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Abstract—In this work, we use first principles of kinematics to
provide a fundamental insight into mechanical power distribution
within multi-actuator machines. Individual actuator powers—not
their net sum—determine the efficiency and actuator size of a
multi-joint machine. Net power delivered to the environment
naturally discards important information about how that power
is generated. For example, simultaneous positive and negative
powers will cancel within a mechanism, wasting energy and
raising peak power requirements. The same effect can bias power
draw toward a single actuator while the other actuators do
zero work. In general, it is best for all actuators to contribute
equally to the net power demand because balance minimizes the
mechanical power requirements of individual actuators. In this
paper, we present the actuation power space, within which we
measure the antagonism in a machine (joints working against
each other due to kinematic constraints). We show the difference
between the net power consumed by the task and the total power
supplied by the actuators. We derive the power quality measure as
a smooth objective function which encodes both antagonism and
the balance of power between actuators. As a demonstration of
our general framework, we apply our technique to a legged-robot
design to find improved kinematics for performing a running
gait. This technique finds mechanisms with optimal power
distribution, regardless of actuator choice or loss models, so
it can be applied early in the design process using mechanism
kinematics alone. After choosing appropriate kinematics for an
application, designers can independently optimize each actuator
in a design to minimize local losses.

I. INTRODUCTION

It is often assumed that mechanical power output determines
the power requirements of a machine. However, mechanical
power requirements at the actuator level can be substantially
greater than the net power requirement. Kinematic constraints
may force some actuators to do work which opposes the task
requiring other actuators do extra work to compensate. This
degrades system performance and leads to larger requirements
for the power supply and actuators.

In this paper, we show that antagonisnﬂ can be avoided
through the careful selection of mechanism kinematics relative
to the task. As an example of this principle, consider a two-axis
linear positioning table that performs a simple translation
under load. Figure [Th shows the power profile for a poor
alignment with the task: one actuator produces excess power
while the second actuator brakes (i.e. applies force opposite to

IThe task is the trajectory of force-velocity pairs at the robot’s end-effector
(both linear and rotational) which requires some net mechanical power over
time. The task can represent anything from lifting boxes to walking or running.

2We use the term antagonism as the extent to which one or more of a
robot’s joints do work contrary to the task: if the net power required by the
task is positive, negative actuator powers are antagonistic, and vice versa.
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Figure 1. Configuration and mechanism choice can dramatically change the
power requirements for an application. In this example, an x—y table must
resist the applied force while translating at a constant velocity. The device
must hold its output on the path as well as push it along the path. While the
task requires a positive net power Pyt = 2 kW, the kinematic constraints (i.e.
the mechanism itself) in configuration (a) require that joint A generates 3 kW
of power because joint B is dissipating -1 kW of antagonistic power. Both the
excess and removal of power will increase actuator power requirements and
exacerbate conversion losses without contributing to the task. By adjusting the
mechanism (in this case, rotating the table relative to the task), configuration
(b) requires only 1 kW out of each joint by evenly balancing the 2 kW output.

Figure 2. Plotting actuator powers in the power space shows how alignments
(a) and (b) from Figure [[|move the operating point of the system and how that
point is constrained to the net power line (or hyperplane in higher dimensions).
Regions with opposing sign (hashed area) indicate antagonistic power use, and
the primary diagonal indicates balanced power use (P; = P»). This paper
presents several measures on this space.



its velocity). The alternative orientation in Figure [Ip balances
the power output between both actuators, optimally delivering
the required net power to the environment. This small
configuration change lowers actuator A’s power requirement
by two-thirds. In more sophisticated applications, a similar
change might only be possible during the design stage.

The operating points of the x—y table can be plotted in
what we call the power space (Figure [2). This space has
one axis for each joint power and makes it easy to see when
a point or trajectory contains antagonistic work. This is the
n-dimensional space in which we will measure the quantity of
antagonism for any general n-DoF mechanism. In addition, we
present the power quality measure as a principled, smooth,
gradient-rich objective function for trajectories within this
space, thereby ranking the mechanisms which generate them.

Performing a kinematic power quality optimization will
minimize each joint’s required mechanical power output, after
which designers can optimally select motors and gearheads to
minimize local lossesE] Power quality can be studied early in
the design process before actuators are even specified.

Even when the cost of actuator antagonism is outweighed
by other design features (e.g. workspace size, manipulability
[20], maximum output force [L1], or reduced complexity),
any extra antagonistic power must still be accounted for.
As such, understanding antagonism remains important for
properly specifying a robot’s actuation and power systems.

The following sections will discuss our definitions of the
actuation power space, net power, and total power, quantify
the amount of antagonistic work being performed in an n-DoF
application, derive the power quality measure, and provide an
example analysis for three different leg designs following a
spring—mas running gait.

II. RELATED WORK

Antagonism can appear in any system with more than one
actuator. It is present in high-DoF systems such as humanoid
robots [8], and can even dominate the power requirements
of some robots such as the compliant ATRIAS biped. For
example, nearly all of the actuator power during the normal
operation of ATRIAS is antagonistic due to the pantograph
leg design [7]. During the stance phase of a walking or
running gait, leg-length forces decompose into two equal and
opposite joint torques, while the leg sweep requires equal joint
motions. This combination of torque and speed leads to equal
and opposite work from each actuator. Actual peak-to-peak
mechanical actuator powers for an ATRIAS leg are 50% larger
than the task requires, as seen in Figure [3| and the unsigned
work done by the actuators is 65% larger than necessary. In
the ideal spring-mass case where the net power is zero, the
pantograph leg design performs at zero efficiency and can
waste an arbitrarily large amount of energy.

3For example, an electric motor behind a gearhead will require additional
power to accelerate the rotor inertia, the motor has a resistive cost to generate
torque, there are eddy losses in the iron, and the gearhead has friction.

4Reduced-order model which describes walking and running [3] [3].
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Figure 3. Real walking data from the ATRIAS biped (1.5 m/s, 60 kg robot)
shows that pantograph legs can amplify the power requirements for legged
locomotion. Powers are calculated at the actuator output, so they exclude
actuator losses and energy stored in the springs. For the sample step data,
ATRIAS’s actuators do -2 Joules of net work, joint A generates 90 Joules,
and joint B dissipate 92 Joules. There is also a 50% increase in peak power
requirements above the net power required by the gait.

Waldron and Kinzel [17)] originally discussed the idea
of “geometric work”, which is based on the notion that
backdriving actuators waste power. Song and Lee [14] noted
that perhaps the purpose of a task is to remove energy,
so actuator braking is sometimes favorable. With a negative
net power, the forward-driven actuators are actually the
undesirable component, rather than back-driven ones.

Internal power opposition is similar in concept to internal
forces in parallel manipulators [[19]. For example, an array of
arms where each has a point of contact with a rigid object
will have an inherent freedom in how to generate a net force
on that object. In cases like this, the manipulators can apply
arbitrary internal forces which cancel in their summation.

Titus and Spenny [16] use detailed electric and hydraulic
motor models to find a machine’s expected real efficiency.
Other power optimizations find optimal motor—gearhead pairs
for a joint’s torque and speed trajectories [13} [12]. Motor
power models will catch the effect of antagonism if applied to
a multi-actuator system, because mechanical power is present
in every motor model. Actuator selection and the implied loss
models have no impact on their required mechanical power
outputs, so optimization of individual actuators cannot improve
a mechanism with low power quality.

Abate et al [1] used a special-case solution to antagonism
for a spring-mass leg design where only one actuator performs
work. The resulting mechanism has one leg-length actuator
and one leg-angle actuator. During locomotion, the leg-length
actuator resists the leg-length forces and the leg-angle actuator
orients the leg, so only the leg-length actuator does work.

Manipulability scores [20, [10, 9] measure the ability of
different kinematics to coordinate a set of joints in exerting
force or moving through the environment. Interestingly,
mechanisms with good manipulability scores can have
arbitrarily poor power quality. For example, the pantograph
mechanism in the ATRIAS leg has a manipulability ellipsoid
with high isotropy, but requires the actuators to do equal and
opposite work during stance (100% antagonistic work).



III. DERIVING MEASURES ON THE POWER SPACE

The antagonistic effects we are considering arise because the
mapping from task to individual actuator powers inherently
depends on the mechanism-induced actuator basis, even
though the net power flux through the mechanism is
independent of the choice of basis. This situation—which
is analogous to how the [L; norm depends on a
choice of direction even though the Lo norm is rotation
invariant—has some subtle aspects, so in this section we
provide a first-principles discussion of power calculations in
mechanisms’ actuator spaces.

A. Actuation Tuples

Kinematic constraints in a mechanism map the task’s
forces and velocities into actuator torques and speeds,
thereby determining the individual power requirements of each
actuator. For simplicity, we refer to forces and velocities in
the work space as f and &, and those in the actuator space
as 7 and 6. This notation matches the respective translational
and rotational nature of the spaces in our example systems,
but this choice is not limiting; both sets of coordinates are
fully-generalized forces and velocities.

The Jacobian matrix describes the mechanism kinematics
at a point 6 in its configuration space, and maps forces and
velocities between the configuration and task spaces,

J(0) = [g—; % ggjt] (1)
T=fJ )
Jb = i, (3)

where f and 7 are row vectors (covectors) of force and
torque components. We make no rank assumptions about
the Jacobian; we only assume there exists a method for
determining actuator speeds from the task VelocityE] Actuator
torques are always defined for any rank.

Given the force f(t) and velocity (¢) trajectories for a task,
designers can find the torque 7(t) and speed 6(t) trajectories
in the configuration space. When using the physical actuator
basis, the components of these vectors represent the torque
and speed of individual actuators,

7(t) = (11(t), 72(t), . . ., Tn (1)) )
e(t) - (él(t)aé2(t)v~~~aén(t))' @)

Round braces are used to distinguish vectors from tuples,
where the elements of a tuple refer to physical actuator
quantities, and elements of a vector are an artifact of the basis
used to measure that vector.

The element-wise productE] of torque and speed using the
physical actuator basis gives the actuation power tuple,

P(t)=7(t)o G(t) = (7191, T90s, . .. , Tnbn) (6)
:(Pl(t)aP2(t)""7Pn(t>)7 @)

SFor redundant mechanisms, there can be many sets of joint speeds which
result in the same end-effector velocity. This does not limit our analysis, but
it does require an additional motion-planning step to select a unique joint
trajectory for evaluation (see Section [[V] and Section [VII).

6ak.a. the Hadamard product: a o b = (a1b1, azba, ..., anbn)

i.e., the set of powers flowing into or out of each actuator.
We call the space of all possible power tuples the
power space. Tuples are plotted as points within this space.

B. Net Power, Total Power, and Antagonism

Net and total power measures on the power space can
be combined to measure the quantity of antagonism in a
power tuple. We use the net power as a measure of task
energy requirements and the total power as a measure of how
mechanical energy is being used within the mechanism.

Net power is the signed power flowing to the task. This
power is equal to the sum of the terms in the power tuple, and
also to the dot product of the force and velocity in either the
work space or the configuration space,

Pu(P)=%P, = f-i=7-0. (8)

We define total power as the measure of energy flowing
through the actuators. It is calculated as the unsigned sum
(the Ly norm) of the tuple powers,

Ptotal(P) = Z‘Pz‘ (9)

Unlike the force—velocity product in the net power (which
is coordinate-invariant), the total power calculation inherits a
coordinate dependence from the L; norm. Consequently, it
takes on different values depending on the chosen kinematics.
Piotar is never less than the magnitude of P, but can be
considerably greater for some applications.

Any power which does not flow to the task appears twice in
the total power: once to be emitted and once to be absorbed.
Accordingly, the antagonistic power can be written as half
the difference between total and normed net power,

1 1
Pant(P) = 5 (E|Pz| - ‘E-le) = §(Rotal - ‘Pnet|)~ (10)

If all actuators are performing same-sign work, total and net
power will be the same and cancel. Or, if any actuators are
performing opposite-sign work, the total power will be greater
than the net and the antagonistic power will be non-zero.

Figure [] plots net power, total power, and antagonistic
power over the actuation power space in RZ. Note that
antagonism only exists in regions where some elements in the
power tuple have opposing signs. In R?, these are quadrants
IT and IV. Antagonism is zero in the regions containing the
1-tuple’s span (power tuple of ones, quadrants I and III). There
are only two such regions in the power space, regardless of
dimension. As robots gain more degrees of freedom, there are
more possible permutations of opposite-sign powers.

C. Power Quality

The basic antagonism measure does not make a good
objective function for two reasons: first, it has a discontinuous
first derivative; and second, regions where antagonism is zero
are entirely level. In the level regions, there is no gradient
information for an optimizer to follow. While these regions
are technically antagonism-free, there is a robustness benefit
for being further away from the antagonistic regions (see the
analysis results in Section [V)).
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Figure 4. The total, net, and antagonistic power measures in the R? power space. Net power is required by the task, total power represents the quantity of
power use within the mechanism, and antagonism is a measure of the excess power being used inside the system. The 1-tuple is an important axis, because

it defines the two regions (in any dimension) where antagonism is zero.
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The power quality formula in two dimensions reduces to the product 2P; P>, which is a saddle centered at zero. Maximizing the power quality

will minimize antagonism with solutions P;" = P;. The power quality is an effective objective function due to its smoothness and gradient information, even

in the regions of zero antagonism.

Following the derivation in Appendix A, we define the
power quality measure as the difference between the squared
sum of powers and the sum of squared powers,

Q(P) = (SP)* — X(P?). (1)
Note the similarity of the power quality to the antagonism
measure by squaring terms instead of normalizing terms. The
power quality is a polynomial function in P, has rich gradient
information, and has C* continuity. Maximizing this function
minimizes antagonism and balances power. As is demonstrated

in Appendix B, constrained maximization of the power quality
results in the equal distribution of power among all actuators,

P*=(fu Ba | Iw)= P;;e‘l, (12)
where 1 = (1,1,...,1) is the 1-tuple (the sum of the positive
basis vectors of the power space).

In R2, the power quality is a saddle function centered
at zero, where same-sign powers have positive values and
opposite-sign powers have negative values,

QP P) = (P + P)? — (P*+ ) =2P P (13)

Figure |5 shows the power quality measure in R?.

IV. OPTIMIZATION STRATEGY

Using the power quality measure, our design process
searches over the space of mechanism topologies for
kinematics which are aligned with a given task. Each
point in the search space will be a mechanism—task pair
(or ‘application’) (J (@), f(¢),4(t)) and produce a trajectory
P(t) in the actuation power space. If there are redundant
mechanisms in the search space, there must also be a control
law for determining a unique joint trajectory. Alternatively, the
optimizer could search for the joint trajectory which produces
the best power trajectory for that mechanism.

Selecting a mechanism/inverse kinematics law for a task
uniquely determines the torques and speeds at each joint.
Designers can then optimize each actuator’s motor—gearhead
pair in isolation, using the torque—speed trajectory as the task
and treating the actuator as a 1-DoF system. This method
reduces the search space for a full design from K + NM
dimensions to one search across K dimensions and NV searches
across M dimensions, where K is the dimensionality of
potential mechanisms, N is the number of actuators, and M
is the dimensionality of the actuator designs. For example,
searching over 20 mechanisms with two motor-gearhead
pairs chosen out of 100 motors and 100 gearheads would
traditionally require (20 x 100 x 100 x 100 x 100) = 2 x 10°
evaluations. Our method uses only (20) + (100 x 100) +
(100 x 100) = 20 x 10 evaluations.



V. DESIGN EVALUATION

As an example study, we consider the ability of legged
robots to efficiently perform a running gait along a spring-mass
trajectory [5]. We show a correlation between power quality
and a robot’s robust efficiency and peak actuator power, and
we show how power quality can distinguish two designs which
seem equally efficient. Although we simulate the efficiency of
these designs, only the power quality is required in practice,
because it is an indicator for these other features.

We evaluate three hand-picked mechanisms (Figure [Gp).
First, a parallel design similar to the ATRIAS leg design, with
each link being driven relative to the hip. Second, a serial
design with two links, a hip actuator, and a knee actuator.
Third, a serial-link mechanism with a hanging center of mass
which we call the spider design; the hip joint is elevated
by 40 cm relative to the other designs, and link lengths are
increased by 20 cm to compensate. Forces at the toe continue
to be directed through the CoM, but the line of action no
longer intersects the hip.

For the purposes of our example, we investigate rigid,
massless mechanisms onlyﬂ There is no energy stored within
the mechanisms. We also ignore the kinetic energy lost to
inelastic collisions with the ground and any frictional losses.

We select a human-like gait with a peak vertical force of
just above 2x body weight and a peak-to-peak vertical CoM
displacement of roughly 7 cm. Table [[] provides parameters for
generating the spring-mass gait which the robots follow. This
gait has the robots running at an average speed of 2.9 m/s
(9-minute mile), taking roughly 1-meter strides. We have
selected an equilibrium gait, so each step will be identical
to the last and we only need to simulate a single one.

For each design, we use inverse kinematics to determine
its actuator torques and speeds. There are many methods
for finding joint positions for redundant mechanisms [6} (18}
15]], but in this case, we use constrained minimization via
MATLAB’s fmincon function. We find the actuator power
trajectories for each design as follows:

Design kinematics: = = X(6), J =0X/00 (14)

Task trajectory:  x(t), f(t) (15)

Solve for joint positions: 6(¢) s.t. X( () ==z(t) (16)
Joint torques: 7;(t) = fi(¢)J(0(t)) (17)

Joint velocities:  0;(t) = d9 ( )/dt (18)

Joint powers:  P;(t) = 7;()6;(t) (19)

We estimate the true energy consumption of each design
with a simple, zero-regeneration motor model that discards
negative power,

Prg(t) = ) max(Fi(t),0)
! Preg(t)dt.
0

(20)

E = @21)

"When applying this analysis to a compliant mechanism, actuator powers
and antagonism continue to be calculated using torques and speeds at the
actuators’ outputs, regardless of the dynamics of the mechanism.

Table 1
GENERATIVE SPRING-MASS PARAMETERS

Quantity Value Units
Mass 75 kg
Stiffness 1.1x10* N/m
Apex height 0.93 m
Apex velocity 3 m/s
Neutral length 1.0 m
Touchdown angle 0.4 rad
Gravitational constant 9.81 m/s?

RESULTING GAIT

Peak Force 1560 N
Stride Period 0.3578 S
Stride Length 1.036 m

Average Speed 2.9 m/s
CoM Peak-to-Peak 0.0717 m

Differences in kinematics lead to diverse power
requirements (Figure [6p). The parallel design has the
actuators fighting through the entirety of stance phase (i.e.
they supply opposite-sign power). Because the parallel
actuators fight each other, the actuator power requirements go
up, peaking at 2.3 kW (1 kW above the peak power required
by the task). The spider design has both actuators supplying
the same sign of power always, because the line of action of
the task force crosses the hip joint exactly when the motion
of the knee joint reverses. Because the spider actuators assist
each other, the actuator power requirements go down, peaking
at 1.0 kW (0.3 kW below the peak net power).

Using the mechanical power trajectories along with our
minimal motor model, we calculate each robot’s mechanical
cost of transpo (MCoT). We find that the parallel design
requires 330 Joules per step (220 Joules in excess of the
required task work) and both the serial and spider designs
require 110 Joules per step (which is bounded by the net task
work of 110 Joules). These correspond to MCoTs of 0.43 and
0.14, respectivelyﬂ

Even when the serial and spider designs are equal in
MCoT, the spider sees a robustness benefit when we consider
variations in the power-space trajectories (Figure [6k). If the
nominal trajectory rides the line between antagonistic and
cooperative power regions (as with the serial design) these
power variations can bring the system into an antagonistic
region, causing the average MCoT to increase. If the nominal
trajectory is in a cooperative region (as with the spider design)
it is likely to stay there and experience less variation in the
step cost. For random offsets of 41 rad/s to the actuators’
speeds and £100 N-m to the actuators’ torques, we find that
the average MCoT is least for the spider design, and that it
has the smallest standard deviation in MCoT.

8The energy required to move a weight a unit distance (E/mgd).

9For reference, a human has a mechanical cost of transport of 0.055 [4].
Running at roughly 2.9 m/s, a 75 kg human requires an average positive work
of 42 Joules per step. The leg designs have a task with a higher energy bound,
because humans benefit from storing elastic energy to help offset the cyclic
work requirements in walking and running [2].
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Figure 6. (a) Three candidate leg designs perform a single running gait with a variety of (b) resulting mechanical power requirements. The parallel design is

the least balanced in terms of power use, the serial design is biased toward a single actuator, and the spider design’s actuators share the net power generation.
The simulation uses a basic motor model to estimate the step cost, which is represented by the positive area under each power trajectory. The step cost will
fluctuate when (c) the task is perturbed, leading to an average step cost along with a standard deviation in cost. The farther a power trajectory travels through
an area with high power quality, the better the power sharing, peak power requirements, and resulting step cost will be.

Table II
RESULTS
Quantity Parallel ~ Serial ~ Spider  Units
Nominal peak power 2.3 1.3 1.0 kW
Nominal MCoT 0.43 0.14 0.14
Average MCoT 0.45 0.18 0.16
StdDev MCoT +0.08 £0.04  £0.03
Mean power quality -2,600 0.00 150

Table [[I] shows the mutual correspondence of mean power
quality with the nominal peak power, nominal MCoT, average
MCoT, and MCoT variation for the three designs in this study.
The actuator coordination seen in the spider design is not
something that appears when looking at the MCoT, but it is
captured by the power quality.

Even though we have found a mechanism with high-quality
kinematics, the design is not complete without specifying
motors and gearheads for the actuated joints. We end our
analysis here, however, as there is already a large volume of
knowledge dedicated to loss models and actuator optimization.

VI. CONCLUSIONS

Peak power demand and efficiency are driven by the
individual actuators, not the net power requirements of the
task. We present the actuation power space and the power
quality measure as tools for understanding and optimizing a
design’s kinematic power distribution, thereby minimizing the
work required out of each actuator. Understanding the effect
of the mechanism kinematics is critical, because no amount of
actuator optimization can remove antagonism from a system
or re-balance mechanical power.

Antagonism can be minimized by selecting mechanism
kinematics which are appropriate for a given task. In our
example, this is done using the power quality as an objective
function for candidate designs. We show how antagonism
affects the energetic cost of legged robots performing a
spring-mass gait, both in their mechanical cost of transport
and the power-sharing between actuators. By sharing power
between the actuators, the spider design has lower actuator
power requirements and is more energetically robust to
variations in the gait.

Antagonism represents an important, fundamental feature of
the kinematic constraints of mechanisms. The power quality
metric is simple to calculate, but can yield large benefits when
informing a mechanical design.



VII. FUTURE WORK

While we did not explicitly consider redundant manipulators
in this work, it is possible that the added freedom of choosing
joint velocities would allow a robot to avoid antagonism for a
larger set of tasks, maybe even all tasks. For every additional
degree of freedom beyond those needed to span the task space,
there will be one additional degree of freedom in the null
space of the mechanism kinematics. This could allow for the
power tuple to be programmatically moved through the net
power plane in real-time, such that it is always near the optimal
distribution of powers among all the robot’s actuators.

We also did not consider the effect of inertial forces on a
rotating trunk, but it is likely that using a pitching torso could
better balance the actuator powers. Such a design might have
three links, like the spider design, but use a forward center
of mass so that the hip and knee work together to extend and
retract the virtual leg between the CoM and the toe. With equal
torques and speeds for each actuator, this design would evenly
distribute the task power. It is possible that this is why some
animals incorporate a pitching cycle into their gait.
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APPENDIX A: POWER QUALITY DERIVATION

We derive our target from a function of the distance r from
the origin and angle ¢ from the 1-tuple in the actuation power
space:

qg=r? cos(2¢), (22)

where < is used instead of r to ensure smoothness.
Remembering that ¢ is the angle from the 1-axis, the cosine
of 2¢ has high points along the 1-axis and low points
perpendicular to the 1-axis. We can rewrite this equation in
terms of components of the power tuple P;. For a power space
of dimension n, let us define the 1-tuple as

1= va.

We can get any power tuple’s angle from the 1-tuple via the
dot-product and its distance from origin via its magnitude:

e (LR o (30
b = cos <|1|P|)‘C°S (ﬁ)

Y(P;?).

2

1=(1,1,...,1), (23)

(24)

(25)

T =

Plugging these terms into the power quality and reducing the
cosine-anticosine term, we find

q(P) = r?cos(2cos™*(-)) = r? [2(')2 - 1} (26)
o (2P 2

- (ﬁ) =

2 (2P)? - S(P2), (28)

n

The 2/n arrives because the coordinate axes for dimensions
higher than two are not 45° from the 1-axis, making cos 2¢
nonzero along the axes. Antagonism engages at the coordinate
axes in power space, and we desire the same behavior from
the power quality, hence we remove the 2/n. This is simple
enough to prove by looking at the case where only one power
in the tuple is nonzero: (XP;)? — X(P;?) = P;*> — P;* = 0.
This would not be the case in general if we had included the
2/n term.

APPENDIX B: MINIMIZATION EQUIVALENCE

Maximizing a machine’s power quality will inherently
minimize the sum of squares of actuator powers and make
the actuator requirements as low as physically possible. We
can show this by solving two minimization problems, one for
least-squares and one for the power quality. First, we solve for
the least-squares power subject to the net power constraint:

fP) =P+ R*+ -+ P2
st. gP)=Pi+Po+--+ P, — Pt =0.

min.

As discussed, the constraint function represents a hyperplane
perpendicular to the 1-axis. The sum of squared joint powers
will have spherical level-sets in power space, so the solution
to this minimization is a point coincident with both the
hyperplane and the smallest possible hypersphere. These
points are proportional to the I-tuple. We can solve this
minimization problem using the Lagrange Multiplier method:

Vf=AVg
V(ZPiQ) = AV(ZP; — Pe)
2P* =1
P*=)1/2

Solving for lambda by plugging P* back into the constraint
equation gives

Q(P*):P1+P2+"'+Pn:Pnet
:n)\/2:Pnet — )\:2Pne[/n
Pne[

= P* = 1
n

Maximizing the power quality subject to the same constraint
is the equivalent problem:

Q(P) =%(P?) - (EP) = f(P) — (ZP)?
st. g(P)=XP, — P =0.

min.

which results in

V@ = A\Vy
V(EP?) = V(EP)? = AV(EP; — Paer)
2P* — 2(SP)V(SP) = Al
2P" — 2P, 1 = A1
P* = (A/2+ Po)l



and again solving for lambda through the constraint equation

g(P*) =XP; = Pt
=n(A/2+ Piet) = Poee = A=2(1/n—1)Py
Pnel
n

= P = 1

which is the same solution we had for explicitly minimizing
the sum of squared powers.

As a result, past optimizations which focus on the
least-squares optimization of actuator powers will inherently
minimize antagonism, whether or not that is the goal.
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