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Abstract—The application of autonomous robots to efficiently
locate small wildlife species has the potential to provide significant
ecological insights not previously possible using traditional land-
based survey techniques, and a basis for improved conser-
vation policy and management. We present an approach for
autonomously localizing radio-tagged wildlife using a small aerial
robot. We present a novel two-point phased array antenna
system that yields unambiguous bearing measurements and an
associated uncertainty measure. Our estimation and information-
based planning algorithms incorporate this bearing uncertainty
to choose observation points that improve confidence in the
location estimate. These algorithms run online in real time and
we report experimental results that show successful autonomous
localization of stationary radio tags and live radio-tagged birds.

I. INTRODUCTION

Environmental monitoring robots can provide valuable in-
formation to scientists who study natural phenomena. We are
interested in autonomous aerial robots that assist ecologists in
studying animal behavior. One important application involves
localizing animals in the wild which have been caught, in-
strumented with a radio tag, and released, and periodically re-
localizing the animal over weeks or months for monitoring or
recapture. Current research has made great advances in general
radio source localization, but the goal of reliably localizing
wildlife autonomously and online with a flying robot remains
elusive. Our aim in this paper is to take a significant step
towards this goal by demonstrating autonomous localization
of wild birds with an aerial robotic system.

Studying behavior such as the migratory patterns of various
animal species has been of interest for over 250 years [3l.
Radio tag localization is used in this context instead of visual
imagery due to visual occlusion by foliage. Advances in
small-scale radio frequency (RF) emitters over the past five
decades now permits their use with small animals, such as
birds that weigh as little as 75g. However, the traditional
localization process is largely manual and inhibits large-scale
data collection [14]. Typically a human must circle potential
target areas, often traveling multiple kilometers, and manually
adjust receiver gain. The terrain may be difficult to traverse
on foot. There is great opportunity for autonomous flying
systems to improve data collection efficiency and thus help to
resolve longstanding scientific questions that inform wildlife
management policies. It is feasible to consider the problem
as one of localizing a static source because migratory animals
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Fig. 1. UAV system in flight. Inset: radio-tagged Manorina Melanocephala.

often remain in an area for weeks, and often remain stationary
(within a few meters) over a short time scale (minutes). This
assumption is also made in the case of invasive fish [12]].

Small aerial robots such as multirotor platforms are suitable
for this task because they are easy to deploy and can fly over
terrain that is difficult to access on foot, potentially reducing
localization time from hours in the manual case to tens of
minutes. Further, small aerial robots can operate from suffi-
cient distance to not disturb wildlife. However, it is difficult
to design and model a high-performance antenna system that
is light enough to be carried. Popular loop aerials [12| 28] are
known to be inefficient, especially for low frequency signals.
Standard horizontally-mounted directional antennas [16} [22]
are affected by unmanned aerial vehicle (UAV) rotors which
cause unpredictable irradiance.

We propose an alternative approach based on a two-point
phased array: two monopole antennas are mounted to a carrier
rail, shown carried by a multirotor platform in Fig.|1| The robot
performs a full rotation to produce an unambiguous bearing
measurement with a measure of observation uncertainty. Al-
though the time duration of a single observation is roughly
45s, we found that reasonable localization does not require a
large number of observations. We do not consider the detection
problem in this work, but instead focus on localization where
a signal is present initially. Our contribution is a novel sensor
design and algorithms for autonomously locating low-power



radio tags that have been validated with live birds in the field.

The target location estimate is represented by a grid-
based filter, recursively updated following each observation.
The measurement bearing (and uncertainty) is obtained by
determining the phase shift between an observed gain pattern
and the expected Fourier series radiation pattern model through
a sliding-correlation technique. We assume that the observation
bearing error is normally distributed about a bearing measure-
ment, given some variable uncertainty, and consequently fuse
the likelihood of each observation into the target belief. Greedy
information-based planning is then used to plan the next
observation point online. Estimation in the plane is sufficient
in our case because the resulting estimate will generally be
used to either confirm the presence of an animal in an area, or
to visually locate and catch the animal for sample collection.

We present results from 22 flights and 131 observations,
spanning nearly three hours of accumulated flight time. Of
these, we performed eight manual flights for system identifi-
cation and six autonomous flights localizing stationary tags in
three different areas. These results validate the performance
of the estimation process. Further, we performed three flight
trials using live birds where the robot localizes the target
while a human tracks its position visually. This evaluation
demonstrates the feasibility of localizing birds in the field with
low-power RF tags and a small multirotor with limited flight
time. Our results reveal the limitations of our approach at the
boundary of the stationarity assumption. Finally, we discuss
lessons learned and extensions of our approach in practice.
We expect our work to lead to further field experiments with
other species and comparisons with manual methods.

II. RELATED WORK

The general problem of localizing radio-tagged wildlife has
recently become a topic of interest in the robotics community.
Significant progress has been made in solving the offline
estimation problem of localizing an RF emitter. Wagle and
Frew [29]] propose a Gaussian process-based method and show
experimental results from data collected by a fixed-wing UAV.
Korner et al. [16] report on offline estimation experiments
using a directional antenna and a deterministic range-bearing
sensor model. Soriano et al. [26] propose a UAV system for
tracking eagles that uses particle filter estimation evaluated
using a ground-based testbed. This group has also studied
the related problem of localizing a group of static receivers
by observing a moving emitter, mounted on an autonomous
helicopter [5]. Jensen et al. [13] propose a system for tracking
radio-tagged fish evaluated in simulation.

Our focus in this work is online estimation where the robot
moves autonomously and the full system is demonstrated
experimentally. The problem of designing an online estimator
for radio localization and tracking is well studied [19} [18] 20],
with emphasis on ground-based systems and an assumed sen-
sor model. Extensive research in online estimation is coupled
with optimal sensor placement and planning in [7] and [10].
This paper specifically addresses challenges in employing such
a system on a multirotor platform.

Fig. 2. Two-point phased array. Two monopole antennas are separated by
a spacing L. This spacing causes a phase offset 7 between the fore and aft
antenna as a function of azimuth angle of arrival (AoA) . The two signals
are summed with a combiner circuit that has an additional (constant) phase
offset ¢; this then generates a gain pattern G(¢)) « 1 + cos (7).

Pioneering achievements have been made in autonomous
wildlife tracking in recent years. Hook et al. [12] analytically
solve the problem of optimally choosing ambiguous bear-
ing measurement locations for localizing a stationary target.
Tokekar et al. [28]] present a fully autonomous system for
detecting and localizing carp; the authors use bearing-only
measurements but differ significantly from our approach in im-
plementation by using intersecting conical observations and a
polygon belief. Moreover, the authors employ both a different
sensor model (loop antenna) and experimental platform (raft).
To the best of our knowledge, ours is the first demonstration
of autonomous online localization of a live bird with a UAV.

Information-based planning has been studied for over ten
years [9]. Recent work has begun to explore sampling-based
methods [11]. Numerous applications of information-based
planning involve UAVs [10, [15} 21} 24} 25, 27]]. In previous
work we explored multi-UAV constrained search [8] and UAV
planning using formal methods [30, 31]]. Here we exploit
standard principles in greedily selecting the next observation
point from a number of samples.

IIT. MULTIROTOR SENSOR MODEL

Sensor modeling is critical for successful information gath-
ering; the sensor model dictates the quality of observations and
therefore directly affects the accuracy of the target estimate.
An inaccurate sensor model may result in poor planning
decisions that place the robot in states where the target is less
likely to be found or tracked. Here we present the hardware
and software components of our sensor model and discuss its
implementation.

There are three main considerations in designing a sensor
model for a multirotor UAV: 1) multipath propagation can
cause erroneous observations in cluttered environments, 2) the
sensor array must balance weight and quality of readings to
maximize the number of useful observations and flight time,
and 3) the rotors can cause electromagnetic interfere with
a nearby antenna. We approach the first issue by remaining
stationary during an observation and obtaining a bearing-
only observation. The latter issues are overcome by our novel
design of a two-point phased array system.

A. Bearing-only observation

There are two common techniques for target tracking with
radio frequency (RF) beacons: range- and bearing-only obser-
vations. Range-only sensor models typically are problematic in
cluttered environments as multipath models are undefined with
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Fig. 3. Illustration of the sliding-correlation waveform matching algorithm.
The algorithm obtains a maximum likelihood phase offset by correlating the
observed sensor output G(1)) against the Fourier series model G () + ) :
a € (0, 27]. The bottom row illustrates G shifted by o = {—7/2, 7, 37/2}.

unknown terrain, e.g., hills and valleys. Hence, we resort to a
bearing-only sensor model with a direction finding antenna.

Direction finding antennas are used to passively determine
the angle of arrival (AoA) of an emitting source [6]. Most tech-
niques for calculating the AoA for low frequency transmitters
are based on the phased array concept and can give an instanta-
neous reading, e.g., frequency difference of arrival (FDoA) and
correlative interferometry (CI) [4]. Commercially available
components are not sufficiently sensitive or lightweight for
measuring the Doppler shift (in FDoA techniques) or phase
shift (for CI) between two sensors in a low-power transmitter
(Pr < 1 mW). For this reason, we mount a directional antenna
on the UAV to determine the bearing to the transmitter.

An observation is defined by the UAV system panning
one full rotation while the system broadcasts filtered received
signal strength indicator (RSSI) readings g at 5 Hz. In the
ground-station software, g is associated with an absolute
bearing, giving the observed gain pattern 1 — G* ().

B. Sensor: two-point phased array

We designed a two-point phased array antenna with a front
lobe and back null radiation pattern to account for weight and
precision requirements. Shown in Fig. |2} the array consists
of two quarterwave monopole antennas situated in front and
behind the vehicle center of gravity (CoG) with a spacing
L < \/4, where X is the transmitter wavelength. This spacing
lags the aft antenna by a phase difference 7 as a function of
azimuth AoA v

T = ?cos(w)—i—qﬁ. (1)

In Eq. (1), ¢ is introduced by an RF combiner with a passive
phase offset between the fore and aft antenna. In accordance
with (T)), if the AoA is perpendicular to the antenna array, the
aft antenna phase lag 7 = ¢. The interference pattern from
this phase difference is then simply 1+ cos(7). From (T)), the
asymmetric gain pattern as a function of AoA in dBi is

G(v) dBi = 20log;, [1 + cos (7)] + 1. (2)

Algorithm 1 RSSI Guidance Controller
Require: M,N,E,@,:L'

1: Initialize:

2: Yw € [I, MN],w; = (MN)~*

3 k=1

4: loop

5. z" « OBSERVATION(G, G, z¥)

6:  L* < LIKELIHOOD(2*)

7. P¥ < BAYESESTIMATE(P*~1 LF)
8 x* < PLAN(PF)

9: xhtl — x*

10: k< k+1

11: end loop

Equation (2) is the ideal case; dBi is gain relative to a standard
half-wave dipole antenna, however with a non-infinite ground
plane and inaccuracy in manufacturing and vibrations, the
actual pattern is distorted. Further, in Sec. we introduce
an analog circuit to directly sample the RSSI. This causes a
distortion of the gain pattern G(¢)). The actual gain pattern
G(v) is empirically evaluated in Sec. VI-All The theoretical
gain pattern (presented later in Fig. [7(a)) is sampled from
Eq. (2) and shows the directionality of the antenna in the fore-
aft asymmetry.

C. Bearing-only likelihood function

The next step in sensor modeling is to derive a bearing-only
likelihood function from the gain pattern. To achieve this, we
find a phase lag between the observed gain pattern G* and gain
pattern model G using a sliding-correlation technique with
bounded correlation values. We perform a Pearson product-
moment correlation p € [—1,1] with a phase lag «, s.t.

p(G*,G")[a] = p(G*(v), G* (¢ + av)). 3)

where correlation p(X,Y) = cov(X,Y)/(oxoy).
From (3), the maximum likelihood estimate for AoA is
therefore the phase lag « that yields maximum correlation,

Yk = argmax{p(ék,ék)[a}}’ S

P = p(GR(W), G (v +9")). ()
This method is illustrated in Fig. }
From Egs. @) and (§), azimuth AoA estimate ¥* and
statistical correlation between expected and observed gain
pattern pF are associated with the observation state x* =
[zF,yF 2*]T € R?, ie., the coordinates of the UAV at
observation ~k. This tuple is denoted as measurement k, i.e.,
2" = (ah ok, ph).
IV. PERCEPTION AND LOCALIZATION

This section describes the algorithmic components of the
system that implement the sensor model (Sec. and integrate
it into a planning framework. Alg. [I] presents the complete
localization method for wildlife tracking: at timestep k, the
UAV reaches the current observation state a* and performs
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Fig. 4. Belief representation and data fusion for two consecutive observations.
Figs. [f(a)] and [d(c)| represent the bearing-only likelihood of observation k = 2
and £ = 3 for this trial; the figures show probability of an observation as a

function of correlation p, bearing error € and bearing estimate @Z) Figs. |4(b)

and @ represent the posterior target estimate after these observations,
illustrating a reduction in target estimate entropy H ().

a new observation z*, calculates the likelihood LF of z*
and fuses this 1nf0rmat10n into the posterior belief P*. The
planner then selects the next waypoint * via the maximum a
posteriori (MAP) probability estimate.

A. Belief representation and data fusion

A grid-based filter is used to maintain the target belief in
the plane. Grid-based filters allow resolution-complete optimal
recursive estimation if the state space is discrete and consists
of a finite number of states [1]]. Given that our sensing range
is limited, a grid-based approach is preferable to suboptimal
methods such as approximate grid-based and particle filters.
Further, Kalman filter-based algorithms require the posterior
to be Gaussian and hence are not applicable here [1].

Let state £ = [£,7]' € £ C R? be the target location vector
within some predefined state-space £. The target posterior
belief at time step (observation) k is a probability mass
function and is represented here by an M x N grid in R
The grid is composed of cells Pfi = P (&;; | 2'*) : Vi €
[1,M],Vj € [1,N] and z%* represents the set of sensor
measurements {z', 2% ... 2F}.

Bayes’ theorem is used to obtain a posterior estimate of
the target localization P*, given the prior P*~! and like-
lihood of observation k, L£F, i.e., Pfj = Ekaj_l/n with
n s.t. Z;Z]szg =1

To obtain the likelihood, we assume the probability of

measurement z*, given the target is at state &,;j, is normally

distributed s.t.
1 (vij — p*)?
LE=pP(2F €)= exp | ——2
( | 5”) ak\/2m P 2(o%)?
Here, ~;; is the absolute bearing from the observation coordi-
nate to potential target location vector

}. (6)

’Lj’

Lk
vij = atan2 (n”y> , @)

&ij — zk

and pF = YF is the AoA estimate. The scale parameter o*

corresponds to observation bearing error ¢* and is modeled
as a piecewise linear function of correlation p; Sec.
presents an empirical evaluation of the function. The estimate
for the actual target location is then given by the MAP estimate
& =arg maxg {PE}.

The belief representatlon and data fusion for two consecu-
tive observations are illustrated in Fig. @ Note the normally
distributed likelihood functions (€) in Figs. f(a) and [A(c)
the target bearing estimate wk dictates the orientation of the
Gaussian and the correlation quantity p* affects the spread of
probability about the estimate. The data fusion is illustrated
in Figs. A(b)] and [@(d)] where the a posteriori target estimate
entropy reduces significantly by observation k£ = 3.

B. Greedy information gain planner

Given the sensor model above, we implement greedy in-
formation gain planning. The expected information gain of
future observations is sampled at static grid locations within a
predefined planning radius. The radius limit is important for
avoiding environmental hazards such tall power lines.

The quality of a given measurement tuple z* is quantified as

the change in Shannon entropy between the prior P ( & k|z1:k

and expected posterior P <£k+1 | 21:]”1) with expected ob-

servation zk+1 1.e.,

IG(2k+1 |€l~c) — H(ék | zl:k) _ H(€k+1 ‘ 21:k+1)’ (8)

where conditional entropy is defined as

ZZP i

Eq. () is non-convex and analytically intractable. In order
to sample expected information gain at discrete locations, we
reformulate Eq. (8) as

IG( Saaar: ) H(€k|zlzk>
—H( k+1 | Ak+1’¢k+1 =¢*,ﬁk+1

HE|=z) = z)logP (& ij|z). )

- p*). (10)

Here, 1" denotes that the expected bearing measurement @k‘“
is given by
Akl
-y
* = atan2 <§* — Ak+1>
where & >.i2_;&i;Pi; and is the expectation of the
target location given the prior belief. Note that the correlation

Y
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parameter p* scales IG and since we take the maximum, p*
is set arbitrarily. The next UAV waypoint * is selected from

Eq. (T0) s.t.
Tt = argmax{IG( ML g )}

ghkt1

(12)

This objective function ignores travel cost in order to maximise
observation quality. It may be possible to perform more
observations per flight by considering travel cost, but we leave
this analysis for future work.

V. EXPERIMENTAL SYSTEM

Our experimental system comprises a commercial UAV plat-
form, a custom antenna array and sensor payload. Algorithmic
components from Sec. are implemented in ROS [23] and
executed on a ground-based laptop computer. This section
describes the UAV platform and sensor payload components.
An overview is shown in Fig. f

The UAV used in our system is the Falcon 8, a commercial
eight-rotor platform manufactured by Ascending Technologies
with proprietary high-quality flight control and autonomous
GPS waypoint-following systems. It is structured around two
colinear sets of four rotors with a maximum take-off weight
of 2200g and payload capacity of 750g. The platform is
connected by wireless communication to a ground station,
which can relay telemetry data and accept control commands
via USB.

The sensor array is fed into a custom transceiver subsystem
that consists of a Radiometrix LMR1 receiver, an ARM 32-bit
Cortex-M3 microprocessor mounted to a custom miniaturized
printed circuit board, an analog filtering circuit, and a Digi
XTend radio modem. These components were chosen such
that the total mass of the sensor payload does not exceed
the payload capacity of the Falcon 8. The complete system
is shown earlier in Fig. [T}

The radio tags regularly transmit an unmodulated on-off-
keyed signal with a pulse width of 10ms and period of 1.05s;
the receiver RSSI output is an equivalent waveform with an
amplitude corresponding to the signal strength at the RF input

Stage 2

out

+ lianll

(a) Diagram of the automatic gain control (AGC) circuit

Voltage (V)

0 50 100 150
Time (s)

(b) Simulation results for the AGC circuit

Fig. 6. The AGC circuit. The diagram in illustrates both stages of the
circuit: catch and hold (Stage 1), and integrating amplifier (Stage 2). The plots
in Fig.[6(b)] show a simulated input pulse of 10ms with a period of 1.05s (Vi),
the output from Stage 1 (Vsp), and output from Stage 2 (Vour).

channel (see Vi, in Fig. [6(b)). To avoid using high-powered
signal processing components while at the same time receiving
high-fidelity RSSI measurements, we designed a simple analog
circuit to handle signal processing. The circuit implemented
is a typical AGC circuit as seen in Fig. Stage 1 is a
peak-hold rectifier circuit with a low leakage rate to hold the
amplitude of each pulse (Vs; in Fig. [6(b)); and Stage 2 acts
as an inverting amplifier and integrator circuit to smooth the
peak-hold signal and upsample the voltage to the analog-to-
digital converter (ADC) input range of 0 - 3.3 VDC (Vy in
Fig. [6(D)). The filter output Vi is sampled at 5Hz by an ADC
within the microprocessor subsystem and transmits this packet
to the ground station through a radio modem.

VI. EXPERIMENTAL RESULTS

This section presents experimental validation of our system.
First, we present system identification obtained from manual
flights with a known tag location in free space. We then
provide results from two experiments with autonomous flight:
1) algorithm validation and 2) live bird trials. The aim of the
algorithm validation is to localize a stationary tag mounted
in the canopy of a tree. Live bird trials were performed
with radio-tagged Manorina Melanocephala, a small territorial
bird species. In these experiments, observations are taken at

= 50m altitude from the launch elevation and take ap-
proximately 45s to complete. Rotation rate for an observation
was hand-tuned using data from five preliminary flights. For
all autonomous flights, observation positions were computed
online using the planner from Sec. We use three separate
trial sites (Sites A, B and C) known to be within the territory
of a target bird.
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(a) Theoretical gain

(b) Stationary tag observations

(c) Real bird observations

Fig. 7. Third-order fast Fourier transform gain pattern model G (1) (red) plotted against: the theoretical two-point phased array model G(¢)) (without
on-board filter distortjon), the observations relative to a static tag in the canopy Giarionary(t), and the observations relative to a real bird, moving
during observations Gpirg(1)). In|7(b)| and the mean (solid black line) and standard deviation (shaded gray) normalized gain pattern are shown.
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Plots for the bearing error as a function of gain pattern correlation and (8(B)) range for a stationary transmitter. Bearing error is the deviation

from the maximum likelihood bearing to the actual bearing of a known stationary tag. The black piecewise function in Fig. @ was used in determining the
variance of our sensor model as a function of gain pattern correlation. Each piecewise function illustrated was built using data segments of size 5, 10, 15 or
20. Note that for clarity, Fig. plots the data x-values as 1 — p and is scaled logarithmically as most observations were greater than p = 0.9.

A. System identification

Eight flights were performed to empirically evaluate: 1) the
sensor array gain pattern, 2) bearing error as a function of
waveform correlation and 3) observation quality as a function
of range to tag. These tests are described below.

1) Empirical gain pattern: In Sec.[[II-B| we derived Eq. ()
for the two-point phased array gain pattern. Due to the on-
board filter described in Sec. [V] this gain pattern has an
attack and decay rate as a function of rotational velocity,
distorting the signal (see Fig.[7(a)). To account for this, we use
an empirical dataset to compute a discrete Fourier transform
offline for the gain pattern as a function of azimuth AoA. We
calculated a third-order (J = 3) Fourier series from the data
using a fast Fourier transform (FFT), i.e. a function

J J
G() = ap + Zaj cos (jwip) + Z b;sin (jwyp).  (13)

J=1 Jj=1

Here, F = {ag.7, 1.7, w} are the Fourier series coefficients.

Figure[7illustrates the gain pattern from observations at Site
A for stationary tags and live birds. For Figs. [7(b)] and
the filtered output from the analog circuit is sampled at 5 Hz
to obtain an observed signal strength e — G (Viag) © Yag €

(0,27]. Note that the live bird gain pattern is noisier with a
higher observation variance and does not match the model as
well as the stationary tag, causing lower correlations and a
more difficult localization problem.

2) Observation bearing error: To determine the likelihood
for a given measurement z*, we must map the measurement
correlation to a bearing error L(p) : p*¥ — €*. To achieve this,
we assume that observation precision (inversely proportional to
variance) is a monotonically increasing function of correlation
and accordingly calculate observation variance as a continuous
piecewise linear function of correlation. If we take the standard
assumption of a (zero mean) standard error distribution for
bearing observations, we can validate monotonicity qualita-
tively by plotting observation bearing error to a known target
location as a function of waveform correlation (Fig. [8(a)). The
data are divided into partitions of 20 data points and linear
regression is performed to produce a continuous piecewise-
linear function. We opt for this simple regression model due
to the spread and number of data points; optimizing the
partitioning would likely yield only marginal improvements.
Twenty data points were chosen to maintain monotonicity in
precision; Fig. [B(a)] illustrates other partitionings.



TABLE I
LOCALIZATION METRICS FOR A STATIONARY TAG. EACH TAG WAS PLACED IN THE CANOPY OF A SITE WITHIN A TARGET BIRD’S TERRITORY.

. . Total Mean Mean Mean Distance (m) Correlation pf Observation Error e (rad.)t

Site  Trials . - .
Observations  Error Entropy
(m) (bits) (o) 1% (o) M (o)

A 2 11 16.43 10.56 733 (22.0) 0.951  (0.0489) 0.1173  (0.0703)

B 2 11 25.2 15.7 203 (95.4) 0.941  (0.0355) 0.0691  (0.0537)

C 2 8 29.9 15.86 230 (118.9) 0.848  (0.175) 0.215  (0.349)

6 30 23.8 14.04 168.8  (78.77) 0913  (0.0865) 0.1338  (0.1577)

* Based on ground truth coordinate at the end of each trial
T Each observation is independent of parent trial
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Fig. 9. Localization of a static radio tag in a tree canopy. Figures and illustrate the convergence of the a posteriori belief P(£F|z1F) of the
tag location after the first, second and last observation for this trial, respectively. The belief is represented as a grid with Im resolution.
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Fig. 10. Localization of the Manorina Melanocephala avian species tagged with a low-power radio transmitter. Figures [T0(a)} [TO(B)] and [T0(c)] illustrate the
convergence of the a posteriori belief of the bird location after the first, second and last observation for this trial, respectively. As an indication of the actual
bird position, the trajectory of the trackers during an observation (solid light green), and past trajectory (solid dark green) are shown.

3) System range: Figure [8(b)| indicates the ideal range of
the system as a function of bearing error. To determine the
approximate range of the system, we took various observations
at iteratively increasing distances from the tag at 50m altitude
over a flat and uncluttered environment. Figure [8(b)] graphs
this range as a function of observation bearing error and
qualitatively suggests the ideal system range is 100-500m.
Observations closer than 100m have a high incidence elevation
and thus azimuth gain is not as pronounced; observations

beyond 500m have a signal strength below the receiver’s
sensitivity. Closer observations could be taken at a lower
altitude however considering time constraints per trial, uncer-
tainty about target location and canopy height, it is justified to
keep a consistent height. Additionally, a higher altitude should
increase the received signal strength according to the two-ray
model, yet this was not observed in practice due to the inherent
stochasticity in any low altitude RF application.



B. Algorithm validation: stationary tag

Six flights were performed to evaluate localization per-
formance on a stationary tag in a 1000x1000m grid with
Im-resolution cell edges. Table [I] presents the mean number
of observations per trial, mean estimation error and mean
entropy of the a posteriori belief of each trial, mean and
variance of each observation range to tag, mean and variance
of observation bearing error, and the mean and variance of
the maximum likelihood correlation of each observation. The
former metrics report on the final observation (K = Fkmpax)
of each trial; the latter are calculated over all observations
at each site (e.g., 11 observations at Site A). Lower values
for all statistical metrics imply higher accuracy, precision
and certainty of the tag’s position. The observation range is
dependent only on environmental factors.

Site A yields better results across all metrics, even though
many observations are closer than the ideal system range,
most likely suggesting the actual system range is shorter than
the free-space case presented in Sec. Further, the site’s
landscape was relatively flat with sparser vegetation than other
sites and thus yields less dominant multipath propagation.
In Sites B and C the algorithm performs sufficiently and
consistently localizes the stationary tag to within 30m.

A typical trial for the stationary tag at Site A is depicted in
Fig. [0] showing the a posteriori belief, vehicle trajectory and
tag location for observations 1, 2 and 6. Ideally, the planner
would be able to circle around the centroid, however due to
safety precautions the planner considers waypoints within a
90m radius of the UAV home position (the map origin). To
account for the aforementioned ideal range, the planning set
excludes waypoints within 60m of the a priori belief centroid.

C. Field experiments: radio-tagged avian species

Following the algorithm validation, we performed three
flights from different launch sites to localize small, live birds.
Each bird was fitted with a radio transmitter equivalent to the
stationary case above. The unique frequency of each radio tag
was pre-programmed as a channel in the LMR1 receiver. Prior
to each trial, a ground-based human tracker manually located
the bird and then recorded its position during the trial.

We present an illustration of a trial at Site A in Fig. [I0]
Figure [T0(a)] shows the launch position at approximately 300m
from the bird in a clearing to allow direct line of sight (LoS)
to the UAV system when flying toward the bird. Power lines in
the area restrict the planning distance to 90m from the home
(launch) position, indicated by the 90m radius arc in Fig.
Finally, Fig.[I0]shows the belief converging to a MAP estimate
within 50m of the bird — the entropy and accuracy of this trial
should improve if the UAV could plan a larger radius around
the bird (see stationary tag results in Tab. [I).

Results for the second and third trials are similar. These
results are less exhaustive and quantitative than those with
stationary tags due to two reasons: /) the inaccuracy of the
manual tracking and unpredictable movement of the bird, i.e.,
if a bird moves between the fourth and fifth observation the
manual tracks will be lagged and 2) if the bird moves during

an observation, the observation gives the incorrect gain pattern.
Further, the planning must take into account the environment
(e.g., power lines) and allow an unobstructed LoS to the UAV
system for safety precautions, causing difficulty in observing
the tag from optimal bearings.

VII. LESSONS LEARNED

Field testing revealed several interesting lessons regarding
antenna performance, transmitter attenuation with live animals,
and practical operation. We report these points in this section.

Our two-point phased array antenna significantly outper-
forms standard H-shaped antennas typically used in UAV
applications. Although a full rotation is needed, the resulting
high-quality bearing estimate allows for better localisation
accuracy than has been achieved with directional antennas
offline in similar applications [[16]. We also found that our
system achieved a detection range that is similar to hand-held
systems due to the elevation of the UAV.

We expected significant signal attenuation when moving
from the static tag to the live bird case. However, we found
such attenuation to be reasonable (Fig. [7). We expect that our
system would perform well with other species of similar size.
Nocturnal animals which are relatively stationary during the
day are good candidates.

One limiting practical factor is short UAV flight time. We
operated flights in quick succession by swapping batteries, but
longer duration flight would benefit localisation by allowing
more observations per flight. Advances in platforms and bat-
tery energy density should mediate this issue in future.

VIII. DISCUSSION AND FUTURE WORK

We presented a full UAV system for localizing radio-tagged
wildlife and demonstrated autonomous flight. Estimation is
based on a Fourier series model of expected RSSI obser-
vations trained from data collected in a representative out-
door environment and experimentally validated on Manorina
Melanocephala. Our future aim is to continue evaluating this
system in field trials with different species. In our experiments
so far, we assumed that the radio tag is initially observable.
In future work it is important to consider the case where
no tag is initially observable, which introduces a search and
detect component to the problem, and the issue of when the
operator should move [2], in addition to localization. It is also
important to explore properties such as submodularity [17] of
the objective function (Eq. (I2)) and algorithms that exploit
these properties to maximise information while considering
travel cost.
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