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Abstract—Optimization is often difficult to apply to robots due
to the presence of modeling errors, which may cause constraints
to be violated during execution on a real robot. This work
presents a method to optimize trajectories with large modeling
errors using a combination of robust optimization and parameter
learning. In particular it considers the problem of computing a
dynamically-feasible trajectory along a fixed path under frictional
contact, where friction is uncertain and actuator effort is noisy.
It introduces a robust time-scaling method that is able to accept
confidence intervals on uncertain parameters, and uses a convex
parameterization that allows dynamically-feasible motions under
contact to be computed in seconds. This is combined with an
iterative learning method that uses feedback from execution to
learn confidence bounds on modeling parameters. Experiments
on a manipulator performing a “waiter’ task, on which an object
is moved on a carried tray as quickly as possible, demonstrate
this method can compensate for modeling uncertainties within a
handful of iterations.

I. INTRODUCTION

Optimal motions are hard to realize on robots because there
is a fundamental tradeoff between optimality and robustness.
Optimal trajectories pass precisely at the boundary of feasibil-
ity, so errors in the system model or disturbances in execution
will usually cause feasibility violations. For example, optimal
motions in the presence of obstacles will cause the robot to
graze an object’s surface. It is usually impossible or impracti-
cal to obtain extremely precise models, particularly of dynamic
effects, such as inertial parameters and friction coefficients. In
legged locomotion, such errors may cause a catastrophic fall,
and in nonprehensile manipulation, such errors may cause the
object to slip, tip, or fall. Moreover, accurate execution of
planned trajectories is difficult on hardware, particularly as the
field of robotics progressively adopts compliant, human-safe
actuators that are less precise than the highly-geared electric
motors of traditional industrial robots. A final source of error
is numerical error in optimization algorithms, such as the
resolution of constraint checks using pointwise collocation.
One way to increase robustness is to add a margin of error
to optimization constraints, e.g., by assuming very small
frictions, conservative velocity bounds, or collision avoidance
margins. However, this leads to unnecessarily slow executions
and difficulties in tuning appropriate margins.

This paper presents an iterative learning approach in which
a robot 1) learns the errors in its models given execution
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Fig. 1: Left: The waiter task for a single block. Right: the task
for a stack of two blocks.

feedback, 2) incorporates estimated errors into optimization,
and 3) repeats the process until it converges to successful
and/or near-optimal executions. Specifically, it addresses tasks
under frictional contact with significant friction uncertainty
and execution errors, such as legged locomotion and object
manipulation tasks, and its main contributions lie in a robust
trajectory optimization module and an execution feedback
module. The robust optimization accepts confidence intervals
on the uncertain parameters and computes a dynamically-
feasible time-parameterized trajectory along a fixed geometric
path with contact constraints. Observations from execution are
used to adjust the intervals in the optimization iteratively to
achieve robustness.

Our contributions help the learning process proceed at inter-
active rates. Although trajectory optimization is widely used
in robotic motion planning and optimal control, optimization
under frictional contact remains challenging. For tractability
of computation we consider optimizing only velocity along a
fixed path given dynamic constraints (the time-scaling prob-
lem). This paper formulates a new fast time-scaling method
for generating an optimal, robust, dynamically feasible time-
parameterized trajectory along a fixed geometric path for a
robot in frictional contact. We formulate the contact constraints
on the system as a linear program that is solved at each
constraint evaluation point of the time-scaling optimization.
This transforms the optimization problem into a two level
hierarchical optimization with the confidence intervals on
uncertain parameters working as margins in both levels. The
decomposed optimization runs much faster (in seconds) than
the monolithic large optimization (in minutes).



We test our methods on a manipulator performing a “waiter”
task (Fig. [I). Imagining a robotic waiter serving customers,
objects are placed on a tray carried by the robot and the goal
is to move the objects as quickly as possible without causing
them tipping over. Modeling and execution uncertainties are
inevitable. For irregular-shaped objects and objects made from
unknown materials, it is difficult to have the precise values on
the contact friction and COM of the objects. Moreover, there
could be large disturbances acting on the tray in a dynamic
environment similar to a busy restaurant. Using the proposed
framework, the robot would “practice” a handful of times to
learn estimates of parameter and execution uncertainty, and
then maintain those estimates to optimize trajectories robustly
in the future.

We handle two types of uncertainties: (i) parameter estima-
tion errors for parameters of constant value over time, such
as coefficient of friction (COF), hardware calibration, contact
points position, center of mass (COM) of a manipulated object,
and (ii) execution errors from control and disturbances. These
are handled via two types of execution feedback:

1) Binary execution feedback (success or failure) is used to
estimate unobservable parameters of the dynamic model.
Our method accepts estimated ranges of the chosen
parameter, and then uses a bisection search method to
determine whether we have over- or under-estimated its
value, converging to a value that leads to a feasible
execution within € of optimal.

2) Joint sensor feedback on the executed trajectory lets us

estimate execution errors (e.g., random disturbances).
We construct confidence intervals on the deviation be-
tween executed and planned trajectory as margins into
optimization.
We can consider both error types either individually or si-
multaneously. In the latter case, we learn both modeling and
execution errors in an iterative fashion.

Experiments evaluate our method in simulation and on
hardware with an industrial manipulator, Staubli TX90L ma-
nipulating blocks (Fig[I). The results demonstrate our robust
trajectory optimization can generate dynamically-feasible tra-
jectories within 10 seconds on a standard PC, and the iterative
learning approach is able to produce robust task executions
within a handful of iterations.

II. RELATED WORK

The problem of generating time-optimal, dynamically-
feasible trajectory of a given path without considering contact
was initially solved by Bobrow et al [4] and Shin and McKay
[26] and later enhanced by [7, (8, [18, 27]. Recent work
has extended the time-scaling problem to handle frictional
contact [15]. We further extend the time-scaling concept to
incorporate robustness margins in friction parameters and
execution disturbances.

Although the problem of time-optimal path parameterization
is well-studied for robots operating in free-space [3| [29]], this
problem has not been widely considered for robots that make
or break contact. Several authors have considered optimizing

both joint trajectories and timing for legged robots [9} 12| 23]
24]. A trajectory optimization in Cartesian space is presented
in [12] for solving humanoid motions and is suitable for
generating motion primitives. In [9], a contact-before-motion
planner which grows a search tree using a rough trajectory
is proposed. [23) 24] present a direct trajectory optimization
method which formulates the reaction forces as optimization
parameters. But due to the size of the optimization problem,
these techniques are often extremely slow, taking minutes or
hours to complete. Some numerical approaches have been
presented for dexterous manipulation [17, 20] as well as non-
prehensile grasp [16, [19, [22], and they are computationally
challenging to be extended to high dimensional problems.

Recent work [[L5]] considered contact forces and presented
a fast convex time-scaling method with polytope projection
techniques to precompute dynamic feasible sets. Similar to
[[15]], our work avoids the computation of exact contact forces
to speed up the optimization. But we use a different for-
mulation on the contact constraints through a transformation
into smooth linear programs at constraint evaluation points,
which allows us to consider robustness to execution errors
without severely increasing running time. We also illustrate
how to incorporate the coupled dynamic constraints between
manipulated objects as well as the robot.

Robotic applications cannot escape uncertainties in terms
of imperfect system modeling and robot control as well as
unknown execution disturbances. Many learning methods have
been proposed to handle uncertainties in different levels:
learning from demonstration [[1]] for computing a task-specific
policy, model learning with machine learning techniques [21]
and control learning [, 25]. In this work, we utilize ideas
from previous work and use an iterative learning approach
based on a binary search method and a robust trajectory
optimization to learn the uncertainties from modeling and
execution. The robust optimization models acceleration errors
as range estimation (similar to [2]) and optimizes a nonlinear
problem to generate a trajectory that is robust up to a given
confidence value.

III. PROBLEM FORMULATION

Our goal is to generate a robust, dynamically-feasible, and
near-optimal trajectory for a robot manipulating an object
under frictional contact and imperfect knowledge about the
system model and random execution errors. The robot is
allowed to execute trajectories repeatedly to improve its esti-
mates. However, its feedback will only consist of the executed
joint trajectories and success/failure of the manipulation; no
external observations like object motion capture or pressure
sensors are available.

For simplicity we assume that a geometric path (without
timing information) is given. In future extensions of this work,
the shape of the path may be optimized as well. We also
restrict ourselves to two types of errors: modeling errors in the
coefficient of friction, and random disturbances in the motion
execution, although our work may be applicable to other errors
as well.



A. Summary of method

The method operates as follows:

1) The robot is given a geometric path, robot-object contact
points, and initial confidence intervals of the uncertainty
in modeling parameters and execution errors. (These
may be pessimistic or optimistic; they will be adapted
later via execution feedback.)

2) The robust time-scaling optimization is applied to gen-
erate a trajectory that is feasible under the given confi-
dence intervals.

3) The optimized path is executed. Success / failure and
sensing feedback are used to improve the confidence
intervals.

4) Steps 2 and 3 are iterated until success and/or a desired
level of convergence is achieved.

B. Robot Motion Constraints

Given a twice-differentiable geometric path ¢(s) : s €
[0,1] — R™ for a robot of n degrees of freedom (DOFs), we
wish to find a time parameterization s(t) : ¢ € [0,ty] — [0, 1]
and a final time ¢y such that an objective function fg5; is
minimized and a set of constraints is satisfied.

The objective function f,,; considered here is the minimum
execution time but can also include other terms such as
minimum jerk or energy. The set of constraints includes
velocity, acceleration and torque limits given by:

C]min é q S Qmax (l)
Tmin S T S Tmazx (3)

Also, for safety reasons, we usually require the robot starts
and ends at a stop:
4(0) =0
(1) =0
We are interested in obtaining dynamically-feasible motion
with robot in contact. In addition to the geometric path ¢(s),
we assume the input also contains the following information:
1) If there exist N, > 1 contact phases, the domain of
q is divided into sections spy = 0,spi,...,spn, =
1} in which contacts are constant over the range
{a(u) | spi<u<spiy1}
2) The set F; of contact points and normals in each phase
1=1,...,Np.
For simplicity, we describe our formulation and methods in
the simplest case which only has one contact phase and the
handling of multiple contact phases is presented in section
IV-El
The contact enforces extra constraints: contact forces are
limited within friction cones and maintaining the contact states
indicates zero velocity of contact points in world space. Let
fi,-.., fm be the contact forces at points pq, ..., p,, respec-
tively. The system dynamics is given by:

“4)

M(q)i+ C(q,q) +G(q) =7+ Z Ji@)"f; )

where M is the mass matrix, C' is the centrifugal and Coriolis
forces which are quadratic in the joint velocities, and G is
the generalized gravity vector, J;(q) is the Jacobian of point
p; with respect to robot’s configuration q. We assume that
the initial path is chosen to respect the condition that fixed

contact positions have zero velocity in world space: Ji(q)@ =

ds
0. Also, we consider the friction constraints f; € FC; for
i = 1,...,m, where F'C; is the friction cone at contact

position p;. For the purposes of this paper, we assume all
friction cones are convex and we approximate the nonlinear
cones by a set of linear constraints expressed as:

AleSOfOI"L = 1,...,m (6)

Since each friction cone is dependent on a coefficient of
friction estimate p; we may write the dependence explicitly

C. Extra Constraints for the Object Manipulation Task

For the “waiter” task, to move the objects together with
the robot, we must ensure the linear acceleration «j and
angular acceleration «4 of the object can be supported by
the contact forces and gravity, therefore the Newton-Euler
equations impose two dynamic constraints on the system:

MobjOL = Z fi+mobjg
i
(7
Topjon = Z (pi—c¢)x fi
i
where mep; and I,; are the mass and inertia matrix of
the block respectively, p; is the contact point, and c is the
center of mass (all quantities given in world coordinates).
Given the configuration, velocity and acceleration of the robot,
the accelerations of the object can be computed through the
Jacobian and Hessian of the object’s pose in the robot frame:

( o ) = J(q)i+ H(q)§? @®)

A
IV. ROBUST TIME-SCALING WITH FRICTION

This section presents a robust time-scaling optimization
method. Computation speed is improved by transforming the
constraints on the system dynamics and contact forces into
a linear program so that the problem size is reduced to
be independent of the number of contact points. Robustness
against execution errors is achieved by optimizing over a
confidence interval which is an estimation of the noise on
the execution acceleration.

A. Robust Motion Constraints with Confidence Intervals

Errors introduce nontrivial changes in the way dynamic
constraints are evaluated; for example in the “waiter” task, the
executed acceleration of the object, rather than the planned
acceleration, decides if the contact forces are sufficient to
move the blocks without tipping over. Moreover, the object’s
acceleration is determined in a nontrivial manner by the robot’s
velocity and acceleration.
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Fig. 2: Velocity s of the time scaling.

Errors on robot’s execution velocity and acceleration can
be modeled as joint-wise confidence intervals ¢ — ¢pian €
[leowaljupp] and q - C.].;nlan S [qlo111;lj?Lpp] where (jpla,n is
the planned velocity and §piern is the planned acceleration.
For simplicity, our method ignores the errors in ¢ because
the errors are usually two orders of magnitude smaller than
acceleration errors.

As described in later sections, we will estimate joint-wise
execution errors as Geqc = §plan + ¢ Where e is subject to
Gaussian distribution N (U, A?) to account for the uncertain-
ties from execution and unknown disturbances. We incorporate
them into the optimization as follows:

Gupp = U + K - A

9
QIOU):U*K‘A ()

where K controls the confidence ratio on uncertainties.

When we apply the confidence interval to the dynamic
constraints, we wish to ensure that all constraints related to
¢ in @), (3) and (8) are satisfied with respect to the execution
accelerations. As a result, this imposes additional upper and
lower constraints on the planned accelerations.

For friction coefficient confidence intervals [1tjouw, fupp], it
is clear that we only need to formulate the lower end of the
confidence interval ., because any solution for the lower
friction case is also a solution for the higher friction case.

B. Time-Scaling Function

The time scaling method extends the method of [L5] to
handle execution errors. The constraints on the velocity and
acceleration require the time-scaling function s(t) to be at least
twice differentiable. So we define the velocity of the path s(t)
as a piecewise linear interpolation between S = {50, ..., SN}
(see Fig.[2)) and then s(¢) becomes a piecewise quadratic curve
consisting of N segments s;(t),i = 1,...,/N with constant
acceleration in each segment. We also assume each segment as
a uniform interval As to simplify the computation. Therefore,
the objective function of minimizing execution time is:

N As

8+ 841

fobj(S) =

=0

(10)

Using interval arithmetic notation, we can express the
executed derivatives as follows:

o dg. ..
0(5,%) € L5 + [dlows Gupp) (1)

ds

L AP dg

8,8) = —58° + —
0(5,9) ds? ds
Since we assume negligible velocity error, the system dynam-
ics @) can be represented in terms of $, 5 as follows:

a(s)s + b(8)82 + C(S) =T+ Z Jl(Q)TfZ - M(q)[éjloun dupp]

13)
where a(s) = M(q)%, b(s) = M(Q)% +C(g, 3) and
c(s) = G(q). The last term on the right hand size involves
a product of a matrix and a vector interval, and is computed
using interval arithmetic.

The optimization can now be performed over a time pa-
rameterization s(t), with constraints (1] - [B) and (7) enforced
at discretized values si,...,sy along the s coordinate. Note
that signiﬁcaurllt speedd2 gains can be achieved by computing the

q g9

coefficients 52(s), 5-4(s), a(s), b(s), c(s) only once for all

discretized values of s.

8 + [(jlowa (.].uppy (12)

C. Hierarchical Optimization

We discretize the constraints along the optimized trajectory
by enforcing them at N collocation points ([13]). To solve
this problem, a naive method is to parameterize both the robot
trajectory expressed in terms of s, § as in - and the
vector of contact forces f along the motion, and then solve
the following optimization problem:

min fobj(S)

S fr,..Fm
st.atall s=s;, forl,...,N
dq. .. .
%8 S [Qmiru Qmaz]
d?q . dq. .. .. .. ..
@52 + %5 + [QIoun Qupp] € [QmMu Qmaac}

a(s),§ + 6(8)52 + C(S) + M(q)[q.lowv Qupp]
- Z Jz(Q>Tf1 S [Tmina Tmam}

(14)

Mobj O, = Zf? + Mob; g
%

Topjops = Z (pi —c¢) X fi
%

Azfz < 0 fort: = 1,

,m

For this each f; is the stacked vector of contact forces at
collocation point ¢, containing 3m entries in total. As a result,
this naive formulation has (1 + 3m)N parameters and 3nN
constraints. This could be extremely expensive at high values
of m and N.

We present an alternate hierarchical method that decom-
poses this large problem into an inner problem embedded
into an outer problem, both of which are simpler than the
formulation above. It uses the fact that for each value of s
along the motion, contact forces may be chosen independently
of one another. So, at each constraint evaluation point, a
solution to (3)), (), (I3) and (7) can be solved independently



via a relatively small linear program to verify whether the
given values of s and § are valid:

Given $ and §, find f = (f1,..., fn) such that
Z Ji@)T fi < (a(s)5 + b(5)5% 4 ¢(5)) + €low — Tmin
=S fi < Tas — (a(8)F + ()8 + €(5)) — eupp
Mobj X, = Z fz + Mob;g
Topjoen = Z (pi —c¢) X fi
Aifi<Ofori = 1,....m
(15)

where [€jow, eupp| is the interval resulting from the product

M(q) [('jlowv éjupp]-
The outer optimization problem becomes:

Find S* = argmin f,;;(S) such that
S

fori = 1., N
dmin < (11) < dmaa
Gmin < (12) < Gmaz

(15

This approach reduces the number of outer optimization
variables to N and each iteration of the outer optimization
requires solving N independent inner LPs (I3). Each LP
requires solving for relatively few variables (3m) and can be
solved quickly. Overall, the hierarchical optimization is much
faster than the naive method, even for large number of contact
points.

But this approach has a problem that, as formulated, the
LP constraint is a black box binary test, which cannot be
handled easily in numerical optimization routines that require
the constraints to be differentiable with respect to S. We use a
formulation for turning this constraint into a piecewise linear,
numerical form.

Let us rewrite (I3) in a standard LP form:

Given $ and &, find f = (f1, ..., fm) such that
Wf < z(53)

(16)

is satisfied

a7

where W includes the linearized friction cone constraints A;
and the Jacobian J;(q)” which transforms the contact force
into joint torques. z($,§) corresponds to the RHS of the
inequalities in (I3). By introducing an auxiliary variable v, we
can transform this into a minimization problem whose solution
is negative if and only if there is a solution to (I5). We define
the optimization variable z = (f1, ..., fm,v)? and formulate

the objective function as Cz where C = (0,...,0,1). The
linear program becomes:
Solve v*(3,5) = min C'z such that
i (18)

W§—2(5,5) <vl

where 1 is the vector of all 1s. The optimal value can be
determined using a standard LP algorithm. We now replace the
constraint at the outer level optimization with the continuous,
piecewise-linear constraint v*($, §) < 0. We can determine the
subderivatives 86” and % analytically through Karush Kuhn
Tucker (KKT) multipliers of the LP (see Appendix). Using
this formulation we are able to solve the outer optimization
using standard nonlinear programming (NLP) techniques like

sequential quadratic programming (SQP).

D. Initial Guess

Although it has been proven that the minimum-time time-
scaling problem as formulated is convex [15 28]}, it is use-
ful to obtain a good initial solution to speed up the outer
optimization. To do so we maximize the velocities S of the
time scaling function pointwise, so we compute the maximum
possible 50 as our initial guess according to the constraint
Gmin < ¢ = g $ < Gmag- Since the bounds ( q)mm and

(Zq)mw can be computed explicitly from the 1nput path,
d
we get [(ds)rrnna(d(i)ma»L]S S [Q7rzzn;erLaL] then S can be

approximated as:
) ) (19)

a T
3% = min(min | | —2ez | ) min | |——min__
i (40 i (44,
ds /max ds /mwn
n iterates through each joint of the robot.

where 1 =1, ...,

E. Multiple Contact Phases

In the presentation above, we assumed only one contact
phase (no contacts are made or broken). But our method can
handle situations with N, > 1 contact phases with a small
modification. Each contact phase is distinguished by the set of
contact points F}, and friction coefficients, leading to different
constraints of and (6). We model the time-scaling as an
optimization over k piecewise quadratic function as in section
[V-B] so the objective function in (I6) becomes:

ZZ

plepl

Fonj (S (20)

+ Sp 1+1

where As,, is the uniform interval in p'" contact phase.

Since feasibility at a single collocation point only depends
on the two optimization variables $; and s;4; of appropriate
contact phase, no changes need to be made for the constraints
formulated in (T6).

V. ITERATIVE LEARNING UNCERTAINTIES

The second stage of our method is an iterative learning
technique for improving confidence intervals given execution
feedback. A conservative estimate of friction and execution
errors could overly constrain the problem and generate a
very slow motion, while an optimistic estimate could cause
infeasibility. To approach the “sweet spot” we present two
methods. The first method uses binary success/failure feedback
to perform a bisection search on a chosen modeling parameter,
(e.g., friction). Bisection continues until a desired conver-
gence threshold is reached. This approach is most suitable



for unobservable parameters like friction. The second method
incorporates feedback on execution velocity and acceleration
to measure confidence intervals more accurately.

A. Bisection Search on Friction Coefficient

Ideally, the optimized trajectory should move the blocks as
fast as possible without tipping them over, but this is difficult
to achieve due to modeling uncertainties. Instead, what we
can achieve is to produce an trajectory that is e-near the time-
optimal trajectory, where e-near implies that the generated
trajectory can be executed successfully, while executing the
trajectory sped up by a factor 1 + € fails. Here € controls how
close the generated motion approaches the true (unobservable)
feasibility boundary of the fastest possible motion. A smaller
€ indicates faster executions with lower margin of error, at the
expense of more learning iterations.

Beginning from the initial confidence interval on the pa-
rameter of interest, a bisection search is conducted to find a
lower bound that is nearly optimal according to the speed-up
parameter €. We apply this to the coefficient of friction (COF).
In manipulation it controls the perpendicular magnitudes of the
contact forces and therefore affects the maximum accelerations
applied on the object. It is also a difficult parameter to estimate
accurately without specialized sensors.

The bisection search method (see Alg. |I) works by setting
upper and lower bounds, [, and i, on the COF value p
and optimizing the problem formulated in (I6) with p. With
the assumption that the execution is relatively accurate or the
error is negligible, we set the acceleration confidence interval
to be empty, namely Gy = Gupp = 0. The optimized motion
is executed, and if it fails (blocks tip over or shift largely
beyond a predefined threshold), then we update i, with
the current COF value p and repeat. Otherwise, we update
the lower bound on p. We then execute a sped-up version
of this trajectory. If the sped-up execution fails, then we
have converged successfully to a e-near optimal trajectory. We
can also terminate if the difference between upper and lower
bounds becomes less than a given tolerance § (§ = 0 is an
acceptable value).

Algorithm 1 Bisection Search for COF

Hiow < 0, Hupp < Hinit
while iy, — iow > 0 do
= (Miow + Hupp)/2
traj <— RobustOptimize(u)
if Execute(traj)= Success then
traj’ «+-Speedup(traj, 1 +¢€)
if Execute(traj’) # Success then return i,
else

Hiow — 1%

else

/’Lupp <_ /1’
return /i,

B. Iterative Learning with Robust Optimization and Binary
Search

To consider errors on both parameter estimation and exe-
cution, we modify the binary search method for the modeling
parameter in Sec. by adding an inner loop that learns and
bounds execution disturbances via trajectory feedback.

To some extent, naive introduction of measured confidence
intervals into optimization can compensate for these distur-
bances. However, we have observed that many disturbances
are trajectory-dependent (e.g., speed-dependent control errors,
air resistance, etc.) Again we find that conservative estimates
of errors e with a large standard deviation A lead to slower
optimized trajectories. Hence, our method learns characteristic
disturbances during the iterative learning phase.

Our approach optimizes the trajectory with confidence
interval [Giow, Gupp] from the last iteration, and update this
confidence interval from the current execution feedback. This
process repeats until the confidence interval becomes stable.
Here stability is judged if the differences between each end-
point of the confidence interval for the last iteration and the
current one become falls below a threshold. To estimate a
per-trajectory confidence interval, we assume that for each
time step the disturbance arises from a Gaussian noise model
N(U,A?).

Our algorithm Iterative-Learning-with-Robust-
Optimization-and-Binary-Search (ILROBS) is shown in
Alg. 2| The input K (used in Eq. (9)) is a user-specified
parameter indicating the desired number of standard deviations
of disturbances to which the model should be robust. In
other words, the expected likelihood of success ®(K) where
® is the cumulative distribution of the standard normal
distribution; and so K should be chosen according to the
68 - 95 - 99.7 Rule [6]. After each execution the algorithm
computes the noise model N (U, AQ) from Geze — Gpian-
These are then used to determine the acceleration confidence
interval according to (9) for the given K.

The challenge in this algorithm is to guess whether a given
execution failed due to an overestimated friction coefficient
or an unlucky disturbance (or contrariwise, succeeded due
to random luck). In the former, the COF estimate should be
lowered, and in the latter, further execution feedback may be
needed to accurately estimate the probability of success. If
we have observed that a given trajectory has succeeded all
of No(K)=[1/(1 — ®(K))] times, then we believe that the
success rate is at least ®(K). So, if any one of them fails, we
bisect.

VI. EXPERIMENTS

We first test how the number of collocation points affects
the computation time. And we also conduct two experiments
corresponding to the two situations introduced in Sec.
SNOPT [10] was used for solving the outer optimization
problem and the GNU GLPK library [11] was used for the
inner linear program. The computation was carried on a laptop
with 2.9GHz processor and the time for trajectory optimization
for all the physical robot experiments are within 10 seconds.



Algorithm 2 ILROBS (K)

Piow <= 05 flupp < Hinit
U+0,A«+0
while 11y, — Liow > 6 do
nA= (Mlow + ,uupp)/2
Set Grow < U — K - A and Gypp + U + K - A
traj <— RobustOptimize(u)
for i=1,...,N.(K) do
result <— Execute(traj)
if result # Success then
Hupp < 1
Estimate U and A from executions.
Return to outer loop.

Estimate U and A from executions

Hiow — 12
return (Lo, U, A)

45 -

0 T T T 1
0 500 1000 1500 2000
# Collocation Points N

Fig. 3: Computation time versus number of time-domain
collocation points for the two-block waiter task.

A. Computation Time vs Number of Collocation Points

The number of constraint checking points decides how many
constraints must be evaluated and therefore affects the speed of
optimization. We test the change of computation time in terms
of the number of collocation points for the example of moving
a stack of two blocks (Fig. [T} right). With 8 contacts points
for the stack of two blocks, the computation time is shown
in Fig. [3] for different number of collocation points. To keep
computation times below 10s per iteration, 200 collocation
points are used throughout the following experiments.

B. Binary Search COF with Hardware Execution

To study the effect of friction uncertainty, the Stdubli
TX90L industrial manipulator is used. A RobotiQ hand is
installed on the manipulator to hold a plate with blocks on
it. We wrap the contacting surfaces between blocks and plate
with sand paper (Fig. f). The COF is roughly estimated as
p = 1 by tilting the plate with the block on it and checking
the inclination at which the block starts to slide.

First, the optimized trajectory with 4 = 1 was too fast
during execution on the physical robot, causing the objects to

Fig. 4: The contact surfaces are wrapped with sand paper. One
block and a stack of two blocks are placed on the plate shown
on 2nd and 4th picture respectively.

Iter o Exc. Time(s) | Rslt | Speedup Rslt | pupp Klow

1 1 3.229 F 1 0

2 0.5 3.232 F 0.5 0

3 0.25 3.704 F 0.25 0

4 0.125 5.237 S S 0.25 0.125
5 0.1875 4.276 S F 0.25 | 0.1875

TABLE I: Binary search on COF according to Alg. |I|f0r the example
of moving a stack of two blocks. With € = 0.05, the COF converges
on an e-near optimal trajectory with o = 0.1875 as in the highlighted
row (i.e., speeding up the motion by 5% tips over the blocks).

slide in the one-block case and to wobble and fall over in the
two-block case. Next, we applied the binary search method
on COF to compensate for the un-modeled uncertainties
which caused execution failure. Table |l| lists the binary search
parameters for the two-block example. After five iterations it
yields an e-near optimal value for COF and Fig. [5] shows the
snapshots of the final motion execution.

We note that the converged parameter value ;1 = 0.1875 is
less than a fifth of the empirically determined value of © = 1.
This is because the COF parameter acts as a proxy for all
other un-modeled uncertainties, such as low-level controller
errors and estimation errors in center-of-mass, contact points,
etc. Curiously, the converged execution time of 4.276 is not
far from the optimistic time of 3.229. This is because the
optimization slows down the trajectory only where friction is
the limiting constraint.

C. Iterative Learning with Robust Optimization in Simulation

In the second experiment, we introduce random disturbances
during execution, and incorporate trajectory feedback into
optimization as described in Sec. [V-B] Because it is difficult
to inject random disturbances to a real robot in the lab, we
use a simulator for these examples. A rigid body simulator
based on Open Dynamics Engine using a PID controller with
feedforward gravity compensation torques [[14] is used to track
the planned trajectory (¢, q, q).

This example introduces both random disturbances and
errors on model parameters. The optimization’s initial COF
estimate is 1, while it is set to 0.5 in simulation. The
uncertainties in trajectory execution are simulated by introduc-
ing random forces on the robot. A random horizontal force
Faisturo = (x,9,0) with z and y subject to a Gaussian
distribution N (0,1) (in Newtons) is added to the tray at each
simulation step (see Fig. [6).

The results of each outer loop of Alg. [2] are listed in Table
M Here we run the algorithm with K = 1 (corresponding to



Fig. 5: Snapshots of executing the motion generated from Alg.
El for moving a two-block stack.

Fig. 6: In simulation tests, random horizontal forces with 2N
std. dev. are introduced on the tray at each simulation step.

a success rate of 68%). Success ratios are estimated via 100
Monte Carlo trials. After 6 iterations, we learned the COF
and a confidence interval of acceleration error that achieves a
success rate of 74%.

VII. CONCLUSION

We present a fast time-scaling optimization method for
generating time-optimal, dynamically feasible trajectory along
a given geometric path for a robot in contact. By carefully
formulating the problem as a non-linear optimization with
the contact constraints as a linear program, we reduced the
problem size and are able to solve the problem quickly (in
seconds).

We apply this method on the time-optimal object moving
task and we present two algorithms to handle the modeling and

Tter “w Exc. Time(s) | Ratio(%) Lupp Klow
1 1 1.88 0 1 0

2 0.5 2.20 0 0.5 0

3 0.25 3.09 100 0.5 0.25
4 0.375 2.52 98 0.5 0.375
5 0.4375 2.30 74 0.5 0.4375
6 0.46875 2.28 16 0.46875 | 0.4375

TABLE II: Outer iterations of Alg. 2| for the one-block waiter task
in simulation. With K = 1, § = 0.05, the algorithm converges in 6
iterations.

Fig. 7: Snapshots of successfully moving a block under
disturbances in simulation.

execution uncertainties incorporating execution feedback. Our
experiments demonstrate that this optimization method can be
used with uncertainty learning process to generate motions
that i) are near the optimum when there are modeling errors;
and ii) can be executed multiple times with a success rate that
depends on a user specified parameter.

There is substantial room for future work. First, we hope
to extend our method to explicitly learn more than one inde-
pendent hidden parameter, such as support shape, or inertial
parameters. Another source of information may be the time of
a detected failure; using this feedback may allow our method
to learn more quickly. Finally, we hope to extend our method
to optimize path shapes that are robust to error.

APPENDIX

Here we derive the formula for the derivative of the ob-
jective function of an inequality-constrained LP with respect
to changes in the constraint RHS. Consider the parameterized
LP:

min ¢’z such that Az — b(t) < 0

i 1)
By the first-order KKT conditions, the optimal solution satis-

fies:

c+ AT =0
A" —b<0
pr(Az* —b) =0
u<0

where p is the vector of KKT multipliers (unrelated to the
friction coefficient) and x* is the optimal solution. If the LP is
bounded, z* lies at a corner point of the feasible region, and is
defined by active constraints with A;x * —b; = 0 and p; < 0.
Denote A and b respectively as the matrix/vector containing
the rows of A and b corresponding to active constraints, and
let {1 be the set of active multipliers. Then:

(22)

c+ AT =0
S (23)

Az*—b=0
with A an invertible matrix. So 2*(t) = A~'b(t), and
4 (Tg*) = AN (t). Since o = —cTA™1, we obtain

4 (o) = —uTV (t) = —uTV(t) as desired.
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