
, cor-

responding to the elements of the state vector involved in the
measurement model (as expressed by the subscript).

Since two IMU poses are involved in the interpolation-based
measurement model, the system’s unobservable directions at
time step k, as shown in [7], are:

N′k ,
[
NT

rk
NT

rk+1
NT

fk
0
]T

(40)

where Nri , i = k, k+1, and N fk are defined in (32), while the
zero corresponds to the interpolation ratio. If we define N′k ,[
Ng

k Np
k

]
, where Ng

k is the first column of N′k corresponding
to the rotation about the gravity, and Np

k is the other three
columns corresponding to global translations, then according
to (31), we seek to modify Hk so as to fulfill the following
two constraints:

HkNp
k = 0 ⇔ HGpIk

+HGpIk+1
+HGp f

= 0 (41)

HkNg
k = 0 ⇔ [HIk qG

HGpIk
HIk+1 qG

HGpIk+1
HGp f ]


Ik
G Cg
−bGpIk

cg
Ik+1
G Cg
−bGpIk+1

cg
−bGp f cg

= 0

(42)

Substituting HGp f
from (41) into (42), the observability con-

straint for the measurement Jacobian matrix is written as:
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Fig. 3. Monte-Carlo simulations comparing: (a) Position RMSE (b) Orien-
tation RMSE, over 20 runs.

[
HIk qG

HGpIk
HIk+1 qG

HGpIk+1

]
Ik
G Cg

(bGp f c−bGpIk
c)g

Ik+1
G Cg

(bGp f c−bGpIk+1
c)g

= 0

(43)

which is of the form Au = 0. Therefore, we can analytically
determine H∗Ik qG

, H∗GpIk
, H∗Ik+1 qG

and H∗GpIk+1
using (38) and

(39), for the special case when w = 0. Finally, according to
(41), we have H∗Gp f

=−H∗GpIk
−H∗GpIk+1

.

VI. SIMULATIONS AND EXPERIMENTS

A. Monte-Carlo Simulations

Our simulations involved a MEMS-quality IMU, as well
as a rolling-shutter camera with a readout time of 30 msec.
The time offset between the camera and the IMU clock was
modelled as a random walk with mean 3.0 msec and standard
deviation 1.0 msec. The IMU provided measurements at a
frequency of 100 Hz, while the camera ran at 10 Hz. The
sliding-window state contained 6 cloned IMU poses, while 20
features were processed during each EKF update.

We compared the following variants of the MSC-KF, over
20 Monte-Carlo runs:
• Proposed: The proposed OC-MSC-KF, employing an

interpolation-based measurement model.
• w/o OC: The proposed interpolation-based MSC-KF

without using OC-EKF.
• Li et al.: The algorithm proposed by Li et al. in [15, 16],

which uses a constant velocity model, thus also clones the
corresponding linear and rotational velocities, besides the
cell phone pose, in the state vector.

The estimated position and orientation root-mean square errors
(RMSE) are plotted in Fig. 3. By comparing Proposed and w/o
OC, it is evident that employing the OC-EKF improves the
position and orientation estimates. Furthermore, the proposed
algorithm achieves lower RMSE compared to that of Li et al.,
at a significantly lower computational cost. (see Section.VI-B)

TABLE I
LOOP CLOSURE ERRORS

Estimation Algorithm Final Error (m) Pct. (%)
Proposed 1.64 0.59
w/o OC 2.16 0.79

w/o Time Sync 2.46 0.91
w/o Rolling Shutter 5.02 1.88

B. Real-World Experiments

In addition to simulations, we further validated the per-
formance of the proposed algorithm using a Samsung S4
mobile phone. The S4 is equipped with 3-axial gyroscopes
and accelerometers, a rolling-shutter camera, and a 1.6 GHz
quad-core Cortex-A15 ARM CPU. Camera measurements
were acquired at a frequency of 15 Hz, while point features
were tracked across different images via the Lucas Kanade
algorithm [18]. For every 230 ms or 20 cm of displacement,
new Harris corners [8] were extracted while the corresponding
IMU pose was inserted in the sliding window of 10 poses,
maintained by the filter. The readout time for an image is
about 30 ms, and the time offset between the IMU and
camera clocks is approximately 10 ms. All image-processing
algorithms were optimized using ARM NEON assembly. The
system we developed requires no initial calibration of the
IMU biases, rolling-shutter time, or camera-IMU clock offset,
as these parameters are estimated online using the approach
described in Section IV. Since no high-precision ground truth
is available, in the end of our experiments, we bring the cell
phone back to the initial position and this allow us to examine
the final position error.

We performed two experiments. The first, Fig. 4(a) serves
the purpose of demonstrating the impact of not employing
the OC-EKF or ignoring the time synchronization and rolling
shutter effects, while the second, Fig. 4(b), demonstrates
the performance of the developed system, during an online
experiment.

The first experiment comprises a loop of 277 meters, with
an average velocity of 1.5 m/sec. The final position errors
of Proposed, w/o OC, and the following two algorithms are
examined:
• w/o Time Sync: The proposed interpolation-based OC-

MSC-KF considering only the rolling shutter, but not the
time synchronization.

• w/o Rolling Shutter: The proposed interpolation-based
OC-MSC-KF considering only the time synchronization,
but not the rolling shutter.

The 3D trajectories of the cell phone estimated by the above
algorithms are plotted in Fig. 4(a), and their final position
errors are reported in Table. I. Several key remarks can be
made. First, by utilizing the OC-EKF, the position estimation
error decreases significantly (from 0.79% to 0.59%). Second,
even a (relatively small) unmodeled time offset of 10 msec
between the IMU and the camera clocks, results in an increase
of the loop closure error from 0.59% to 0.91%. In practice,
we have seen that with about 50 msec of an unmodelled
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(a) (b)

Fig. 4. Experimental Results: (a) Experiment 1: The trajectory of the cell phone estimated by the algorithms under consideration. (b) Experiment 2: The
trajectory of the cell phone estimated online.

time offset, the filter will diverge immediately. Third, by
ignoring the rolling shutter effect, the estimation accuracy
drops dramatically, since during the readout time of an image
(about 30 msec), the cell phone can move even 4.5 cm, which
for a scene at 3 meters from the camera, corresponds to a 2
pixel measurement noise. Finally, we have also attempted to
ignore both the rolling shutter and the time synchronization,
in which case the filter diverged immediately.

In the second experiment, estimation is performed online.
During the trial, our cell phone traversed a path of 231 meters
across two floors of a building, with an average velocity of
1.2 m/sec. This trajectory included both crowded areas and
featureless scenes. The final position error was 1.8 meters,
corresponding to 0.8% of the total distance travelled (see
Fig. 4(b)).

C. Computational Efficiency

In order to experimentally validate the computational gains
of the proposed method versus existing approaches for online
time synchronization and rolling-shutter calibration [15, 16],
which require augmenting the state vector with the velocities
of each clone, we compared the QR decomposition of the
measurement compression step in the MSC-KF for the two
measurement models. Care was taken to create a representative
comparison. We used the QR decomposition algorithm pro-
vided by the C++ linear algebra library Eigen, on Samsung S4.
The time to perform this QR decomposition was recorded for
various numbers of cloned poses, M, observing measurements
of 50 features.

Similar to both algorithms, we considered a Jacobian matrix
with 50(2M − 3) rows. However, the number of columns
differs significantly between the two methods. As expected,
based on the computational cost of the QR factorization,
O(mn2) for a matrix of size m× n, our method leads to
significant computational gains. As demonstrated in Fig. 5,
our algorithm requires a QR factorization that is 3 times
faster compared to [16]. Furthermore, since the dimension of
the system is reduced to almost half through the proposed
interpolation model, all the operations in the EKF update
will also gain a significant speedup (i.e., a factor of 4 for
the covariance update, and a factor of 2 for the number of

Fig. 5. Experiment: Time comparison for the measurement compression
QR, employed in the MSC-KF between the proposed measurement model
and the method of [15, 16].

Jacobians evaluated). Such speedup on a cell phone, which
has very limited processing resources and battery, provides
additional benefits, because it both allows other applications
to run concurrently, and extends the phone’s operating time
substantially.

VII. CONCLUSION

In this work, we have presented a linear-complexity iner-
tial navigation system for processing rolling-shutter camera
measurements. To model the time offset of each camera
row between the IMU measurements, we have proposed an
interpolation-based measurement model that considers both
the time synchronization effect and the image read-out time.
Furthermore, we have employed the OC-EKF for improving
the estimation consistency and accuracy, based on the system’s
observability properties. Compared to alternative methods, we
have shown that the proposed approach achieves similar or
better accuracy, while obtaining a significant speedup. Finally,
we have demonstrated the high accuracy of the proposed
algorithm through real-time, online experiments on a cell
phone.
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