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Abstract—We present a novel trajectory optimization frame-
work to address the issue of robustness, scalability and effi-
ciency in optimal control and reinforcement learning. Based
on prior work in Cooperative Stochastic Differential Game
(CSDG) theory, our method performs local trajectory optimiza-
tion using cooperative controllers. The resulting framework is
called Cooperative Game-Differential Dynamic Programming
(CG-DDP). Compared to related methods, CG-DDP exhibits
improved performance in terms of robustness and efficiency. The
proposed framework is also applied in a data-driven fashion
for belief space trajectory optimization under learned dynamics.
We present experiments showing that CG-DDP can be used
for optimal control and reinforcement learning under external
disturbances and internal model errors.

I. INTRODUCTION

Model-based trajectory optimization with backward-forward
sweeps is a classical and powerful framework in the field of
optimal control theory and its applications. It was originally
introduced in 1970 under the name “Differential Dynamic
Programming (DDP)” [1]]. Since then numerous extensions
and variations of DDP have been developed in control theory,
machine learning and robotics to improve its performance and
applicability [2| 13} 14 51 16 [7, I8, 9 [10]. The most attractive
characteristics of DDP are its computational efficiency and
scalability to high-dimensional dynamical systems. However,
since it is based on local approximation of the dynamics model
and value function, model errors could significantly degrade
its performance and therefore restrict its applicability.

An alternative approach to traditional model-based trajec-
tory optimization methods, such us DDP, is Reinforcement
Learning (RL) [11]. RL has become one of the major ap-
proaches for the development of learning control algorithms
with a plethora of applications in robotics and autonomous
systems. Compared to the classical trajectory optimization,
RL algorithms do not rely on accurate dynamics model,
instead they learn optimal policies using data sampled from
the physical systems in model-based [12| [13] or model-
free [14, [15, [16} |17, [18]] fashion. Notable limitations of RL
methods include the curse of dimensionality, the need for prior
policy parameterization, the requirement for extensive trials
performed on real physical systems, and the lack of robustness
to disturbances.
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Recently, significant efforts have been devoted to solve the
aforementioned issues for both RL and trajectory optimiza-
tion that incorporate explicit representations of uncertainty.
In particular, method such as probabilistic model-based RL
[13]] shows superior efficiency and requires significantly less
number of trials for task learning. In addition recent work on
trajectory optimization under unknown dynamics [19, |9] has
demonstrated impressive learning efficiency and applicability.
Most of the aforementioned approaches for RL and trajectory
optimization have limited robustness to stochastic disturbances
especially in the the cases where these disturbances are far
from being Gaussian and zero mean. Disturbances due to
system and environment uncertainty are arguably the primary
causes of model errors and can degrade the performance
of control and learning methodologies when applied to real
physical systems.

In control theory the issue of robustness has been addressed
in two ways, namely robust control and stochastic optimal
control. In modern robust control, polices are designed to
bound model uncertainty [20]. While the classical H* control
framework has been developed within controls theory, similar
ideas have been used in RL as well [21]. The robust control
law in [21] is obtained as the solution to a min-max opti-
mization problem. Similarly the minimax-DDP was developed
for robust trajectory optimization in [2]]. While the minimax-
DDP is theoretically appealing due to the explicitly bounded
disturbance tolerance, convergence to the desired saddle point
is challenging. The family of methods based on min-max
criteria also correspond to risk-sensitive optimal control.

In stochastic optimal control, the uncertainty is represented
by probability distributions which is usually zero mean and
Gaussian. There has been a number of stochastic control
methodologies that are based on the exponential transforma-
tion of the value function known under the names of Path
Integral (PI) control [22]] for continuous time, Kullback Leibler
(KL) control [23] for discrete time, or more generally linearly
solvable optimal control [24]. While these methodologies take
into account process noise in the dynamics, their applicability
is constrained by the assumption related to control authority
and strength of the noise as well as the assumption of Gaussian
noise.



In this work, we present an alternative approach to trajec-
tory optimization that is based on the Cooperative Stochastic
Differential Game (CSDG) theory. The main characteristics of
our approach are summarized as follows: 1) Inspired by the
work on differential game formulations and their connection
to linear stochastic control problems [25], in this work we
propose a CSDG theoretic approach for nonlinear stochastic
systems [26]. The resulting algorithm is called Cooperative
Game-Differential Dynamic Programming (CG-DDP). 2) CG-
DDP finds two optimal control policies under the effects of
stochastic disturbances. The two controllers are cooperative
and exhibit improved efficiency and robustness to disturbances
and stochasticity. 3) CG-DDP can be applied as a model-
based RL method such that it learns probabilistic models
from sampled data and iteratively optimizes a trajectory in
belief spaces. With partial information of a dynamics model,
CG-DDP exhibits a superior combination of efficiency and
robustness to model errors.

The rest of this paper is organized as follows: In section
II, we formulate the control problem as a CSDG for the
jump diffusion case. In section III we derive the proposed
trajectory optimization framework to solve the CSDG and
describe its relation to existing methods. In section IV we
introduce a probabilistic model-based RL algorithm based on
the proposed CG-DDP framework . In section V we present
experimental results and comparative analysis to demonstrate
the performance of our method. Finally section VI concludes
this paper.

II. STOCHASTIC COOPERATIVE DIFFERENTIAL GAME
PROBLEM FORMULATION

Consider the following jump diffusion process given by the
stochastic differential equation (SDE)

dx = f(t,x(t))dt + B(¢,x(t)) 7 (¢)dt + C(¢)dw + H(t)dp,

ey
where x € R"= is the state, 7 € R"« is the control, w € R"»
and p € R" are standard Wiener and Poisson processes. In
addition the dimensionality of the terms f, B, C, H in is
defined as f € R, B € R"*" C ¢ R"%=*" and H ¢
R™=*"»_Moreover let h? be the j* the column vector in H.
For the Poisson process E[dp’] = Mdt and M € RV1 < j <
np. We denote A = [)],,, <1 the rate with which jumps occur.
Consider a finite-horizon stochastic optimal control problem
for the cost functional

T
Hexim) = B[ a(x(T) + [ £(tx(0).w(t.x(0) ]

Terminal cost

Running cost
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where the goal is to find a control policy T = 7(¢,x(t)) that
minimizes the total cost accumulated over the time horizon 7T'.
Here we define two control variables u € R"™ and v € R"™
such that the original control input has been split into two
parts: 7 = u + v. Next we show that the original control
problem can be reformulated as a two-player CSDG with a
given time horizon 7" and players u,v. A simple illustration is

shown in Fig.(I). Functions 7%, 7V denote strategies (policies)
for u and v from ¢t to 7. The notation 7 = () implies
u(t),...,u(T) = 0and 7¥ = (0 is defined similarly. In addition
the notation 7% U 7V denotes a cooperative game theoretic
control strategy. Next we define the payoff function for each
individual player as

VHrtUnY) = JUE,x; 0) — TVt x; w wY), YVt Y,
where

T
JU(t ) = E[g(x(D)) + /t L9t x(8), 7, )]

and J"(¢,x;0) corresponds to the cost with both controls
taken to be zero. Payoff VY (m"*UnY) can be defined similarly.
The coalition or cooperative payoff function is defined as

V(rturY)=J(t,x;0)— Jt,x; 7t UnY),

where
T
J(t,x; 7t UnY) = ]E[q(x(T)) —|—/ L(t,x(t), 7", 7V)d¢t],
t

and J(t,x;0) is the uncontrolled cost. Therefore the coalition
7 U7Y has a real valued payoff assigned by the cooperative
payoff function for which V() = 0. Both u and v try
to maximize the assigned individual payoff function at t.
Based on the definition of a coalition game in [27]] the above
stated problem defines a coalition game with players u and
v. We follow [26] and denote this two player Cooperative
Game by CG(x,T — t) played at current state x for the
time interval [t,T], where both players u and v agree to
cooperate based on an optimality principle. The optimality
principle for a cooperative scheme includes: i) an agreement
on a set of cooperative strategies/controls, and ii) a mechanism
to distribute total payoff among players, iii) group rationality
requires the players to seek a set of optimal cooperative
strategies 7" and 7V that justify the participation of each in
the CG(x,T — t). This is mathematically expressed as

V(@ ur¥) > v0unY), V(i ub), vat,xv.

Considering the fact that .J(¢,x;0) does not depend on the
selected strategies, the solution to CG(x,T — ¢) is therefore
to solve

T
S P+ / ST £t x(t), 7, 7t
j={u,v} tj={uv}
3)

We choose in this case to distribute the individual payoff
functions s.t.

7" (%) + ¢¥(x) = q(x),

so that the solution is to solve

argmin E [

u v
T

L%(x) + LY (x) = L(x),

T
argmin ]E{q(x(T))—l—/ L(t,x(t), 7, 7V)dt|, (&)
t

u v
T

subject to (I). This problem is called the Cooperative
Stochastic Differential Game in Game Theory literature [28



26, and is denoted by CSDG(x,T —t) the solution to which
is stated in the following theorem.

Theorem 2.1: A set of controls [u*(t),v*(t)] provides an
optimal solution to the problem CSDG(x,T —t) if there exists
a continuously differentiable function V (t,x) : [t,T] x R? —
R which satisfies the PDE

Np

%) = S(CC Va(1,3)) = S (V(tx + W (1)~ )

j=1

v
ot

V(t,x))N (t) = min

u(t),v(t)

with the boundary condition V(T,x) = q(T, x).

Theorem [2.1]is an extension of [26] for the case of minimum
game for jump diffusion processes. The related proof is
included in the supplementary material of this work. This
theorem provides necessary conditions for the existence of
cooperative control strategies that are group rational. The
function satisfying the above PDE is the well-known value
function defined as

T
V(t,x) = min E[q(x(T))Jr/ L(t,x(t), u, v)dt|x(t) = x].
u,v t
Given the existence of such a value function one has to solve
this PDE in order to obtain the optimal control strategy at
a given (t,x). However, finding the solution for the PDE
in () is computationally intractable especially for systems
with many degree of freedom such as robotic systems. This
is the so-called the curse of dimensionality. One way to
bypass this is to rely on approximation methods that solve
this problem locally, in particular by approximating the value
function along nominal trajectories. DDP is known to be one of
the most efficient approaches to value function approximation
while it features second order convergence [29] and scales
to high dimensional robotic systems [7]. In this work we
propose a scheme to solve the CSDG locally by transforming
the problem to discrete time and working with second order
approximations of value/cost functions, and first order approx-
imation of stochastic dynamics. The resulting framework is
called Cooperative Game-Differential Dynamic Programming
(CG-DDP). For the rest of the analysis we use the discretized
representation of the system in (TJ)

Xt4dt = Xt+f(xt)dt+B(xt)(ut—i—vt)dt—i—C(t)dw—i—H(t)dp

(6)
To simplify notation we use subscripts of variables to denote
discrete time step. Next we show how to derive the optimal
policies for both u; and v; to solve (E])

III. THE COOPERATIVE GAME BASED TRAJECTORY
OPTIMIZATION FRAMEWORK

A. Backward-Sweep: Optimal Cost-to-Go

The proposed trajectory optimization method is rooted in the
Dynamic Programming principle. First we consider a variation

(ﬂ(t, x,u,v) + VxT(f(x) +B(x)(u+ v)))

{ Coalition of players :

’—> Player 1 H
Payoff : Controller
Player 2 ———T

Dynamical system
under disturbance

Fig. 1: Cooperative stochastic game theoretic controller. The
controller consists of a coalition of two players.

of the Bellman equation with both u; and v,

V(t,x¢) = min E

ut, vy

C(t, Xty Uty Vt) —+ V(t + dt, Xt+dt)

Q(xt,ue,ve)

)

The goal is to find feedback policies such that the two-player
pair (u;, v¢) minimize the total cost. First we build a local
model in the neighborhood of a nominal trajectory. For this
purpose we create a local model of the dynamics around
it, ﬁt, \715.

5xt+dt = Atéxt + Bt (5ut + (5Vt) + Ctdw + thp, (8)
——

P

cont
ox t+dt

t+dt

where dx; = x; — X4, 0u; = uy — uy and dv; = vy — vy are
defined as the deviations from the nominal trajectory, A; =
(I, xn, + fx(X;))dt, B, = B(t,%;)dt, C; = C(t)V/dt and
H,; = H(t)dt. To evaluate the expectation under minimization
in we use the Ito stochastic chain rule for jump diffusion
process [30, 31]] and we get with dt¢ precision

E {V(xt+dt + 5xt+dt)] g [V(det)
FV Rera) X+ S0XE2 Vi
+ i (V(itert +hp’) - V(it+dt)) dp] |xt}
j=1
=V (Zerar) + VoI (Repar) <At5xt + B, (du, + 5vt)>
+ ;<5X?A?VxxAt5xt + (0u; 4 6v,) "B} Vi B, (6uy + 6v;)

=+ (61115 =+ 5Vt)TB;FVxxAt(5Xt =+ 5X;FA;TVXXBt(5Uf + (5Vt))
1 it o . o
+ Qtr(vxxctc?) +y (VXT hi\] + (hi)TvxxhiAi)dt
j=1

9



where the nonlinear jump term of the value function has been
approximated till its second order Taylor series expansion.
The detailed derivation of the terms appearing due to the
continuous part of the deviation in the nominal trajectory can
be found in [32]].

Next we build a local quadratic model of the value function
by expanding the Q-function up to the second order

Q(X¢ + 0%x¢, Uy + 0uy, Vi + 0vy) = Qo + Qx0%x¢ + Quouy
T

1 0Xy¢ Qxx @Qxu @xv 0Xy¢
+ Qvévt + 5 5ut qu Quu qu 6ut
§Vt va Qvu vi 5vt

(10)

where all the ()-related terms are given as
1 T
Qo = Vitar + §tr(vxxctct )

+ 3 (VA + )TV ),
j=1

Qx = VEAt + Exv Qu = VxTBt + Eua Qv = V:;TBt + Ev;
Qxx = AtTVxxAt + ﬁxx, qu = ATVxth + £xuv
va = AtTVxth + ‘vaa Quu = BtTVxth + £uuu
vi = B;vath + EVV7 qu = BtTVxth + £11V7
where V; = V(¢,%X;). In order to find the optimal policies
for du; and dv; such that the second-order expansion of the

Q-function is minimized, we take the gradients of (I0) with
respect to du; and vy

Qsu (xt + 0%, up + dug, vy + 5vt) =0
= 00 = —Qul (QuxdXt + QuvdVi + Qu),
ng(xt + 0x¢,uy + 0uy, vy + 5vt) =0
= 0v) = —Quy (vaéxt + Qvuduy + Qv)-

Solving the system of equations in (11 results in the expres-
sions

5“: = - (Quu - quQJ&QVU) - (Qu - QuVQ;&Qv>

Y

Iy
(Quu — Qe @it Q) (Qux — Qv @k Qu)
Ly
5V: - - (vi - Qqu:ullqu) - (Qv - QVUQ;&QU)
I,
- (vi - QquJ&qu) - (va - QVUQI:LIIQUX) 5Xt~
Ly

(12)

where the terms I,, L, and I, L, are the feedforward and
feedback terms of the optimal control updates du; and ovy.
By plugging the optimal control updates du; and dv; into the

value function, we can split the value function into zero, first
and second order terms in dx;

1
V(% + 0x¢) = Vi + V0 0%y + §5X?Vxx5xt’ (13)

where Vi, Vi and Vi« are computed as
Vi =Qo + 15Qu + 1 Qv
1
+ 5 (IEQUUIU + lEvilv + 1ECguulv + IEQvulu)a

Vx :Qx + LEQU + LEQV + qulu + valv
+ LEQuulu + L;I;vilv + LEqulv + L;I;Qvuluy
Vxx :Qxx + LExqu + Lsz + qulu + valv

+ Lg Quulu + LEQuyLy 4+ L QuvLy + Ly QuuLay.
(14)

Since the optimal cost-to-go is computed backward in time,
this computational scheme is called the backward-sweep in
trajectory optimization. Next we introduce the forward-sweep
scheme of CG-DDP.

B. Update control laws and forward sweep

In eq.(I2) we have found the optimal feedback laws for cor-
rection terms du; and dv;. We compute the optimal controllers
for the next iteration as

u; =uy +ou; = u; + I, + Lydxy,

; ; (15)
vi =vi+ vy =vi+ I, + Lyox,.

Obviously these are linear, time-varying policies but without
any a-priori policy parameterization. The results in eq.(I5))
are locally optimal controls for the original nonlinear system
in the vicinity of the nominal trajectory X. To obtain an
optimal trajectory we iteratively update the nominal trajectory
by applying the optimized policies. At each iteration the
optimized trajectory becomes the new nominal for the next
iteration. Similar to standard DDP, the proposed optimization
approach is a second-order method that relies on the Hessian
matrices that appear in eq.(I2) and are expressed as

Hu = Quu - quQ\j‘}Qvuv
Hv = vi - Qqul_ullqu-

The cost-to-go decreases in the direction of du; and dv; for
positive definite H,, and H,.

One of the attractive characteristics of the proposed frame-
work is the robustness against disturbances. Besides the CSDG
theory, this characteristic can be also interpreted from the
structure H,, and H, in . In particular, we consider the
case where QQuy and @y are positive (semi)definite along
the nominal trajectory @ and v. In the classical DDP, the term
H, = Quu- In our case, given the positive definiteness of
Quu, Qvv, Qua, QuL, it is easy to show that H,, will have
relatively small eigenvalues and therefore large H! leads to
high feedback gain. The same reasoning applies to the case
of H,. In order to improve numerical stability we would like
to ensure positive definiteness of both H,, and H,. In this
work we employ the Levenberg-Marquardt trick (also used in

(16)



[3). When H,, has negative eigenvalues, we first compute the
eigenvalue decomposition, i.e., [V, D] =eig(H,,) and replace
all negative elements of D with 0. Then a small positive
value A is added to D. The modified matrix is obtained as
H, = VDV, Its inverse is computed as H;' = VD~ 'VT,
Matrix H,, can be modified similarly.

In the proposed framework we implement line search by
adding a parameter ¢ > 0 such that du; = €I, + L,dx;
and dv; = ely + Ly 0x;. Initially ¢ = 1, when the trajectory
generated by the learned policy has a higher cost than the
current one, the policy would be rejected and decrease e.
Whenever the policy is accepted we reset € = 1. This trick
has also been used in [3} 6] to encourage convergence.

The optimization is performed iteratively only in internal
simulation. When interacting with a real physical system we
have to control a strongly stochastic dynamics (6)). The control
policy implemented in the physical system (€] is a combination
of the optimized policies

77 =7(x) =05 4+ Lu(x; — X;) + v; + Ly (x; — %) .

* *
u; v

a7
Where X}, uy, vy are the optimized trajectory and controllers
obtained from simulation (the final nominal trajectory). x; is
the actual state. We do not apply the open-loop policy I, and
I, whose magnitudes usually vanish (or become very small)
during the final stage of optimization.

C. Summary of Algorithm

The proposed optimization scheme (Algorithm |I) can be
summarized as follows: 1) Initially, apply random controls
to the dynamical system to obtain the nominal trajectory
X, 1, v. In particular v is initialized with an estimate of the
worst case disturbances w. 2) Linearize the belief dynam-
ics around X, u, Vv (Sec[[V-B). 3) Backward-sweep to obtain
the policy parameters I, I, Ly, Ly. We use the Levenberg-
Marquardt method to ensure positive definiteness of H,, and
H, (Sec[llI-A). 4) Forward-sweep to obtain the a new trajec-
tory u,v,Xx which are set to be the new nominal trajectory.
An estimate of stochastic disturbances w may be added to v
(or u) during optimization. We use line search to encourage
convergence (Sec[llI-B). 5) The iterative process is applied
until convergence. And the control policy (eq[I7) is applied to
the system to generate the optimized trajectory.

Algorithm 1 CG-DDP

1: Initialization: Choose 1, v, X randomly.

2: repeat

3 Linearize the dynamics model around X, 0,V .

4 Backward-sweep: compute I, I, Ly, Ly (II-A).
5: Forward-sweep: compute u*,v*,x* ([1I-B).

6 Update nominal trajectory: (u, v,Xx) =(u*, v*,x*)
7: until Convergence.
8: return u,v,x, I,,I,, Ly, L.

D. Relations to Existing Methods

The proposed framework is related to various existing meth-
ods. In particular, we compare the proposed method with DDP
[1] and minimax DDP [2] in this section. The proposed CG-
DDP is derived similarly as the original DDP [1]. However,
CG-DDP is based on a different problem formulation (7)
which leads to two cooperative control policies. Notice that
when the eigenvalues of Q). are sufficiently large, the CG-
DDP policy is equivalent to the standard DDP policy. For a
simple example, in the scalar case we have

Qvv >0 = H, -5 00=1,,L, - 0= dv; — 0,
vi — 00 = H, — Quu == I, — Ql_ullQua L, — Q;&qu
= 5“: — Q;&Qu + Q;&quéxt .

DDP policy

Intuitively when v is sufficiently expensive, we retrieve the
DDP solution. Therefore CG-DDP can be viewed as a general-
ization of DDP. Furthermore, according to the group rationality
of CSDG policies, CG-DDP yields no worse solution under
stochastic disturbances compared to DDP.

One might notice that our approach is related to the minimax
DDP [2]]. The minimax DDP is derived from a non-cooperative
game formula

T
min max [q(xT) —|—/ E(t,xt,uhvt)dt] (18)
ug Vi t
While the scheme is different from our case, the resulting pol-
icy formulations share some similarities. In particular eq.(T)
appears in the minimax-DDP as well. The minimax DDP is
based on H* control theory such that the optimal control
gain would minimize the effects of the worst disturbance
to the system. There are several key differences between
CG-DDP and minimax DDP. In particular, in minimax-DDP
the non-cooperative policy v is not applied to the physical
systems since it is treated as disturbances. In CG-DDP the
policies for both player u, v are applied. Furthermore, in CG-
DDP the backward Riccati equations are different from the
minimax-DDP case. In particular the coupling terms between
u and v (e.g.,Quv) and noise-related terms appear in CG-
DDP (14). Compared to minimax-DDP, the major benefits
of CG-DDP can be summarized as follows: i) in minimax-
DDP the existence of solution depends on tuning of the cost
function. For instance for a cost defined as L£(x;,us,vy) =
(x: —xHTQ(x; —x¢) + uf Ryu; — v Ry vy, the existence of
the minimax solution depends on the choice of R,. A related
discussion and analysis on the tuning of R for linear systems
can be found in [33]. In CG-DDP, the existence of solution
does not depend on the tuning of the cost functions. ii) In
minimax-DDP the optimal solution is a saddle point while in
CG-DDP the optimal solution is an extremum. Numerically
it is challenging to find the saddle point since monotonicity
during convergence cannot be assured in the Min-Max case
where H,, and H,, are positive definite and negative definite,
respectively. Furthermore, it has been shown [21]] that the Min-
Max criterion results in longer learning time for RL tasks. We



will compare CG-DDP and minimax-DDP numerically in Sec.

v

IV. BELIEF SPACE CG-DDP UNDER LEARNED DYNAMICS

We have introduced the general framework of CG-DDP. In
this section we introduce a RL algorithm based on probabilistic
models learning.

A. Bayesian Nonparametric Model Learning

The goal of this section is to learn the unknown passive
dynamics f as a probabilistic model. We assume the control
matrix B is given or learned a-priori. Estimating B using
simple least squares method is well-understood and has been
applied in various robotic control tasks [34]. The function
f can be viewed as an inference with the goal of inferring
the uncontrolled transition dx; = dx; — Bsu,dt given x;.
Given a sequence of sampled states {xo,...xr}, and the
corresponding state transition {dXg,...,d%Xr}, we adopt the
Gaussian process (GP) approach [35] [13] for model learning.
Although the stochastic system is non-zero mean, here we
still use standard prior of zero-mean in order to demonstrate
the robustness of the proposed framework. The covariance is
defined via a kernel function

1
K(x;,x;) = 03 exp(—i(xi - Xj)TW(Xi - x;)) + 07217

with o4,0,, W the hyper-parameters. As the standard GP,
we assume independent outputs (no correlation between each
output dimension). To propagate the GP-based dynamics over
a trajectory of time horizon 7" we employ the moment match-
ing approach [36} [13] to compute the predictive distribution.
Given an input distribution over the state N (u;,3;), the
predictive distribution over the passive dynamics is computed
as N (s, 1), therefore the predictive distribution over the
state at ¢ + dt can be approximated as a Gaussian p(X¢ydt) ~
N (4 q¢> Begae) such that

Hitar = By + ppy + Brugdt,

19
2t+dt = Et + Eft + (C(O)V[Xt, dit] + C@V[dit, Xt]. ( )

The above formulation is used to approximate one-step tran-
sition probabilities over the trajectory. Details regarding the
moment matching method can be found in [36, [13]. We
compute all mean and covariance terms analytically. The
hyper-parameters o5, W are learned by maximizing the log-
likelihood of the training outputs given the inputs [35]].

B. Trajectory Optimization in Belief Spaces

Given the learned probabilistic dynamics model, we intro-
duce the Gaussian parameterization of state x;, called belief
b, = (py, vec(v/E;)). The redundancy in vec(y/3;) can be
eliminated by only using the upper triangular entries of v/33;.
We define the belief dynamics as

birar = F(by) + B(ut +vy), (20)

where F is the learned model and B = [ B } Notice
that the model uncertainty is incorporated in the belief state.
The goal here is to find a local approximation of the belief

dynamics (20) around the neighborhood of a nominal tra-
jectory (by, 1, v;). In RL literature this nominal trajectory
is often provided initially as an expert demonstration [4]]. In
this paper we do not require any a priori information of the
optimal trajectory, therefore the initial (by, @iy, V) is obtained
by applying random controls to the physical system. To build
a local approximation of the belief dynamics we define the
belief variation éb; = b; — by, the control variations have
been defined in Sec[[lI-A] Therefore the belief dynamics
can be linearized around (by, iz, ;) such that

6bt+dt = A(Sbt + B((Sllt + 5Vt). (21)
5 L [
F al‘l’t o Zt

where A = 95 = NG SN S (22)
5% o Et

We compute the partial derivatives

O, 14y Oy yg: Oy D par 0 a
R NS >STREC] L R W5 )

belief dynamics can be integrated into the proposed CG-
DDP framework. The algorithm is briefly summarized as
follow: Initially, a GP dynamics model is learned using N
sampled stochastic trajectories by applying random controls
(Sec[IV-A). Choose one of them as the nominal trajectory
b,u,v. Next, CG-DDP is applied to the learned belief
dynamics (as in Algorithm [I) until convergence. The
optimized control policy (eq[I7) is applied to the physical
system to generate the new nominal trajectory for the next
optimization loop. Sample another N-1 trajectories using
small variations of the controller. Finally after M trials, the
task is learned and we obtain the finally optimized control
policy and state trajectory.

analytically. The linearized

V. EXPERIMENTS AND ANALYSIS

In this section we provide simulation results and analysis
based on two dynamical systems: the cart and double inverted
pendulum system and the PUMA-560 robot manipulator. All
experiments were performed in MATLAB.

A. Task Descriptions

1) Cart and double inverted pendulum (CDIP): Swinging
up the CDIP is challenging because the system is highly
nonlinear and under-actuated with 6 state dimensions, 3
degrees of freedom and 1 control input on the cart. The
task is to swing-up the two-link pendulum from the initial
position (both point down). We set up the experiment using the
following parameters: number of sampled trajectories at each
trial N = 4; terminal time 7" = 1 and time step d¢t = 0.02.
An example of the task is shown in Fig[2al The disturbance
(Fig[2d) is applied to the cart.

2) PUMA-560 robot manipulator: PUMA-560 is a 3D
robotic arm that has 12 state dimensions, 6 degrees of freedom
with 6 actuators on each joint. The task is to steer the end-
effector to the desired position and orientation. We use N = 2;
T = 1.0 and dt = 0.02. An example of the task is shown in
Fig[2b] The disturbance (Fig[2c) is applied to each joint of the
arm.



B. Methods for comparison

To demonstrate the performance of CG-DDP with both
known and learned dynamics. We compare it with DDP [1]],
minimax-DDP [2] as well as PDDP [19] in a RL setting.

1) DDP: As one of the most efficient trajectory optimiza-
tion framework, DDP is still widely applied in control of
autonomous systems (e.g.,[4]). As we have shown in Sec[[II-D}
DDP can be viewed as a special case of the proposed CG-DDP.

2) Minimax-DDP: The minimax-DDP [2] is a robust tra-
jectory optimization method. Rooted in the linear H°° control
theory, the minimax-DDP framework has a non-cooperative
game interpretation eq.(I8). Compared to DDP, the minimax-
DDP is a more conservative approach such that the disturbance
is treated as a non-cooperative player. We have described
the major similarities and differences between CG-DDP and
minimax-DDP in Sec[II-D|

3) PDDP: PDDP performs DDP in Gaussian belief spaces
based on GP dynamics models learned similarly as in [13]. It
has shown superior data and computational efficiency compa-
rable to the state of the art model-based RL approach [13].

C. Results and Analysis

We perform 2 experiments for each task under non-Gaussian
disturbances. See Fig[2¢| for examples. Experiment #1 and
#?2 corresponds to the case of known and learned dynamics,
respectively.

1) Experiment #1: In this experiment we compare CG-DDP
with the standard DDP and minimax-DDP in terms of control
performance under stochastic disturbance and computational
efficiency. We assume the dynamics models f and B are given.
For both tasks we sample 100 stochastic trajectories by apply-
ing the optimized control policies. Results of trajectory costs
are shown in Fig[3] Both CG-DDP and minimax-DDP show
superior performance in terms of robustness such that they
successfully steer all trajectories to the targets. While in the
standard DDP case, a few trajectories diverge from the target
due to the stochastic disturbances especially for the under-
actuated CDIP task. The major reasons for the performance
differences between CG-DDP and DDP can be summarized
as follow: on one hand, theoretically the group rationality of
cooperative players guarantees that the two-controller coalition
works better (or at least equal) than one. On the other
hand, CG-DDP policies have higher feedback control gains
such that the effects of disturbances are weakened. In Figl]
we show the comparison in terms of number of iterations
required for convergence and average computational time per
iteration. CG-DDP shows faster convergence in both tasks.
In particular, for the highly underactuated CDIP task, CG-
DDP outperforms the minimax-DDP significantly. The slightly
improved performance of CG-DDP in terms of convergence
is due to larger step sizes at each iteration compared to DDP.
Theses step sizes correspond to the inverse of Hessian matrices
in eq.(I6). The minimax-DDP shows slower convergence than
the other two methods due to the lack of monotonicity during
convergence.

2) Experiment #2: In this experiment we compare CG-
DDP with PDDP in terms of robustness to model error. We
assume partial knowledge of the dynamics. More precisely the
control matrix B is given. The purpose of this experiment is
to show sensitivities of control policies to disturbance as well
as model uncertainty. At each trial we sample 100 stochastic
trajectories by applying the learned control policies (initialized
with random controls). The success rate is defined as the
number of trajectories that satisfy ¢(x7) < 0.25 x ¢(x¢). At
each trial we use 5 trajectories for model learning. Both CG-
DDP and PDDP keep a fixed size of training data. Results
and comparison in terms of success rate are shown in Fig[3]
For both tasks CG-DDP shows higher success rates therefore
less sensitive to model error. Similar to experiment#1, the
outperformance can be interpreted from the group rationality
of the data-driven CG-DDP control policies. This feature
is carried over from trajectory optimization under known
dynamics to belief space planning under learned dynamics.

(a) (b)
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Fig. 2: An example of postures for (a) CDIP and (b) PUMA-
560 tasks. (c) Examples of disturbances used in our experi-
ments.
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VI. CONCLUSION AND DISCUSSION

While the majority of previous literature on robust control
and trajectory optimization utilizes the Min-Max formula-
tion, our work introduces a novel robust trajectory optimiza-
tion framework based on Cooperative Stochastic Differen-
tial Games (CSDG) for nonlinear systems with Poisson and
Gaussian disturbances. By proofing the property of group
rationality our analysis justifies the use of two controllers for
the corresponding CSDG. To address the issue of the curse
of dimensionality in continuous spaces we derive a novel
trajectory optimization algorithm based on Differential Dy-
namic Programming (DDP). To our knowledge, the proposed
algorithm Cooperative Game-DDP (CG-DDP) is the first to
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Fig. 3: Experiment #1: State costs of 100 sampled stochastic
trajectories by applying the optimized CG-DDP, minimax-
DDP and DDP control policies. Solid lines and errorbars show
means and standard deviations of sampled trajectoreis. Upper
figure: CDIP. Lower figure: PUMA-560.
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Fig. 4: Experiment #1: For both tasks, comparison of compu-
tational efficiency in terms of the number of iteration required
to converge (upper figure) and the average computational time
(in second) per iteration (lower figure).

numerically solve CSDG for nonlinear systems. CG-DDP
combines various attractive characteristics: namely optimality
from dynamic programming principle, robustness based on
CSDG theory and scalability from local trajectory optimiza-
tion. Simulation results and comparative analysis demonstrate
its performance under external disturbances as well as internal
model uncertainties.

Under probabilistic representations of the dynamics, CG-
DDP offers robust performance against disturbances under the
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Fig. 5: Experiment #1: comparisons of success rate for the
CDIP task (upper figure) and the PUMA-560 task (lower
figure).

assumption that the control matrix B is given. In many robotic
systems the control matrix B corresponds to the inverse of the
inertia matrix, which can be identified based on data. A simple
least square method with basis functions can be adopted to
learn the control matrix for robotic control tasks [34]]. While
the approach in uses more data to learn the model offline,
it can provide a globally accurate estimate of the control
transition matrix. When CG-DDP is applied to dynamics with
unknown drift, the estimation error of the control transition
matrix is essential for the overall performance. This is because
CG-DDP provides relatively high gain controls which amplify
the estimation error of the control transition matrix.

Future work will focus on extending CG-DDP to the case
of systems with entirely unknown dynamics and systems with
control limits. Furthermore, applications to real robotic sys-
tems will be considered and extensions to partially observable
cases will be investigated. This work can be a precursor to sev-
eral interesting theoretical problems and applicable algorithms
in robotics.

REFERENCES

[1] D.H. Jacobson and D.Q Mayne. Differential dynamic
programming. Elsevier Sci. Publ., 1970.

[2] J. Morimoto and CG Atkeson. Minimax differential
dynamic programming: An application to robust biped
walking. In Advances in Neural Information Processing
Systems (NIPS), pages 1539-1546, 2002.

[3] E. Todorov and W. Li. A generalized iterative 1qg method
for locally-optimal feedback control of constrained non-
linear stochastic systems. In American Control Confer-
ence, 2005, pages 300-306. IEEE, 2005.

[4] P. Abbeel, A. Coates, M. Quigley, and A. Y Ng. An
application of reinforcement learning to aerobatic heli-



(5]
(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

copter flight. Advances in Neural Information Processing
Systems (NIPS), 19:1, 2007.

Y. Tassa, T. Erez, and W. D. Smart. Receding horizon
differential dynamic programming. In NIPS, 2007.

J. Van Den Berg, S. Patil, and R. Alterovitz. Motion plan-
ning under uncertainty using iterative local optimization
in belief space. The International Journal of Robotics
Research, 31(11):1263-1278, 2012.

Y. Tassa, N. Mansard, and E. Todorov. Control-limited
differential dynamic programming. In 20/4 IEEE In-
ternational Conference on Robotics and Automation
(ICRA),, pages 1168-1175. IEEE, 2014.

S. Levine and V. Koltun. Learning complex neural net-
work policies with trajectory optimization. In Proceed-
ings of the 3lst International Conference on Machine
Learning (ICML-14), pages 829-837, 2014.

S. Levine and P. Abbeel. Learning neural network poli-
cies with guided policy search under unknown dynamics.
In Advances in Neural Information Processing Systems
(NIPS), pages 1071-1079, 2014.

I. Mordatch and E. Todorov. Combining the benefits of
function approximation and trajectory optimization. In
Robotics: Science and Systems (RSS), 2014.

R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. Adaptive computation and machine
learning. MIT Press, Cambridge, 1998.

M.P. Deisenroth, G. Neumann, and J. Peters. A survey
on policy search for robotics. Foundations and Trends in
Robotics, 2(1-2):1-142, 2013.

M Deisenroth, D. Fox, and C Rasmussen. Gaussian pro-
cesses for data-efficient learning in robotics and control.
IEEE Transsactions on Pattern Analysis and Machine
Intelligence (PAMI), 27:75-90, 2014.

E. Theodorou, J. Buchli, and S. Schaal. A generalized
path integral control approach to reinforcement learning.
The Journal of Machine Learning Research, 11:3137—
3181, 2010.

J. Peters, K. Muelling, and Y. Altun. Relative entropy
policy search. In Proceedings of the Twenty-Fourth
National Conference on Artificial Intelligence (AAAI),
Physically Grounded Al Track, 2010.

J. Peters and S. Schaal. Reinforcement learning of motor
skills with policy gradients. Neural networks, 21(4):682—
697, 2008.

J. Kober and J. Peters. Policy search for motor primitives.
In D. Schuurmans, J. Benigio, and D. Koller, editors,
Advances in Neural Information Processing Systems 21
(NIPS 2008). Cambridge, MA: MIT Press, 2008.

S. Kuindersma, R. Grupen, and A. Barto. Variational
Bayesian optimization for runtime risk-sensitive control.
In Robotics: Science and Systems VIII (RSS), Sydney,
Australia, July 2012.

Y. Pan and E. Theodorou. Probabilistic differential dy-
namic programming. In Advances in Neural Information
Processing Systems (NIPS), pages 1907-1915, 2014.

K. Zhou, J. C. Doyle, K. Glover, et al. Robust and

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

(36]

optimal control, volume 40. Prentice Hall New Jersey,
1996.

J. Morimoto and K. Doya. Robust reinforcement learn-
ing. Neural computation, 17(2):335-359, 2005.

H. J. Kappen. Path integrals and symmetry breaking for
optimal control theory. Journal of Statistical Mechanics:
Theory and Experiment, 11:P11011, 2005.

E. Todorov. Eigenfunction approximation methods for
linearly-solvable optimal control problems. In IEEE
Symposium on Adaptive Dynamic Programming and Re-
inforcement Learning, 2009 (ADPRL’09), pages 161-—
168. IEEE, 2009.

E. Todorov. Efficient computation of optimal ac-
tions. Proceedings of the national academy of sciences,
106(28):11478-11483, 2009.

D.H Jacobson. Optimal stochastic linear systems with
exponential performance criteria and their relation to
deterministic differential games. IEEE Transactions on
Automatic Control, 18(2):124-131, 1973.

D.W. Yeung and L.A. Petrosjan. Cooperative stochastic
differential games. Springer Science & Business Media,
2006.

K. Leyton-Brown and Y. Shoham. Essentials of game
theory: A concise multidisciplinary introduction. Syn-
thesis lectures on artificial intelligence and machine
learning, 2(1):1-88, 2008.

L.A. Petrosyan and N.N. Danilov.
ferential games and their applications.
University, Tomsk, 1982.

L.Z Liao and C.A Shoemaker. Convergence in uncon-
strained discrete-time differential dynamic programming.
Automatic Control, IEEE Transactions on, 36(6):692—
706, 1991.

E.A. Theodorou and E. Todorov. Stochastic optimal
control for nonlinear markov jump diffusion processes. In
American Control Conference (ACC), 2012, pages 1633—
1639. 1IEEE, 2012.

FE.B. Hanson. Applied stochastic processes and control
for Jump-diffusions: modeling, analysis, and computa-
tion, volume 13. Siam, 2007.

E. Theodorou, Y. Tassa, and E. Todorov. Stochastic
differential dynamic programming. In American Control
Conference (ACC), 2010, pages 1125-1132. IEEE, 2010.
T.L. Vincent. Nonlinear and optimal control systems.
John Wiley & Sons, 1997.

K. Kinjo, E. Uchibe, and K. Doya. Evaluation of linearly
solvable markov decision process with dynamic model
learning in a mobile robot navigation task. Frontiers in
neurorobotics, 7, 2013.

C.K.I Williams and C.E. Rasmussen. Gaussian processes
for machine learning. MIT Press, 2006.

J. Quinonero Candela, A. Girard, J. Larsen, and C. E.
Rasmussen.  Propagation of uncertainty in bayesian
kernel models-application to multiple-step ahead fore-
casting. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2003.

Cooperative dif-
Izd. Tomskogo



	Introduction
	Stochastic Cooperative Differential Game Problem Formulation
	The Cooperative Game based Trajectory Optimization Framework
	Backward-Sweep: Optimal Cost-to-Go
	Update control laws and forward sweep
	Summary of Algorithm
	Relations to Existing Methods

	Belief Space CG-DDP under Learned Dynamics
	Bayesian Nonparametric Model Learning
	Trajectory Optimization in Belief Spaces

	Experiments and Analysis
	Task Descriptions
	Cart and double inverted pendulum (CDIP)
	PUMA-560 robot manipulator

	Methods for comparison
	DDP
	Minimax-DDP
	PDDP

	Results and Analysis
	Experiment #1
	Experiment #2


	Conclusion and Discussion

