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Abstract—We propose an information-theoretic planning ap-
proach that enables mobile robots to autonomously construct
dense 3D maps in a computationally efficient manner. In-
spired by prior work, we accomplish this task by formulating
an information-theoretic objective function based on Cauchy-
Schwarz quadratic mutual information (CSQMI) that guides
robots to obtain measurements in uncertain regions of the map.
We then contribute a two stage approach for active mapping.
First, we generate a candidate set of trajectories using a combina-
tion of global planning and generation of local motion primitives.
From this set, we choose a trajectory that maximizes the
information-theoretic objective. Second, we employ a gradient-
based trajectory optimization technique to locally refine the
chosen trajectory such that the CSQMI objective is maximized
while satisfying the robot’s motion constraints. We evaluated
our approach through a series of simulations and experiments
on a ground robot and an aerial robot mapping unknown
3D environments. Real-world experiments suggest our approach
reduces the time to explore an environment by 70% compared
to a closest frontier exploration strategy and 57% compared to
an information-based strategy that uses global planning, while
simulations demonstrate the approach extends to aerial robots
with higher-dimensional state.

I. INTRODUCTION

Using mobile robots to construct dense 3D maps of environ-
ments has the potential to benefit a number of industries such
as mining, construction, and agriculture, and to plan rescue
efforts in disaster response operations. It is also an important
prerequisite for autonomous robots like self-driving cars that
operate in unstructured environments. In this work, we focus
on the problem of enabling robots to autonomously construct
such maps as efficiently and quickly as possible.

Mapping a 3D environment with a mobile robot is a
challenging problem. As the robot knows nothing about the
environment initially, it must be able to effectively predict
how future measurements will reduce the map’s uncertainty.
However, due to cost or payload constraints, the robot may
only be equipped with noisy sensors that suffer from short
maximum ranges and limited fields of view, necessitating
planning over multiple time steps. Generating these plans
can be substantially complicated by the robot’s own mobility
limitations, which preclude it from obtaining measurements at
arbitrary positions throughout the environment. Many robots
– in particular aerial vehicles – also have limited battery life.
Consequently, if a robot is incapable of quickly determining
how it should move, it will run out of power before it has
obtained a complete and low uncertainty map. Finally, robots
constantly face an exploitation-exploration trade-off during the

(a) Mapping an indoor environment with a ground robot

(b) Mapping a stairwell environment with an aerial robot

Fig. 1: The goal of this work is to quickly construct dense 3D maps using
mobile robots equipped with sensors that have a limited field of view and
sensing range. (a) Mapping an indoor environment with a ground robot
equipped with a RGB-D sensor. (b) Mapping a stairwell environment with
a quadrotor equipped with a RGB-D sensor. We contribute a two stage
planning approach: 1) using a global planner and local motion primitives
to choose trajectories that maximize an information-theoretic objective based
on Cauchy-Schwarz quadratic mutual information (CSQMI) and 2) using
trajectory optimization to further maximize the CSQMI objective.

mapping process of whether to improve the map in their local
vicinity, or try to explore other parts of the environment.

There is extensive prior work on devising information-
theoretic objectives that guide a mobile robot to obtain mea-
surements in uncertain regions of the map. There are also sev-
eral different strategies for generating control actions for the
robot including local exploration strategies involving greedy
gradient ascent [1, 21, 41] or local motion primitives [2, 4, 12];
and global strategies that use a variant of the frontier method
to maximize the chosen objective [5, 39]. Local strategies are
useful when the robot is close to uncertain portions of the
map and constantly observing new areas (Fig. 2a), but are
susceptible to local minima [44]. Global strategies can escape
local minima when the robot is far from uncertain portions of
the map (Fig. 2b), but are computationally expensive and may
produce coarse paths that result in jagged robot motion [42].

In this work, we build on our previous approach [5] of using
Cauchy-Schwarz quadratic mutual information (CSQMI) [38]
for active mapping. The primary contribution of this paper is
a two stage approach for generating and refining trajectories
that substantially improves a robot’s ability to quickly reduce
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Fig. 2: (a) Local motion primitives are useful when a robot is close to uncertain portions of the map (gray blobs) and needs to react quickly to new information.
(b) Global plans are useful when the robot is far from uncertain portions of the map as they can escape local minima in the information-theoretic objective.
(c) Trajectory optimization can improve the informativeness of both local motion primitives and global plans while respecting a robot’s motion constraints.

the map’s uncertainty. First, we generate trajectories using a
combination of global planning and local motion primitives,
enabling a robot to escape local minima and replan quickly
as the map changes. Second, we contribute a method for
improving both local motion primitives and global paths
using gradient-based trajectory optimization that maximizes
the CSQMI objective while satisfying the robot’s motion con-
straints (Fig. 2c). This improvement is particularly important
when mapping 3D environments with robots that have high-
dimensional state spaces and non-trivial motion models.

We evaluated our approach through a series of simulations
and experiments on a ground robot and an aerial robot map-
ping unknown 3D environments. In real-world experiments
we show that by including global plans, local motion prim-
itives, and trajectory optimization, a ground robot was able
to construct a complete 3D map 3.3× faster than a strategy
that drives to the closest frontier [52] and 2.3× faster than an
information-based strategy that only considers global plans [5].

II. RELATED WORK

There is a considerable body of prior work on autonomous
mapping and exploration [45, 48]. One key question is how to
represent a static map of the environment. Such representations
include, but not limited to, topological maps, landmark-based
representations, elevation grids, point clouds, meshes, and
occupancy grids [49]. In this work, we focus on creating a
dense 3D map of the environment using occupancy grids.

In prior work, strategies for mapping and exploration can
be primarily grouped into two categories: (i) Frontier-based,
and (ii) Information-gain based strategies.

Frontier-based strategies [52] are primarily geometric in
nature and travel to the discrete boundary between the free and
unknown regions in the map. Extensions of this strategy have
been successfully used for building maps of unknown environ-
ments in 2D [3, 14]. Holz et al. [18] provide a comprehensive
evaluation of frontier-based strategies in 2D environments.
Direct extensions to voxel grid representations of 3D environ-
ments using frontier voids have also been proposed [10, 13].
Shade and Newman proposed a combination of a frontier-
based and a local vector-field based strategy to generate shorter
exploration trajectories [42]. Shen et al. [43] used a frontier-
based strategy with a particle-based representation of free
space for computational tractability.

Information-gain based mapping strategies optimize an
information-theoretic measure for exploration. Prior work has
investigated minimization of the map entropy, which is a

measure of uncertainty associated with all grid cells [31, 51].
Several methods have been proposed that choose to maximize
mutual information (MI), which predicts how future sensor
measurements will reduce map uncertainty [1, 21, 41]. These
approaches use a greedy controller with a one-time step
look ahead to maximize MI. However, Soatto [44] suggests
planning over multiple time steps to deal with the issue of
a greedy explorer getting stuck in local minima. To address
this issue, researchers have proposed considering a discrete set
of actions and executing the one that maximizes information
gain [2, 4, 12]. Charrow et al. [5] used the rate of information
gain criterion while Rocha et al. [39] used the gradient of
map entropy to select promising frontiers for exploration.
These strategies do not locally optimize the robot trajectory to
gain more information as the robot is traveling, which might
result in inefficient mapping behavior. Kollar and Roy [24]
formulated exploration as a constrained optimization problem
and learned how to select good trajectories. In contrast, we
maximize CSQMI over the continuous control input space.

Information-theoretic objectives have also been used for
planning and control in robotics for related tasks involving
uncertainty such as target tracking [15, 30], target local-
ization [4, 16], inspection [17], extrinsic calibration of LI-
DAR sensors [28], and visual servoing [8]. Prior work has
used trajectory optimization over a finite horizon to optimize
information-theoretic criteria [6, 29, 33, 40] for continuous
motion and sensing models. In contrast, this work maximizes
CSQMI computed over the continuous robot state space and
a discrete occupancy grid representation of the environment.

In this work, we assume the robot is capable of local-
izing itself using a simultaneous localization and mapping
(SLAM) [26, 34, 49] system. Modern SLAM systems [34],
which account for uncertainty in the map and the robot’s state,
can be used to construct an occupancy grid using the maximum
likelihood estimate of the robot’s path. The grid can be updated
incrementally and when estimates of previous poses change
substantially (e.g., due to loop closures) a completely new
occupancy grid can be quickly regenerated [47]. In cases
where reliable localization is not possible, it is important to
actively reduce both the uncertainty of the map and the robot’s
state [2, 19, 22, 46, 50].

III. PRELIMINARIES AND PROBLEM DEFINITION

A. Occupancy Grid Mapping

We use occupancy grids [49] to represent 3D maps as
they are a dense, probabilistic, and volumetric representation
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Fig. 3: Beam based measurement model: (a) 1 beam, the cells it intersects
at various distances, and the resulting distribution over measurements when
zmin = 0.5 and zmax = 2. Darker cells have a higher probability of being
occupied. (b) Raycasts for multiple beams. Obtained from Charrow et al. [5].

of space. A map, m, is a discretization of 3D space into
regular sized cubes or cells {c1, . . . , c|m|} each of which
corresponds to a Bernoulli random variable whose value is 1
if the corresponding region of space contains an obstacle and
0 if it is free. The standard occupancy grid mapping assumes
that cells are independent of one another so p(m) =

∏
i p(ci)

and unobserved cells have a uniform prior of being occupied.

B. Information-Theoretic Objective for Active Control

Given a map m at time t, we seek a set of control inputs
for the robot so that it gathers measurements which reduce the
uncertainty of the map as quickly as possible. To achieve this,
we formulate an optimization problem over the time interval
τ
4
= t+ 1 : t+ T to find controls uτ = [ut, . . . ,ut+T−1] that

move the robot to states xτ = [xt+1, . . . ,xt+T ] where it will
obtain measurements zτ = [zt+1, . . . , zt+T ] that reduce the
map’s uncertainty. The future states of the robot are determined
by the deterministic dynamics of the robot, xi+1 = f(xi,ui).
Our objective is to find controls that maximize the rate of
some measure of information gain between the map, m and
future measurements the robot will make, zτ :

max
xτ , uτ

I[m; zτ | xτ ]

D(uτ )

s. t.
∀t<i<t+T−1

xi+1 = f(xi,ui), (1)

xi ∈ Xfeasible,ui ∈ Ufeasible,

where I[m; zτ | xτ ] quantifies the expected reduction in the
map’s uncertainty, Ufeasible is the set of valid controls, Xfeasible
is the set states the robot can be in, and D(uτ ) is how
long it takes to execute all of the controls. Maximizing the
rate of information gain is preferable to purely maximizing
information, as it enables the robot to compare the value of
actions over different time and length scales.

There are many different choices for quantifying informa-
tion or how learning the outcome of one random variable (e.g.,
range measurements) affects another (e.g., the map) [7, 38].
Shannon’s mutual information (MI) is one widely used mea-
sure. In this paper, we build on our prior work [5] that proposes
the use of Cauchy-Schwarz quadratic mutual information
(CSQMI) [38] as it can be computed more efficiently. Omitting

Algorithm 1: Calculate I[m; zτ | xτ ], the information of
measurements made over multiple steps each comprised of
multiple 1D beams.

1: Zindep = ∅ // Set of nearly independent measurements
2: Info = 0 // Info from measurements in Z
3: for each future 1D beam measurement zbt do
4: Perform raycast to find cells c ⊆m that zbt intersects
5: Use probability of cells in c being occupied or free to

determine distribution over measurements;
p(zbt | xt) =

∑
p(c)p(zbt | xt, c)

6: if isIndependent(zbt ,Zindep) then
7: Info += I[m; zbt | xt] // Add info from this beam
8: Add zbt to Zindep

the conditioning on the robot’s poses for brevity, CSQMI can
be expressed as:

ICS[m; zτ ] = − log
(
∑∫

p(m,zτ )p(m)p(zτ ) dzτ )
2∑∫

p2(m,zτ ) dzτ
∑∫

p2(m)p2(zτ ) dzτ
,

where the sums are over all possible maps and the integrals
are over all possible measurements the robot can receive.

Calculating information requires a probabilistic model for
measurements as a function of the map and the robot’s state:
p(z | m,x). We model a measurement at time k as a
collection of B one dimensional beams that cover the sensor’s
field of view zk = [z1k, . . . , z

B
k ]. Fig. 3b shows an example

model for a typical RGB-D sensor. Next, we assume that
given the set of cells a beam intersects, c, it returns the
distance to the first occupied one, d, perturbed by Gaussian
noise: p(z | d) = N (z − d, σ2). Marginalizing over all
states cells can be in makes p(zbk | xk) a Gaussian mixture
model (Fig. 3a) [21]. Using this model, the information of an
individual beam I[m; zbk | xk] can be calculated efficiently [5].

Unfortunately, calculating the information of multiple
beams over multiple time steps, I[m; zτ | xτ ], is expensive,
as it involves taking expectations over the joint distribution
of all measurements and the map. To avoid this issue, many
researchers assume that measurements are independent of one
another [20, 21, 25], which might result in poor plans over
multiple time steps when there is significant overlap between
the sensor field of views. Instead, we calculate information
by summing the information from a subset of measurements
that are nearly independent (Alg. 1). We determine this subset
by bounding the probability that any two beams intersect the
same cell. This approximation is valid for any measure of
information that is additive over pairwise independent events
and can also be implemented efficiently [5].

IV. APPROACH

We propose a two stage planning approach. We construct
a candidate set of trajectories by supplementing global plans
with local motion primitives generated by control sampling.
We then choose a trajectory that maximizes the objective given
by (1). In doing so, we combine the benefits of both global
planning and local exploration using primitives, as shown in
Fig. 2. In the second stage, we optimize the chosen trajectory



Fig. 4: System architecture: We generate a candidate set of trajectories
by combining global planning and local motion primitives and then select
the one that maximizes the CSQMI objective. This selection is improved
using trajectory optimization and then executed by the robot. Different system
components run asynchronously at different frequencies.

using gradient-based trajectory optimization over multiple time
steps to maximize the CSQMI objective while satisfying the
robot’s motion model. The controls generated by the trajectory
optimization routine are fed to the low level motion controller.

A schematic of our system architecture is shown in Fig. 4.

A. Combining Global Planning and Local Motion Primitives

Global Planning: The global planner’s task is to generate
a set of paths from the robot’s current location whose rate
of information gain is high. These paths should extend to
every portion of the known map, so that the robot can consider
the utility of traveling far away from its current location. To
generate these paths, we plan shortest paths to destinations
where frontiers can be observed, as illustrated in Fig. 5. We
previously developed an algorithm to do this [5] and describe
it here for completeness.

To start, we find uncertain portions of the map that can likely
be observed by the robot by identifying “frontier voxels,”
which are unknown voxels that are adjacent to voxels that are
very likely unoccupied [52]. To reduce the number of paths
we need to plan, we greedily cluster multiple nearby frontier
voxels by randomly selecting a frontier voxel and grouping it
with all other frontier voxels within a user-specified distance
(0.4 m worked well for our experiments). After removing these
voxels from consideration, we repeat this process until every
frontier voxel belongs to a cluster.

Given clusters, we create global paths by finding shortest
paths to destinations that can view a cluster. To do this, we
use Dijkstra’s algorithm to plan single source shortest paths
to every destination in the map and at each destination check
which clusters are visible. A cluster is visible from a pose,
if 1) the cluster’s center of mass (i.e., average position of all
voxels in the cluster) is within the field of view of the sensor
and 2) a raycast from the sensor is unlikely to hit an obstacle.
To reduce the number of visibility checks and make the search
faster, we precompute poses that can view clusters and store
these in a lookup table to query during the search (see [5]).

While the global planner is useful, it has the following
shortcomings: 1) generating paths throughout the environment
takes a long time; 2) the paths it generates are coarse and
may not satisfy the robot’s dynamics; and 3) even when paths
can be followed, they are frequently not smooth, resulting in
jagged robot motion [42].

Occupied 
Unknown 
Free Robot FOV Robot 

Cluster 2 Cluster 1 

Global path Frontier  
Cluster 

Fig. 5: Global Planning: Generate global plans by 1) clustering frontier voxels
and 2) planning paths to places that can view them. When a robot can view
a cluster from many places, we pick the one that can be reached the fastest.

Local motion primitives: The goal of local motion primi-
tives is to quickly generate short trajectories. This is primarily
useful when the robot is near an uncertain part of the map and
constantly getting new information that affects where it should
go (Fig. 2a). As it plans throughout the entire environment, in
these cases, the global planner generates paths too slowly.

We evaluated the benefits of two types of control sampling
methods: 1) lattice planners [27] that generate dynamically
feasible trajectories using a fixed library of motion primitives
that are chained together to plan over multiple timesteps;
and 2) randomized planners that generates trajectories by
randomly sampling from the robot’s control space over the
local time horizon. In both cases, if the motion model predicts
that the robot might enter an obstacle or unknown space in
the environment, the set of controls is rejected. To specify
“local,” we heuristically generate motions whose total length
is comparable to the maximum range of the sensor.

B. Trajectory Optimization for Refinement

Neither the global plans nor local motion primitives are
locally optimal with respect to the rate of information gain
as they do not consider the full control input space of the
robot. To address this issue, we use gradient-based trajectory
optimization that can refine a trajectory in the continuous
control space. Ideally, we would like to optimize all the
trajectories within the candidate set and select the one that
maximizes the objective. However, optimizing all the candi-
date trajectories would be computationally expensive due to
all the gradient computations involved. Instead, we first select
the best trajectory that maximizes the CSQMI objective (1)
and use that to initialize the optimization.

Gradient of Information: We consider gradient-based tra-
jectory optimization methods. Because our underlying occu-
pancy grid map representation (Sect. III-A) and beam model
for the RGB-D sensor (Sect. III-B) are discrete, it is not
immediately obvious that a meaningful gradient exists. Prior
work [20] showed that the gradient of information of a single
measurement can be calculated for a 2D mapping scenario if
one assumes that individual beams are independent and the
sensor has a wide field of view. One important observation is
that the reward surface is smoother if the position of the robot
is restricted to the center of the grid cells. We extend this



work by considering the gradient of information of multiple
measurements with respect to the robot’s full state and control
inputs, even when beams are modeled as dependent.

To evaluate gradients, we view the information reward
surface as a function of discrete robot positions along the
occupancy grid and numerically evaluate gradients using finite
differences. Note that the grid cell resolution is often small
(e.g., 0.1 m) and that the robot’s orientation and control inputs
are not restricted to a discrete set.

Sequential Quadratic Programming (SQP): We use
SQP [32] to locally optimize the non-convex, constrained
optimization problem to find a set of controls over a finite
horizon. Strictly speaking, SQP requires that the objective
has a Lipschitz continuous second derivative to guarantee a
quadratic convergence rate to a local optimum. We cannot
formally do this due to nature of the discrete occupancy grid
and the sensor model. However, prior work [1, 21, 41] has
shown that it is possible to perform gradient ascent on such
objectives even in the absence of theoretical guarantees.

To optimize a trajectory, we adapt (1) to a form that can
be solved using SQP. In particular, we assume a discrete-time
robot motion model with a fixed number of time steps, making
the duration penalty a constant that can be removed from the
objective. We also encourage the robot’s states to be feasible
by rewarding being sufficiently far away from obstacles:

max
xτ , uτ

I[m; zτ | xτ ] + α

t+T∑
i=t+1

min (dmax, dist(xi,m))

s. t.
∀t<i<t+T−1

xi+1 = f(xi,ui), (2)

xi ∈ Xfeasible,ui ∈ Ufeasible,

where dist(x,m) ≥ 0 is the minimum unsigned distance from
x to any obstacle in the map, dmax is a parameter that limits
the distance reward, and α ≥ 0 is a weighting parameter
that balances the objective. After a parameter search with
logged data, we obtained good results with α = 20 and
dmax = 0.5 m. To support constant time distance queries,
before the optimization starts, we construct the Euclidean
Distance Transform [11] for the entire 3D map. Note that the
time horizon can also be included as an optimization variable.

In our implementation, the innermost QP solver was gener-
ated by a numerical optimization code framework that gener-
ates QPs specialized for convex multistage problems such as
trajectory optimization [9]. Even though it is possible to com-
pute the entire Hessian, it is computationally very expensive
to do. We used the symmetric rank 1 (SR1) update method to
update the Hessian using the computed gradients [32].

Caching Information: Numerically calculating the objec-
tive’s gradient is computationally expensive as each evalua-
tion requires calculating the information gain resulting from
all poses. The complexity of calculating information scales
linearly in the number of poses in the trajectory, while the
complexity of calculating information from all beams in a pose
is determined by the time it takes to evaluate the information of
individual beams, tInfo, and the time it takes to find a subset
of beams that are independent tIndep [5]. With T poses per

trajectory, evaluating the gradient via central differences takes
O(T 2(tInfo + tIndep)) time.

Fortunately, we can calculate the gradient faster by caching
redundant computations. Calculating each partial derivative
of the gradient via central differences involves perturbing
an individual optimization variable. Because we include the
poses in the optimization, each perturbation of x or u only
affects a pose at a single time step. Consequently, many
of the information calculations across different perturbations
are redundant and can be cached. Although this process is
complicated by the fact that measurements are dependent –
meaning information does not decompose into a sum over
the information at each pose – we can cache the information
gain from individual beams and the cells that the beams
pass through using raycasting. This reduces the complexity
of evaluating the gradient to O(TtInfo + T 2tIndep) which is a
substantial speedup as tInfo � tIndep. In experiments optimizing
over 5 time steps, produces a 4.0× speedup.

V. EXPERIMENTS

There are four primary questions that we seek to answer
with our experiments— Q1: How much information gain is
obtained by optimizing local motion primitives? Q2: Which
scenarios do local motion primitives provide the most benefit
in? Q3: How does our approach compare to previous work
and a human teleoperator with respect to speed, distance
traveled, and map completion? Q4: How well does trajectory
optimization scale to high-dimensional systems?

We designed simulation and real-world experiments with a
ground robot and simulations with an aerial robot to answer
these questions.

A. Platforms and System Details

Ground Robot: We conducted experiments using a dif-
ferential drive ground robot equipped with a 2D Hokuyo
UTM-30LX laser range finder and an Asus Xtion Pro RGB-D
camera. The robot’s computer was an Intel i5 processor with 8
GB of RAM, enabling it to run our entire approach on-board.

We parameterized the robot’s state x as a 3D vector that
consists of the robot’s 2D position and orientation. The control
input u is a 2D vector of its left and right wheel speeds:

x =
[
x, y, θ

]ᵀ
, u =

[
vl, vr

]ᵀxi+1

yi+1

θi+1

 =

xiyi
θi

+

 1
2 (vli + vri ) cos(θi)
1
2 (vli + vri ) sin(θi)

(vri − vli)/`

 , (3)

where ` is the wheel separation. For trajectory optimization,
we limited the wheel speeds to be at most 0.5 m/s and imposed
the motion model’s nonlinear equality constraints.

Aerial Robot: We simulated a quadrotor as an AscTec
Pelican that is equipped with a UTM-30LX laser range finder
and an Asus Xtion Pro RGB-D camera using Gazebo [23].

We parameterized the quadrotor’s state x as an 8D vector
consisting of its 3D position, 3D velocity, yaw, and yaw
velocity. The control input u is a 4D vector of the linear
accelerations and yaw acceleration. We assumed the quadrotor



(a) Ground Robot (b) Aerial Robot
Fig. 6: Information gain performance on recorded data: Over 157 situations for the ground robot and 63 situations for the aerial robot, we evaluate the
optimality of the initial trajectory input into the trajectory optimization for various initializing methods (left column). We then evaluate the optimality of the
trajectory output by trajectory optimization (right column). We see dominant modes shift towards 100% optimality when incorporating trajectory optimization,
showing trajectory optimization improves overall information gain.

does not fly aggressively and that its state evolved with a
constant acceleration model:

x =
[
x, y, z, θ, ẋ, ẏ, ż, θ̇

]ᵀ
u =

[
ẍ, ÿ, z̈, θ̈

]ᵀ
xi+1 =

[
I4 ∆t · I4
0 I4

]
xi +

[
1
2∆t2 · I4
∆t · I4

]
ui

where ∆t is a user-defined time discretization value. For
trajectory optimization, we bounded the linear acceleration
between [-0.5,0.5] m/s2, yaw acceleration between [-π/2,π/2]
rad/s2, the velocity in each dimension between [-1,1] m/s, and
the yaw between [-π/2,π/2] rad/s2. We also imposed linear
constraints on the robot’s motion model.

RGB-D Sensor: Both the ground and the aerial robot were
equipped with a RGB-D sensor that was modeled after the
Asus Xtion Pro sensor. We assume it has a minimum range
of zmin = 0.5 m, maximum range of zmax = 4.0 m, and
its noise is σ = 0.03 m. To predict future measurements and
evaluate CSQMI, we discretized the 58◦ horizontal field of
view and 48◦ vertical field of view into 20 separate values
each, resulting in 400 separate beams.

Occupancy Grid: For both platforms, the 3D occupancy
grid was constructed with a resolution of 0.1 m using data from
the RGB-D sensor. In experiments, the ground robot obtained
position estimates from a 2D laser based SLAM system, while
in simulation the quadrotor obtained a noisy pose estimate
from the simulator.

B. Evaluating Trajectory Optimization

To quantify how much trajectory optimization can improve
the information gain of local motion primitives (Q1), we
looked at its performance in a variety of situations. To create
these different situations, we sampled different maps and
poses for the robots from our previous real-world experimental
data [5]. For each situation, we generated a fixed number of
motion primitives using a lattice planner or random sampling
(Sect. IV-A). The motion primitive with the highest informa-
tion was then optimized. Because information gain can vary
substantially across different maps and poses, we normalize
the information gain of each approach by the maximum
information gain achieved by any approach with the same
initial conditions. Results for the ground air and robot are

Random 1 Random 8 Random 16 Random 32 Random 64 Random 128 Random 256 Lattice
Avg. Initial Time (s) 0.00 ± 0.0 0.04 ± 0.0 0.07 ± 0.1 0.15 ± 0.1 0.29 ± 0.3 0.58 ± 0.6 1.17 ± 1.2 0.26 ± 0.3
Avg. SQP Time (s) 0.78 ± 0.8 0.55 ± 0.6 0.43 ± 0.4 0.42 ± 0.4 0.40 ± 0.4 0.37 ± 0.4 0.34 ± 0.3 0.42 ± 0.4
Avg. Total Time (s) 0.79 ± 0.8 0.59 ± 0.6 0.51 ± 0.5 0.56 ± 0.6 0.69 ± 0.7 0.95 ± 1.0 1.51 ± 1.5 0.69 ± 0.7

(a) Ground Robot
Random 1 Random 8 Random 16 Random 32 Random 64 Random 128 Random 256

Avg. Initial Time (s) 0.00 ± 0.0 0.02 ± 0.0 0.05 ± 0.0 0.09 ± 0.1 0.18 ± 0.2 0.37 ± 0.4 0.75 ± 0.7
Avg. SQP Time (s) 0.84 ± 0.8 0.61 ± 0.6 0.62 ± 0.6 0.60 ± 0.6 0.54 ± 0.5 0.56 ± 0.6 0.62 ± 0.6
Avg. Total Time (s) 0.84 ± 0.8 0.64 ± 0.6 0.67 ± 0.7 0.69 ± 0.7 0.73 ± 0.7 0.93 ± 0.9 1.37 ± 1.4

(b) Aerial Robot
Fig. 8: Planning times on recorded data: Comparing the initialization,
trajectory optimization, and total times for different initialization methods
using the same data as in Fig. 6. The double line show when sampling controls
becomes more computationally expensive than trajectory optimization.

shown in Fig. 6a and Fig. 6b. As expected, using larger
number of motion primitives improves the performance of the
unoptimized trajectories. However, regardless of the number of
motion primitives used to find an initialization, trajectory opti-
mization consistently produces trajectories whose information
gain is close to the maximum achieved, demonstrating that
it can substantially improve upon the search based strategies.
Comparing the trajectory optimization information gain for
the ground robot (Fig. 6a) with the aerial robot (Fig. 6b), we
see the benefit of using trajectory optimization is greater in
higher-dimensional systems (Q4).

We also examined the average computation time over all
situations for each approach. Results are shown in Fig. 8a
for the ground robot and Fig. 8b for the aerial robot. While
evaluating a small number of motion primitives is fast, these
trajectories tend to have small gains in information. However,
using these trajectories to initialize optimization yields finds
trajectories that are higher in information, with less time than
searching over large numbers of motion primitives.

C. Mapping Experiments with a Ground Robot

We tested our approach by using a ground robot to map a
40 m × 35 m × 2 m portion of an office environment over two
trials. For the local motion primitives, we sampled 32 random
trajectories. Results and comparisons are in Fig. 7. The final
3D map from one trial is shown in Fig. 1a.

To assess the overall performance of our system (Q3), we
compare it to three other approaches. The first is “Global”, a
strategy that evaluates information along paths to frontiers and
does not use local motion primitives or trajectory optimization,
while the second is a closest frontiers planner [52]. In order
to obtain an approximate lower bound on achievable perfor-
mance, we also compare to a human teleoperator who knows



Local Motion Primitives Global Plan
Traj. Opt. Initialization

(% of times) 66% 34%

(a) Final map (2D projection), exploration path, and poses where
trajectory optimization performed best: The green triangle is the
robot’s start position. The colored path is its exploration path. The red
arrows show the 25 poses where trajectory optimization provided the
largest gain in information over the initializing trajectory.

Averages when entropy reduced to human level
Time (min) Distance (m) Speed (m/s)

Human 6:36 (24.0%) 153 (86%) 0.41 (3.2×)
Our Approach 8:15 (29.9%) 156 (88%) 0.34 (2.6×)

Global 19:19 (71.2%) 156 (88%) 0.15 (1.2×)
Closest Frontiers 27:37 (100.0%) 178 (100%) 0.13 (1×)

(b) Comparisons to previous work: Comparing our approach with 1)
Human teleoperator who knows the map apriori, 2) Information based
planner that only plans globally [5], and 3) Closest frontiers [52].

Fig. 7: Ground robot experiments: Mapping a real-world office environment. Our approach reduces the map’s uncertainty faster than previous approaches
and only does slightly worse than a human operator with a priori knowledge of the environment.

the entire environment a priori and manually drives the robot
to gather measurements. For comparisons with the first two
approaches, we use data from our previous experiments [5],
which were obtained using the same robot.

To measure the speed of each approach, we look at the
time it takes to obtain a low uncertainty map measured using
Shannon’s entropy. The entropy of a map with |m| cells is∑|m|

i=1−fi log2 fi − (1 − fi) log2(1 − fi) bits where fi is
the probability that the ith cell is free [7]. Fig. 7b shows
the map’s entropy over time for each approach. The human
operator decreased the uncertainty of the map the fastest.
However, our approach did not take substantially longer to
achieve a similarly certain map, despite the robot’s absence
of prior knowledge about the environment. Our approach was
also substantially faster than the other autonomous approaches.
Note that the strategies that use information and the human
all travel essentially the same distance. This suggests the
difference in time is primarily due to how quickly each
approach can determine an informative trajectory to follow.

It is interesting that the human operator stopped once they
believed they had obtained a low uncertainty map and that all
autonomous approaches continue reducing the map’s entropy
beyond this point, as they continue until no frontiers are left.
However, the final maps are qualitatively hard to differentiate,
suggesting a better termination condition is needed.

Fig. 7a shows a 2D projection of the final map, the path
the robot followed, and poses where trajectory optimization
provided the most improvement in information. These poses
are predominantly in open spaces, junctions, approaching
corners, and dead-ends (Q2). This agrees with intuition as
these areas are more complicated than straight narrow hallways
where finding an informative trajectory is simpler.

(a)

(b)
(a) Stairwell with walls removed (b) Map entropy over time using random (top)
and lattice (bottom) local motions with and without trajectory optimization

Averages when entropy reduced by 90%
Time (min) Distance (m) Speed (m/s)

Random 32 2:32 (87%) 36.2 (88%) 0.21
Random 256 2:14 (77%) 30.4 (73%) 0.20
Lattice 30 2:54 (100%) 41.4 (100%) 0.18
Lattice 256 2:38 (90%) 37.5 (91%) 0.18
Random 32 + SQP 2:11 (74%) 27.0 (65%) 0.19
Random 256 + SQP 2:09 (74%) 26.9 (65%) 0.19
Lattice 30 + SQP 1:57 (67%) 26.5 (64%) 0.19
Lattice 256 + SQP 1:53 (66%) 26.4 (64%) 0.20

(c) Comparison of distance traveled and time to reduce entropy

Fig. 9: Aerial robot stairwell simulations: Trajectory optimization enables
the quadrotor to map the environment more efficiently.

D. Mapping with an Aerial Robot

To further study the impact of trajectory optimization on
the information of local primitives (Q1) and study how well
our approach scales to robots with higher dimensional state
(Q4), we evaluated it by having a quadrotor map a 10 m × 5
m × 7.5 m 3-story stairwell in simulation Fig. 9a. The final
3D map from one trial is shown in Fig. 1b.



We are interested in the effect of different motion primi-
tives and whether the improvement in trajectory optimization
results in different overall performance compared to control
policies that use motion primitives and global plans. For these
simulations, we generate local plans over 5 time steps and
again use a random or lattice planner to generate motion
primitives. The random planner repeatedly sampled from the
robot’s 4D control space to generate trajectories. The lattice
planner generated straightline constant velocity trajectories
whose directions were determined by discretizing polar and
azimuthal angles in spherical coordinates. We chose this as
even coarse discretizations of the control space result in thou-
sands of trajectories, resulting in slow overall performance.

Fig. 9b shows the map’s entropy over time using different
numbers of initial trajectories averaged over 5 trials for each
approach. The lattice planner generated 30 trajectories using
6 evenly spaced polar angles and 5 evenly spaced azimuthal
angles. To generate 256 primitives, it discretized both angles
into 16 distinct values. Overall, using trajectory optimization
resulted in the entropy of the map decreasing faster (note that
the simulator is asynchronous, so the reported difference in
time includes computation time). This difference is particularly
noticeable for the lattice planner, which had difficulty rounding
corners due the limited number of directions it could travel.

Fig. 9c contains additional statistics about distance traveled
and time to reduce entropy. We see that by using trajectory
optimization – regardless of initialization strategy – the robot
reduced most of the map’s entropy faster, while traveling a
shorter distance. This is due to the trajectory optimization’s
ability to find feasible trajectories that exploit the mobility of
the quadrotor and execute informative turning actions (see the
video submission for additional details).

VI. LIMITATIONS AND DISCUSSION

Our work has three limitations that we briefly discuss. First,
we assume that the robot is capable of localizing itself reliably
using a SLAM system. Fig. 10 illustrates this issue. Fig. 10a
shows a 2D occupancy grid which we created by artificially
lowering the maximum range of the ground robot’s UTM-
30LX to 4.0 m and manually driving it along a trajectory (solid
blue line). The most recent laser scan (red dots) is not aligned
with the map, showing accumulated position error. The robot
should follow action A and close the loop to improve its state
estimate and the map’s consistency. However, our approach
only considers the map’s uncertainty and would select action
B as the bottom of the map is more uncertain. Fig. 10b
shows a different scenario where a robot is equipped with a
short-range omnidirectional sensor. Our approach would select
action B, as the robot will observe more of the map. However,
during parts of this trajectory, all features will be outside
the robot’s FOV (red circle), precluding accurate localization;
consequently action A is preferable. One avenue for future
work is to extend our approach to active SLAM by accounting
for robot state uncertainty [2, 19, 22, 37, 46, 50].

While modeling the robot’s uncertainty in the control policy
can be important, it is not always necessary to ensure good

B 

A 

(a)

B 
A 

(b)

Fig. 10: Limitations. In (a) and (b) executing action A is preferable over
action B as the robot’s uncertainty will be much lower. However, our approach
only considers the map’s uncertainty and selects action B in both cases.

performance. For example, in our ground robot experiments,
the accumulated state error was small. Although ground truth
is not available, the final maps were consistent, meaning
the corrections from the SLAM system provide insight into
the robot’s accumulated error. Over 8 experiments, the mean
correction to the robot’s 2D position and orientation was 0.28
m and 1.35◦. These small corrections are due to the robot’s
accurate laser odometry [35] and demonstrate that it is possible
to build good maps even when a robot does not explicitly take
actions to reduce its own uncertainty.

Our work’s second limitation is that we do not employ a
principled termination condition, as is evident from the long
flat tails of the entropy curves (Fig. 7b and Fig. 9b). Our
experiments with the human operator provide insight into this
process. It may be possible to take inspiration from prior work
that uses reinforcement learning for active mapping [24] to
determine appropriate termination conditions.

Finally, we use trajectory optimization for maximizing the
CSQMI objective over a discrete occupancy grid. Apart from
the lack of theoretical optimality guarantees, the optimization’s
performance also heavily depends on the initial trajectory [36].

VII. CONCLUSION

In this work, we present an information-theoretic planning
approach for dense 3D mapping of unknown environments
with mobile robots. In contrast to prior work that either use
only global plans or local motion primitives, our approach
combines the benefits of the two by considering a candidate
set of trajectories consisting of global plans and local motion
primitives. We select the most promising trajectory from this
candidate set and further optimize it to increase information
gain while satisfying the robot’s motion model. Through a
series of simulations and real world experiments, we study
the benefits and drawbacks of our system and compare its
end to end performance with several other approaches. Our
results indicate that the proposed approach has the potential to
increase the efficiency of 3D mapping, particularly for robots
with limited battery life that are equipped with noisy sensors
that have short sensing ranges and limited fields of view.
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