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Abstract—Physiological measures, such as pain, anxiety, effort,
or energy consumption, play a crucial role in the evaluation and
development of assistive robotic devices. Physiological data are
collected and analyzed by researchers and clinicians, and are
often used to inform an iterative tuning process of a device and
its controller. Currently, these data are collected then analyzed
offline such that they are only evaluated after the experiment has
ended. This makes any iterative design process tedious and time
consuming since tuning must be done on a subject-by-subject
basis and for a variety of tasks that the device is intended to
be used for. To overcome these drawbacks, we are proposing
a new type of human-machine interaction that is based on
measuring and using physiological measurements in real-time.
By continuously monitoring a physiological objective through a
set of suitable sensors, we propose conducting an optimization of
a set of controller parameters that shape the assistance provided
by the device. In other words, we pose an optimization that
includes the human body in the loop. This Body-in-the-Loop
optimization allows for optimal subject specific control and has
the potential to be used for controller adaptation to changing
environments. We validated this concept in an extensive human
subject study where we autonomously optimized the actuation
onset of a pair of bilateral ankle exoskeletons to minimize user’s
metabolic effort.

I. INTRODUCTION

The control of a typical assistive robotic device relies on
mechanically intrinsic measurements. These are measurements
that come from the device itself and they are used to estimate
the state of the human-machine system. These state estimates
allow for the controller to determine the user’s intent and
the current phase of a given task. With this information,
the controller allows the assistive device to aid the user in
a variety of scenarios. Examples of mechanically intrinsic
measurements include position, velocity, force, and impedance
[2, 6, 22]. For example, in an upper extremity exoskeleton,
force measurements between the user and the device can be
used to predict the user’s intended reaching trajectory [30]. Or
in a lower limb prosthesis, acceleration measurements of the
device can be used to estimate what phase of the gait cycle
the user is currently in. This same acceleration measurement
can determine if the user is intending to climb stairs or walk
on level ground [26].

While mechanically intrinsic measurements estimate the
state of the human-machine system, physiological measure-
ments such as pain, anxiety, effort, or energy consumption,
are commonly used to evaluate the performance of the device.
Conclusions based on these physiological measurements are
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Fig. 1. Here is an illustration of the proposed concept of Body-in-the-Loop
optimization. While a user is wearing an assistive robotic device (shown are
devices that aid locomotion), a number of sensor readings are fused to form an
estimate of a physiological measure = (such as pain, anxiety, effort, or energy
consumption). This physiological measure is used as the objective function in
an online optimization that identifies optimal controller parameters p. These
targeted controller parameters influence the shape of assistance that is provided
by the assistive device to the user. Additional intrinsic measurements from the
device are used to estimate user intent and phasing of the assistance to drive
the output of the controller C'. Optimization is done with a human body in
the loop which is a radically new way of human-machine interfacing.

then used to alter the design and to modify the shape of actua-
tion to better assist the user. The process of using physiological
measurements to shape actuation is an iterative, trial-and-error
process. The measurements need to be taken during human
subject testing and then analyzed by researchers or clinicians
offline after testing. The results from this analysis are then
used to drive future designs of actuation shape or tuning for a
given device. This process is repeated until the desired results
are achieved. For example, in an upper extremity prosthesis,
measurements of user pain can be used to iteratively shape
actuation such that users are most comfortable [32]. Or in a
lower limb exoskeleton, measurements of energy consumption
can be used to tune parameters that shape actuation profiles
in an attempt to identify parameters that result in the largest
reduction in the user’s metabolic effort [31].

Clearly, both mechanically intrinsic measurements and
physiological measurements are needed for the design and
control of assistive robotic devices. However, in the current
field of assistive robotic devices there is a divide between
these measurements as they are not used concurrently in real-
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Fig. 2. In a validation study, we optimized the actuation onset (as parameter
p) of bilateral ankle exoskeletons to minimize user’s metabolic effort (as
physiological objective x(p)). The exoskeleton controller used normalized
stride time between consecutive heel strikes (Sgg and S}{ g) as the state
estimate to drive actuation. Actuation was turned on when the normalized
phase of the stride S was greater than the parameter setting p and off when
toe off (STo) was detected. We implemented gradient descent optimization
techniques to autonomously move toward a setting of p that minimized x(p).
With this robotic device, we validated the Body-in-the-Loop techniques with
eight healthy subjects, using a brute force mapping of subject specific cost
landscapes as a ground truth for comparison.

time control. We are proposing a new method of human-
machine interfacing, one in which control parameters that
shape assistance, p, are optimally tuned and adjusted in real-
time to minimize a physiological objective function from the
user, x (p). By including physiological measurements, y, in
the control scheme to estimate x (p) and drive optimization,
we are bringing the human body into the control loop. This
Body-in-the-Loop approach has the potential to open up a new
realm of assistive robotic control.

By including quantitative physiological feedback in a real-
time optimization of shaping parameters, we can create robotic
devices that learn and adapt in order to continuously provide
optimal subject-specific assistance. The optimization process
can be performed during the development of a controller for a
new assistive system, as well as every time a particular device
is fitted to a user. This allows adaptation to unique attributes
such as the user’s size, weight, or preferred movements, and
it will greatly improve and accelerate the tedious task of
controller tuning. It will substantially enhance the performance
of current assistive robotic devices by optimally utilizing
potential synergies between user and machine. In the long run,
the proposed automated tuning can be applied not only when a
device is built or fitted, but on a continuous basis as the person
uses it. For example, in the case of a lower limb prosthesis,
the controller could adapt in real-time to the type of shoes that
the person is wearing, the terrain that is being traversed, or
additional loads that a user might be carrying.

Felt et al. proved such an optimization was possible by
optimizing step frequencies during normal walking of healthy
subjects as a proof of concept [17]; however, this type of op-
timization has never been demonstrated on an actual assistive

device until now. Here we expand upon Felt’s work by present-
ing the first ever example of Body-in-the-Loop optimization
driven by objective physiological measurements to optimize
the control of an assistive robotic device. We build upon Felt’s
algorithm by including an oscillatory perturbation pattern, a
growing sample window, and statistical confidence checks of
each gradient estimate. All of these additions were crucial for
improving the performance of Body-in-the-Loop optimization
when applying these techniques to assistive devices due to
the cost landscape being much shallower compared to that of
Felt’s step frequency study.

In this paper we have demonstrated the utility of Body-in-
the-Loop techniques for the optimization of bilateral pneumati-
cally actuated ankle exoskeletons during level ground walking.
These exoskeletons provided additional power to aid in push-
off, reducing the metabolic effort required of the individual.
We chose such a platform because devices targeting assistance
at the ankle are commonly used in both a research and
clinical setting due to the ankle’s large contribution toward
positive power generation during gait [3, 16, 25, 31]. Our
designed exoskeletons were simply controlled by a single
shaping parameter, p, which controlled the actuation onset of
the device. p represents a normalized stride time threshold
such that once a user’s phase of normalized stride surpassed
p, action was turned on. This is visualized in Figure 4 and has
been a common control scheme used for basic science research
with robotic ankle exoskeletons [11, 31]. The Body-in-the-
Loop optimization scheme tuned p using metabolic effort as
the physiological objective. We were able to estimate the user’s
metabolic effort in real-time via respiratory measurements
using a mask as shown in Figure 3. Through the results
from a extensive human subject study, we have shown that
the proposed Body-in-the-Loop optimization techniques can
autonomously move towards a metabolic minimum validating
that Body-in-the-Loop optimization has the potential to be an
impactful tool for future human-machine interactions.

Fig. 3. The ankle exoskeletons used in this study were pneumatically actuated
with custom built artificial pneumatic muscles attached posteriorly to assist
with push off. During testing, subjects walked on a split belt treadmill with
incorporated force plates to register heel strike and toe off events. Respiratory
measurements were recorded in real time with a metabolics mask. The air
pressure in the actuators was regulated with off board proportional pressure
control valves (not shown). Adjustment straps allow fitting the device to
different users.



II. A PNEUMATICALLY ACTUATED ROBOTIC ANKLE
EXOSKELETON

We used bilateral, single degree of freedom, pneumatically
actuated ankle exoskeletons as a platform for testing the
proposed Body-in-the-Loop optimization. We designed these
exoskeletons based on previous work in the field [18].

A. Hardware

Each exoskeleton consisted of a shank and a foot component
connected by a rotational joint. The shank diameter was
adjustable via ratcheting straps to fit a variety of subject
sizes. The shoes were customized orthotic shoes that had been
outfitted with a stainless steel plate in the heel. This plate
served to stiffen the heel of the shoe and provide attachment
points for the actuators and rotational joints.

We actuated each exoskeleton with a custom made artificial
pneumatic muscle [13] that had attachment points at the top-
rear of the shank and at the back of the heel. The moment arm
between the rotational joint and the actuation attachment point
at the heel was 10.1 cm. The artificial muscle was connected
to a proportional pressure control valve (MAC Valves,Wixom,
MI) with a mechanical quick release valve (Parker Legris,
Mesa, AZ) connected in series. Additionally, we attached
a load cell (Omega Engineering, Stamford, Connecticut) in
series with the artificial muscle to record actuation kinetics.
This actuation configuration had an electromechanical delay of
28 ms. In optimal controller configurations, this exoskeleton
can provide approximately 50% of the torque required at
the ankle during normal walking. Each exoskeleton, artificial
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Fig. 4. The control signal that was sent to the pressure control valves was
based upon normalized stride time, S. The bottom graph shows a single stride
of the exoskeleton where Sgyg = 0, STo = 0.63, and S}_IS = 1. The
middle graph shows how actuation is turned on once S > p and off once
S > Sto. The top graph shows an example of the expected torque output
of the exoskeleton. This profile will change dependent upon what p is set to
and as a function of user specific ankle kinematics during walking.

pneumatic muscle, and load cell had a combined weight of
2.02 kg. This weight was slightly larger than other state of
the art exoskeletons in the field, yet it was within the weight
range of exoskeletons that have previously shown significant
reductions in metabolic effort (0.67 - 2.30 kg [31, 33]).

B. Control

We controlled the exoskeleton using a simple state-based
control strategy that has been presented in previous ankle
exoskeleton work [11, 31]. The controller was simply an ‘on-
off’ control scheme that was triggered by a single state, S,
crossing a threshold value, p. p is the shaping parameter that
we optimized for during validation testing. S was a measure of
normalized stride time where S = 0 and S = 1 corresponded
to consecutive heel strikes of the same leg. We used vertical
ground reaction forces on the treadmill to detect heel strike,
SHs, and toe off, S7o, of each stride. We calculated stride
times from the time between consecutive heel strikes of the
same leg and then normalized them by an average stride time
to calculate S. We calculated the average stride time using a
finite impulse response filter with a tap size of five.

When p < S < Sro, actuation was turned on. Actuation
was turned off otherwise. When the controller was in the on
state, we pressurized the artificial pneumatic muscles with 600
kPa of pressure and when in the off state with 150 kPa of
pressure. The reason for a non-zero off state pressure was to
deplete any dead space in the tubing and muscle. This allowed
for a quicker actuation response and limited electromechanical
delay in our control system. The off pressure of 150 kPa did
not result in any inflation of the artificial pneumatic muscle
and thus no tension was registered by the load cells during the
off state due to actuation pressure.

III. METABOLIC EFFORT AS A PHYSIOLOGICAL COST
FUNCTION

For this study we used metabolic effort as the physiological
cost function, z(p), to minimize. In relation to metabolic
effort, z(p) is also known as the instantaneous energetic cost
[34]. Metabolic effort is a measure of how much energy the
human body is expending during any task and can be estimated
from a variety of physiological measurements such as oxygen
consumption, heart rate, oxygen saturation in the blood, or
muscle activity [8, 20, 24, 27]. Most commonly, metabolic
effort is estimated from oxygen consumption via respiratory
measurements, y, and is a primary method for evaluation
of assistive robotic devices [15]. In collecting respiratory
measurements, subjects wear a mask that samples the oxygen
and carbon dioxide content of each individual breath. Using
equations from Brockway [8] and normalizing by subject
mass, we convert these respiratory measurements (%) to
measurements of energy consumption (k—v‘;)

Although respiratory measurements give us a fairly accu-
rate estimate of metabolic effort, there are significant sensor
dynamics that prevent measuring x(p) directly. Respiratory
measurements are ideally meant for long testing trials at steady
state conditions due to a long delay between the instantaneous



energetic demand and the physical respiratory measurements.
When muscles need instantaneous energy they pull from local
energy storage in the form of adenosine triphosphate (ATP).
These local storages of ATP are then replenished through
a number of processes that require oxygen pulled from the
blood stream. It takes time for this oxygen depleted blood
to travel from the muscle location to the lungs, so there is
a delay between this initial recruitment of energy and the
observation of increased oxygen consumption via respiratory
measurements. Because of this delay, the dynamics of the
human metabolic system are commonly modeled as a first
order system, having a time constant 7 of approximately 40
seconds during walking [29, 34, 35]. It is common prac-
tice to have subjects walk at a given condition for at least
three minutes to allow for metabolic effort to stabilize prior
to collecting measurements for analysis due to this large
time constant. Additionally, respiratory measurements are very
sparse because only one measurement is made per breath.
During normal walking subjects take approximately 19 breaths
per minute which results in a sample rate of 0.32 Hz [7]. On
top of all that, respiratory measurements are incredibly noisy,
having a signal to noise ratio of approximately four [29, 35].
Given this sparse sample rate and high noise level, it is typical
to average respiratory measurements across multiple minutes
to achieve a single data point estimate of z(p).

Dynamic delay, sparse sampling, and large inter-breath
variability all make for using respiratory measurements to
drive an online optimization increasingly difficult. In order
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Fig. 5. To provide a ground truth for comparison, the cost landscape

for each individual subject was found by averaging the final three minutes
of metabolic data from each powered condition during a steady state cost
mapping trial. Each average (shown here for a pilot subject) is represented by
a colored dot and numbered according to the testing sequence. The subject’s
standing metabolic power has been subtracted from all shown values. A third
order polynomial was fit to these steady state values (shown in yellow).
For comparison, the dashed line shows the subject’s metabolic power when
walking in the unpowered exoskeletons. The highest parameter setting was
repeated three times (1, 5, 9) to test for learning and fatigue effects.

to use this information in a real-time optimization, we need to
establish a suitable sensor model of respiratory measurements.
The input to this sensor is the instantaneous energetic cost
2 (p;). The output are individual breath measurements of
energy consumption y;. ¢ is the breath number and replaces
a notion of time in this discrete breath-by-breath process.
Approximating the metabolic dynamics as a discrete linear
first order system, we relate respiratory measurements, y;, of
each breath i, to metabolic effort, z(p;):

h; h;
Yi = (1 - 7_) Yi-1) + e (i) - (D

In this equation, h; is the time since the previous breath and
T is the time constant of the metabolic system [17].

IV. OPTIMIZATION OF METABOLIC EFFORT

Based on this sensor model, we developed an algorithm for
the real-time optimization of metabolic effort. Please note that
the figures in this section are representing exemplary data from
a single pilot subject. Data from the complete validation study
is presented in Section V-B.

A. Establishing a Ground Truth

In order to objectively evaluate the proposed Body-in-the-
Loop optimization techniques, we first established a ground
truth of the cost landscape. To this end, we mapped subject’s
energetic cost landscapes using a steady state cost mapping
(SSCM) protocol similar to Felt et al. [17]. This SSCM
protocol is a type of parameter study common in assistive
robotics to brute force map z(p) [12, 14, 31].

The SSCM protocol that we implemented had subjects
standing in place for four minutes to measure their stand-
ing metabolic effort. We then had subjects walk with the
exoskeleton in an unpowered condition followed by nine
powered conditions. Subjects walked for six minutes in each
condition. This process was performed continuously where
subjects were only given verbal warnings before starting the
treadmill, powering on the exoskeletons, and powering off
the exoskeletons. Subjects walked at seven different powered
parameter settings (p = 0.13, 0.21, 0.28, 0.36, 0.43, 0.51,
and 0.58) for nine different powered conditions. The first,
fifth, and ninth powered conditions were always p = 0.58.
All intermediate powered conditions were randomized. The
repeated p = 0.58 allowed us to analyze learning effects and
fatigue in subjects. If we saw significant differences in the
first, fifth, and ninth parameter’s steady state values, we could
assume that the subject was still learning and adapting to the
device, or that they were becoming fatigued. We chose the
parameter of p = 0.58 for this repetition, because this setting
turns actuation on for the shortest amount of time. Since
Sto =~ 0.63 [31], the device was only powered for ~60 ms at
this setting. By starting and ending with this parameter setting,
we were able to ease subjects in and out of powered conditions
in the smoothest and safest way possible.

After data collection, we averaged the final three minutes
of data from each powered condition in the SSCM data set



to generate an estimate of the instantaneous energetic cost,
Z (p). In the realm of assistive devices, it is common practice
to estimate Z (p) with a third order polynomial fit [14, 23, 31].
This representation of Z (p) versus p is shown in Figure 5.

B. Online Optimization

Our proposed online optimization scheme is based upon
gradient descent methods [4]. We allowed the algorithm to
run for a set amount of time (t.,q) during which it was fully
autonomous meaning there was no human intervention once
the algorithm had begun. An overview of our algorithm is
presented below as pseudo-code with the variables defined in
the proceeding subsections.

Algorithm: Body-in-the-Loop Optimization

Data: Respiratory measurements of metabolic power, ¢

Result: Minimizing z(p)

Initialize:

f=0

ng = 0

ny = initial number of respiratory measurements to
evaluate

p' = initial guess of the optimal p

while ¢ < t.,q do
for i = (ny +1):np do
PP —(=1)fe i< "f+1;'2”f
pi = p" + (~1)fc > Tt
pF otherwise
Collect corresponding ¥;

Calculate best linear fit, ()\(*1), p) , from

measurements 7 = 1:nyq
Compute Akaike weight, w;
if w1 > Wipresn then

Set f=0

PPt =pF — otV (A?l),p)
else

Set f=f+1

Define nyy1 =ni(14+9f) +ny

1) Parameter Exploration about p*: To obtain an estimate
of the gradient of the physiological objective at pF, we
systematically explored parameter settings surrounding p*. We
did this by initially evaluating below, at, and above p’“ for a
total of n; breaths. If we were not confident in the gradient
estimate of p* after n, breaths (ie it failed a statistical test
of confidence) more data was collected. In these additional
evaluations we collected data about p* in the reverse order
of the previous exploration for a total of ny (1 + ¢f) more
breaths. The variable f counted the number of evaluations, and
a larger number of breaths was collected in each subsequent
evaluation. We reevaluated the gradient for all measurements
collected about p* and repeated as necessary.

This oscillatory sampling pattern about p* was defined as
follows such that ny and nyy; were breath numbers, i was
the breath count at pk , ¢ was the perturbation size, and f was
the number of failed statistical tests at p*.

k . nyi1+2ny
PP =(=1)le i< 2%
pi =P+ (-1)fc i> 2 )
pF otherwise

We initialized ng, n1, f, and p' before the algorithm began. nq
was a user defined input for the initial number of respiratory
measurements to consider per oscillation and p' was an initial
guess of the optimal p location. If the gradient fit failed
a statistical test of confidence then we incremented f and
calculated ny4q as

npy1 =n1 (1+6f) +ny 3)

where § represents a user defined growth factor.

2) Gradient Estimate: Based on the measurements y; at
the known parameter settings p;, we estimated a linear
representation of x(p) and extracted the gradient from this
representation. This linear representation was defined by a set
of coefficients A.

Z (A1),p) = Ao+ Aip 4

In this notation, the gradient of the linear function,
VZ(A),p), is simply A;. By running this linear approxima-
tion through (1), we produce an estimate of metabolic effort
9; as a function of A and p;:

h; h;
gi= (1= ) gaon) + 22 Ay, i) - 5
Y < T)Z/( 1)+Tﬂf((1)p) &)
Starting from an initial value ¢, the series of estimated breath

measurements ¥; can be obtained by recursively evaluating (5).
The resulting expression is linear with respect to a ¢; and A:

hn Y1
cl=A(]. (6)
Un AL

A is an x 3 matrix whose elements are calculated recursively
based upon 7, h;, and p; [17].

1 i=1,57=1
0 i1=1,7>1

Aivj: Ai—l,j (1 — %) 1>1,7=1 )
A (1= + %72;;25) i>1,5>1

For a given set of breath measurements ¢;, we employ the
pseudo-inverse of A (denoted as A ™) to solve for the optimal
initial breath, 7, and optimal linear fit, )\6), that yield a least-
square fit between g; and y;:

gf h
Nl =AT[ ], (8)
AT -



That is, we identified model coefficients that provide a best
fit between the linear model Z(A(q),p) and the true underly-
ing relationship z(p). Through this process, a new gradient
VZ(Aq1),p) was established every time a total of ny; mea-
surements had been taken about p*.

In addition to fitting a linear model (as per (8)), we used
the same process to simultaneously identify a purely constant
(zeroth order) model, j()‘?o)v p):

z (A\0)>p) = Ao- )

We used this model to evaluate confidence in the gradient fit.
In this model A was an x 2 matrix.

3) Confidence in the Gradient: Due to the poor signal
to noise ratio of respiratory measurements, we implemented
a statistical test to evaluate how confident we were in any
given linear fit prior to acting upon it in the gradient descent
algorithm. To this end, we compared the optimal first order fit
to data about p* to the optimal zeroth order fit to the same data.
If the first order fit was statistically better at describing the data
than the zeroth order fit (that is, when a gradient fit the data
better than a flat line) the gradient was used to update p*. The
implemented statistical test used Akaike weights and a user
defined threshold to establish confidence in a gradient estimate.
From simulations of the Body-in-the-Loop optimization, we
found this method to be more conservative in nature compared
to other statistical tests.

The Akaike Information Criterion, AIC;, is a measure used
when comparing model ! to multiple other model fits and is
meant to determine which model in a given set is the best fit
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Fig. 6. We used the SSCM data to estimate subject specific 7’s. The raw

metabolic data (§;) is shown in blue, the instantaneous metabolic cost (Z (p;))
is shown in yellow, and the metabolic estimate (g; ) is shown in orange. During
the SSCM we recorded standing metabolics from the subject for four minutes
(S), unpowered walking in the device for six minutes (UP), and nine different
powered conditions for six minutes each (P1-P9). The data shown here is
from a pilot subject that had a metabolic time constant of 36.6 seconds. This
graph also illustrates the sparse data and high noise levels that are typical for
respiratory measurements.

"o

X

=

5 0.99 099

% 0.62

o , '

Q

5 p

8

% 0.9

=

©

z

315 . . . . |

0.1 0.2 0.3 0.4 0.5 0.6
p (Normalized Stride Time)
Fig. 7. Here is an example of a gradient based online optimization run

that was started from p = 0.45. The presented data is from the same pilot
subject as the data in Figures 5 and 6. Gradient estimates darken to represent
progress through the optimization routine. The gradients are overlaid on the
ground truth for visualization purposes. wj values that correspond to the
confidence in a gradient estimate are written touching their corresponding fits
with green representing w1 > Wipresp and red representing w1 < Wipresh-
In this particular case the optimizer finished at p = 0.28 where the minimum
identified from the SSCM was p = 0.23. According to the SSCM polynomial
fit, this error resulted in an increase of 0.023 W kg—! in metabolic power
for this pilot subject.

[1, 9]. In this framework, AIC; can be calculated as

AIC; = njyq ln( i )—I—2(m—|—1). (10)

nge

where e is the sum of squared error between 4 and y (defined
in (14)), and m is the number of elements of A. By traditional
standards, the lowest AIC; value from the set of models,
min AIC, is the best model fit of the group; however, the
min AIC value alone does not give a sense as to how much
better the best fit truly is. We used Akaike weights, wy, to give
us a sense of confidence in the model fits. w; can range from
0 to 1 and can be interpreted as the probability that model [
is the best model within a group of R total model fits [9, 10].
w; is defined as

w0y — exp {—0.5A;} (11

R
> exp{—0.54A,}
r=1

where A; = AIC; — min AIC.

In the described optimization scheme we used the Akaike
weights to compare a first order fit, f(AZI),p), to a zeroth
order fit, f()\fo),p), meaning R = 2 in (11). Only if the
Akaike weight associated with Z(Xf}),p), w1, was greater
than a user defined threshold, wyp.esn, the gradient descent
algorithm took a step. Otherwise, more data was collected at
the current parameter setting p*.

4) Updating p*: If w1 > Whresn then the evaluation
parameter was updated as

Pt =pk —abvz ()\E‘l).p> )

(12)



TABLE I
VARIABLES USED IN BODY-IN-THE-LOOP OPTIMIZATION

Variable Definition Units Value
tend Termination Time Minutes 50
c Perturbation Size - 0.08
ni Initial Breath Evaluation Size Breaths 90
pt Initial Evaluation Parameter - Randomized
é Evaluation Growth Factor - 0.5
Wihresh Akaike Weight Threshold - 0.7
Ao Gain Scheduling Parameter - 1
[e%s) Gain Scheduling Parameter W+971 500
o7 Gain Scheduling Parameter - 0.75
In this equation, o is a scheduling gain [4, 17] defined as
ot = Ao (13)
Ao+ kY
where «q, Ag, and v are user defined constants with

v = (0,1]. k was only incremented if a step was taken at
which point f was set to zero. If w; < wypresh, then no step
was taken and f was incremented while & remained constant.

C. Implementation

The presented optimization algorithm was implemented
in Python. The Python scripts took in measures of ¢; and
communicated p; values via serial connection to a real-time
control board (dSPACE, Inc., Northville, MI) that ran the
control loop described in Section II-B. This real-time control
board also received measures of vertical ground reaction force
from the instrumented treadmill and determined instances
of heel strike or toe off. Based on these gait events, the
controller calculated appropriate actuation control signals and
sent them to the pressure valves. The valves regulated the
pressurized artificial pneumatic muscles proportional to the
received control signals. A list of parameter values used during
actual data collection can be found in Table I. We chose
these values based upon simulation results of the optimization
routine. These simulations assumed a Gaussian distribution
in respiratory measurement noise, an average metabolic time
constant, and a hypothetical physiological objective function.
For safety reasons, we bound p* between 0.21 and 0.50 in
implementation, yet these limits were never needed to be
enforced during actual subject testing.

An important parameter in the algorithm is the time constant
7 of the metabolic dynamics. There are a number of ways to
estimate 7, and it was shown in prior work that it could simply
be approximated by a constant value of 40 seconds [17]. For
this work, we chose to use the SSCM data to estimate subject
specific estimates of 7 as this data was readily available. We
averaged the final three minutes of each powered condition
to establish a breath dependent estimate of the instantaneous
metabolic cost, T (p;). Using Z (p;) and (1), we estimated
metabolic cost for a given 7 and ¢;. Constraining 7 and ¥
to positive values, we used MATLAB’s Optimization Toolbox
(The MathWorks, Inc., Natick, MA) to determine the 7 and

71 that resulted in the smallest sum of squared error between
actual metabolic measurements, J;, and estimated metabolic
measurements, i;. That is to say,

n

. NN
mme:Z(yi—yi) .

g
»Y1 i1

(14)

We only used powered condition data for this fit beginning
from the steady state of the first parameter as shown in
Figure 6. An example of the optimization being performed
with this subject specific 7 and the variable values presented
in Table I is shown in Figure 7.

V. EXPERIMENTAL EVALUATION

To validate the Body-in-the-Loop optimization techniques,
we tested the presented algorithm on healthy subjects wear-
ing the bilateral ankle exoskeletons described in Section
II. All testing was in accordance to the University of
Michigan’s Medical School’s Institutional Review Board
(HUMO00070022), and all subjects gave informed written con-
sent to participate in the study prior to testing.

A. Experimental Protocol

We tested the proposed optimization techniques on nine
healthy participants. Of these nine participants, four had never
walked in a powered exoskeleton before. Only male partici-
pants were tested due to the large shoe size requirement of
the exoskeleton design. One subject (Subject 2) was deemed
an outlier due to inexplicably noisy respiratory measurements
(a signal to noise ratio ~2). The eight remaining subjects
presented here (age: 23 £ 6 years; body mass: 72.2 + 5.3 kg;
height: 179.44+7.7 cm; mean £ SD) walked in bilateral robotic
ankle exoskeletons during three separate testing days.

On the first two days of testing, we performed the SSCM
protocol explained in Section IV-A to establish subject specific
ground truths. Day one was used as a training day for subjects
to learn and adapt to walking in the device. The data from day
one has therefore been disregarded in this analysis. We used
the SSCM data from the second day to establish a ground
truth and to estimate subjects’ time constants 7. All differences
in steady state metabolic measurements of the repeated first,
fifth, and ninth parameters were within the expected levels of
measurement noise. On the third day of testing, we tested the
proposed optimization scheme on each subject starting from a
randomized start position, p'. The optimization algorithm was
run for 50 minutes before terminating. All walking took place
on a split belt treadmill (Bertec Corporation,Columbus, OH)
at 1.2 ms~! and all measurements of metabolic effort were
taken using a portable open-circuit indirect spirometry system
(CareFusion Oxycon Mobile, Hoechberg, Germany).

TABLE 11
AVERAGE RESULTS

Mean Standard Deviation
Time Constant 7
(Seconds) 47.8 +12.4
Absolute Error in
Minimum p 0.097 +0.077
(Unitless)




B. Results

Table II shows the average results from all eight subjects. On
average our optimization techniques terminated at a parameter
setting 0.097 away from the optimal parameter setting iden-
tified from the SSCM protocol. According to the established
subject specific ground truth curves, this parameter error would
result in an average increase of 0.056 W kg~! in metabolic
power. This increase is well within the range of sensor noise
for respiratory measurements. However, to put this increase
of 0.056 W kg~! into perspective, subjects experienced a
0.80+£0.18 W kg—! (mean+SD) decrease in metabolic power
between the maximum and minimum values of the established
ground truth curves. This accounts for an average reduction
of 19.6 + 3.2%. In comparison, the parameters found by the
optimizer resulted in an average reduction of 18.0 +4.6% in
accordance to the established ground truth curves.

VI. DISCUSSION & CONCLUSION

The experimental work presented in this paper shows that
Body-in-the-Loop optimization can be a viable tool in the
development and tuning of controllers for assistive robotic
devices. For all subjects, the presented algorithm was able
to autonomously minimize a physiological objective function
in real-time. The key novelty in this context was that the
optimization was based on physiological measurements of
human effort. These are measurements that provided direct
and objective feedback about the performance of the assistive
device. From the perspective of a roboticist, this is a radically
new way of human-robot-interaction. This interaction was
neither based on a physical exchange between the robot and
the user through forces and velocities (which are, however,
used in the controller of the exoskeleton) nor was it based
on the exchange of information through a designated user
interface or a neuro-interface. Instead, the proposed methods
allowed a robot to directly react to the physiological state of
the user, a state which may not always be obvious or may not
even be consciously known to the users themselves. With the
development of more unobtrusive sensing technologies, such
as skin conductance, heart rate, oxygen saturation, etc., this
will allow a continuous and seamless adaptation of robots
to their users. While the methods presented in this paper
have focused on metabolic effort as the objective function,
other physiological states might prove interesting candidates
for optimization. This includes pain, comfort, training effort,
and others. Of course, there is an even greater challenge of
quantifying these states than of measuring metabolic effort.

Additionally, the proposed Body-in-the-Loop optimization
techniques allow for parameter exploration of actuation shapes
that may not be considered using traditional shaping methods.
Currently, researchers shape actuation profiles of assistive
devices to match actuation profiles of healthy, unassisted joints
[21]. However, it has been shown that when using an adaptive
controller, subjects may drive the controller adaptation to use
abnormal actuation profiles that still appear to minimize a
physiological objective [28]. Due to the inherent parameter
exploration of optimization, Body-in-the-Loop optimization

could potentially find optimal actuation shapes that may be
disregarded by traditional shaping methods because they do
not resemble healthy joint actuation profiles.

We fully acknowledge that at this stage, the presented
concept of Body-in-the-Loop optimization is still limited. For
one, the model we used to estimate metabolic effort combines
any time constants associated with learning effects with the
estimated time constant of the subject’s metabolic system, 7.
For this initial study we felt that modeling learning effects
would over complicate the methodology, so we attempted
to wash out any learning effects by training subjects on the
assistive devices for an adequate amount of time prior to data
collection (day one of testing) [19]. Also, at this point the
proposed sensor choice to estimate the physiological objective
of metabolic effort from respiratory measurements is not
practical for daily use outside of the lab setting. For Body-in-
the-Loop optimization to be applicable for continuous use on
assistive robotics, more discrete and transparent sensors and
estimation methods need to be developed. Furthermore, we
assessed the metabolic effort under deterministic conditions,
being that subjects were walking with constant speed and on
level ground. This ensured that changes in metabolic effort
were strictly related to changes in the timing parameter.
For the proposed methods to work outside the laboratory,
we will have to extend the algorithms to control for any
changes in the subjects locomotion pattern that might influence
the physiological cost function. Such disturbances (such as
varying walking speed or ground slope) must be either detected
and compensated for, or data must be averaged over longer
periods of time. Lastly, the devices used in this study are not
an accurate representation of the current state of the art in
ankle exoskeletons [31, 33]. Our devices were tethered to an
air supply which constrained them to only being used in a
lab setting. Also, these exoskeletons were bulkier and heavier
than the current state of the art, resulting in a larger increase
in metabolic effort when comparing unpowered walking in the
exoskeletons to walking with no exoskeletons at all. From pilot
data, we saw that our exoskeleton design can reduce metabolic
effort slightly below that of walking without the device when
at an optimal parameter setting, yet this reduction was small.
However, these exoskeletons were solely meant to perform as a
platform to test the Body-in-the-Loop optimization techniques
on and they greatly served that purpose.

Though we have validated that Body-in-the-Loop optimiza-
tion is a viable option for the control of assistive robotic
devices, we have only scratched the surface on the possible
applications. We plan to expand upon the presented techniques
to include alternative physiological objectives and sensing
techniques to allow for discrete and continuous optimization
during daily routines. Additionally, we plan to expand the
techniques to include multidimensional optimization as most
assistive devices can have upwards of ten shaping parameters
[5]. This expansion into multidimensional space could have
major implications to the field as the time required for brute
force mapping of physiological objective functions grows
exponentially with increased dimensionality.
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