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Abstract—We introduce a novel paradigm for model-based
multi-object recognition and 3 DoF pose estimation from 3D
sensor data that integrates exhaustive global reasoning with
discriminatively-trained algorithms in a principled fashion. Typ-
ical approaches for this task are based on scene-to-model feature
matching or regression by statistical learners trained on a large
database of annotated scenes. These approaches are fast but
sensitive to occlusions, features, and/or training data. Generative
approaches, on the other hand, e.g., methods based on rendering
and verification, are robust to occlusions and require no training,
but are slow at test time. We conjecture that robust and efficient
perception can be achieved through a combination of generative
methods and discriminatively-trained approaches. To this end,
we introduce the Discriminatively-guided Deliberative Perception
(D2P) paradigm that has the following desirable properties:
a) D2P is a single search algorithm that looks for the ‘best’
rendering of the scene that matches the input, b) can be guided
by any and multiple discriminative algorithms, and c) generates
a solution that is provably bounded suboptimal with respect to
the chosen cost function. In addition, we introduce the notions
of completeness and resolution completeness for multi-object pose
estimation problems, and show that D2P is resolution complete.
We conduct extensive evaluations on a benchmark dataset to
study various aspects of D2P in relation to existing approaches.

I. INTRODUCTION

The predominant objective of robotic perception systems
is to identify and locate quantities of interest in the physical
world. In many cases, these quantities of interest are specific
object instances whose 3D models are available, such as
objects on a warehouse shelf, or parts on an assembly line. In
the early days of machine vision [21], researchers abstracted
the instance detection problem as a “blocks world” problem in
which the task was to identify the pose of specific blocks in a
2D image. The methodology used was one of “inverse optics”
or analysis-by-synthesis, where a search was performed for a
configuration of blocks that best explained the input 2D image.
The definition of “best explanation” was chosen to be that of
a matching between model and scene primitives such as edges
and corners, so that effects of illumination on the raw pixel
intensities could be bypassed.

While the methodology of the blocks-world research seems
appropriate for instance-detection problems in robotics, it has
not found widespread adoption for two major reasons: i) the
problem of determining primitives/features that are invariant
to nuisance parameters has been hard enough for real-world
images that it has become its own line of research, and ii)
performing an exhaustive search for the best global hypothesis
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Fig. 1: (a) The input RGB-D scene. (b) The depth image reconstructed
by our algorithm superimposed on the input. (c¢) & (d) High confi-
dence detections from a region-based convolutional neural network
for the milk jug and carton. This example shows how D2P can use the
hypotheses generated by a discriminative learner in a global search
for the best explanation of the scene.

is computationally infeasible for real-world systems. Con-
sequently, much of the recent work in 3D object detection
and pose estimation has dealt with developing better feature
representations [25, 2, 4], or learning algorithms that can
generalize from limited training data [26, 8]. This is also
evident from the instance-detection algorithms used in the
recent Amazon Picking Challenge [7], most of which were
based on scene-to-model feature matching.

One of the drawbacks of using scene-to-model feature
matching or learning methods for multi-object instance de-
tection is that they do not handle the combinatorics of the
problem. Typical approaches proceed by obtaining a set of hy-
potheses for each object in the scene using the aforementioned
methods, and then perform some sort of global refinement
that takes various geometric constraints into account [3]. A
fundamental problem with such methods is that they can fail
to produce a feasible global solution, as conflicts between the
initial set of hypotheses could be irreconcilable. Moreover,
methods that ‘train’ on single-object instances often have
difficulty in scenes where objects are occluded [27], and
resort to post-hoc occlusion reasoning to account for missing
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features. While training these methods on combinations of
objects might help, dataset generation becomes expensive and
scales poorly with the number of objects.

In our earlier work, Perception via Search (PERCH) [16],
we proposed an analysis-by-synthesis method that uses a tree
search decomposition and parallelization to facilitate exhaus-
tive global search for the rendering that best matches the
input. However, PERCH is entirely generative and does not
leverage the efficiency of fast discriminative algorithms that
do perform well when test and training scenes are similar.
While we build on PERCH’s theme in this work, the primary
focus is on demonstrating how learning-based discriminative
algorithms can be integrated in a generative search framework,
thereby combining the best of both worlds. Our contributions
are summarized below:

o Discriminatively-guided Deliberative Perception (D2P),
a paradigm for multi-object identification and 3 DoF
(z,y,yaw) pose estimation that integrates discriminative
learning with generative search. As a particular example,
we demonstrate how region-based convolutional neural
networks trained on synthetic data can improve perfor-
mance of exhaustive search on a real-world dataset.

e A lazy multi-heuristic search algorithm for efficient
search over rendered scenes, inspired by the lazy
weighted A* algorithm [6].

« Notions of completeness and resolution-completeness for
multi-object instance detection and pose estimation.

Our evaluations on an existing real-world RGB-D dataset
demonstrate how D2P can effectively combine discriminative
algorithms with exhaustive search to produce accurate identifi-
cation and pose estimation. Finally, we provide an open-source
implementation of D2P at www.sbpl.net/Software/d2p.

II. RELATED WORK

The availability of economic RGB-D sensors and challenges
in 6 DoF pose estimation [7, 12] have brought renewed vigor
to research in object instance detection and pose estimation.
State-of-the-art approaches for model-based pose estimation
broadly fall under two categories: descriptor-based methods
(including hand-crafted as well as learned descriptors) and
analysis-by-synthesis methods. We juxtapose our proposed
D2P paradigm with both camps, and then describe how recent
successes of deep learning in the object detection community
can help with pose estimation.

Descriptor-based Approaches. Popular object pose esti-
mation approaches are based on either local or global de-
scriptors [2]. Local descriptor methods (e.g., [11, 24]) first
detect and match a set of features between the 3D model and
the observed scene, and then perform geometric verification
and transformation estimation to obtain the full 6 DoF pose.
Global-descriptor pipelines [25, 1, 4, 31, 15] on the other
hand use a single-shot procedure to match a pose-preserving
decriptor of the object (computed during a training phase)
to descriptors computed over object clusters in the scene.
Both local and global approaches employ refinement tech-
niques such as Iterative Closest Point (ICP) [5] and Bingham

Procrustrean Alignment [9] to fine-tune their pose estimates.
We refer the reader to the survey paper by Aldoma et al.
[2] for details of local and global descriptor pipelines, and
their implementations in the Point Cloud Library [23]. Closely
related to global descriptors are template-based methods which
precompute [10] or statistically-learn [30] multimodal tem-
plates of the object from different viewpoints of the object
and perform sliding window search over a test scene.

A fundamental limitation of descriptor and template-based
approaches is that they are designed to detect single object
instances. When required to detect multiple object instances,
such approaches often resort to post-hoc occlusion reasoning
and feasibility verification to refine estimates of individual
object poses [3]. More importantly, they suffer when key
discriminative features become occluded and multiple object
instances are present in the scene, as shown by Tejani et al.
[29]. On the other hand, the proposed D2P paradigm is at heart
a generative approach that accounts for occlusions, thereby
overcoming common pitfalls.

Analysis-by-Synthesis. Contrary to descriptor-based meth-
ods that rely on matching key features between models and
scenes, analysis-by-synthesis or generative methods work on
a principle of rendering and verification. This is particularly
suited for robotics applications where the 6 DoF camera pose,
object models and environment context are often available.
A very early work in this area is that of Render, Match
and Refine (RMR) by Stevens and Beveridge [28], who use
iterative optimization to find a rendering that best matches
the input. However, their method is applicable only to 2D
images and still dependent on low-level feature extraction for
computing similarity between rendered and observed scenes.
Krull et al. [14] train a convolutional neural network (CNN) to
compare rendered and observed depth images, but their work is
restricted to single object instances and does not deal with the
combinatorics of multi-object pose estimation. This paper is
directly related to and builds upon our earlier work Perception
via Search (PERCH) [16], which introduced an efficient tree
search formulation of the multi-object localization problem.
While PERCH was designed to handle the combinatorics of
the multi-object pose estimation problem, it did not leverage
any discriminative learning to make global search efficient.

Deep Learning. CNNs have revolutionized the field of ob-
ject detection in RGB images through their excellent represen-
tation learning capabilities [13]. Consequently, recent works
in RGB-D object detection have also focused on using deep
learning [26, 8] for automatic representation learning. Despite
the promise shown, deep learning methods by themselves are
ill-suited for multi-object instance detection problems since
the required training data is combinatorial in the number of
objects. The proposed D2P paradigm, however, strives to use
discriminative learners such as CNNs exclusively as heuristics
in guiding a global search for the best rendering, thereby
shifting responsibility from discrimination to deliberation.
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III. PRELIMINARIES
A. Formulation

The problem setup and optimization formulation are similar
to those in PERCH [16], which we will re-state here for
convenience. We are concerned with estimating the 3 DoF
pose (z,y,yaw) of K objects in a single input point cloud,
given the 3D models of N unique objects in the scene. We
assume K > N, allowing for multiple copies of a particular
instance. This is typical in tabletop manipulation scenarios
where objects vary only in translation and yaw with respect
to a given 3D model. We further assume that the number of
objects K and the 6 DoF camera pose are known a priori, and
that the input point cloud contains points only belonging to
objects of interest. While the assumptions are indeed strong,
they are reasonable for many practical scenarios: for instance,
in the Amazon Picking Challenge which replicates warehouse
automation, robots are given a task order that lists the set
of objects in every shelf bin. Further, in partially controlled
settings such as the warehouse, preprocessing is possible to
filter sensor data corresponding to extraneous objects such
as the shelf. In Sec. VI, we will discuss potential ways to
overcome the 3 DoF pose limitation.

Given the setup, multi-object pose estimation is formulated
as minimizing a balanced-outlier objective. Following the
notation used in [16] (Table. I), let O1.x denote the 3 DoF
pose of each of the K objects in the scene, I be the input cloud
and R; the point cloud obtained by rendering j(< K) objects,
taking occlusions into account. We then seek the minimizer of
the following objective:

J(O1:K) :ZOUTLIER(p|RK)+ Z OUTLIER(p|I) (1)

pel PERK

Jobserved(O1:x) or J, Jrendered(O1:x5) or Jr.

in which OUTLIER(p|C') for a point cloud C' and point p is

defined as follows:

1 if min, f— >0
if minyec [[p’ —pll2 )

OUTLIER (p|C') = {O otherwise

where § is the sensor noise resolution. Intuitively, this cost
function captures how well a rendered scene matches the
observed scene in terms of both occupied as well as free space.

B. PERCH Overview

PERCH [16] finds a globally optimal or bounded suboptimal
solution of the desired objective 1 over a discretized solution
space by casting the joint optimization over object poses as a
tree search problem. The tree’s root state sy is an empty scene
with no assignments, and every state down the tree introduces
a new object in addition to those already existing in its parent
state—i.e, a state s; in level j of the tree contains a partial
assignment of j object poses {O1, O3, ..., O;}. An additional
constraint is that the newly added object for a state does not
occlude those already present in the parent state. This ensures
that the cost of the shortest path from the root state to any state

TABLE I: Notations

1 The input point cloud

K The number of objects in the scene

N The number of unique objects in the scene (< K)

(0] An object state specifying a unique ID and 3 DoF pose
R; Point cloud corresponding to the rendering of a

scene with j objects O1.;

AR; Point cloud containing points of R; that belong
exclusively to object O;
V(O;) | The set of points in an admissible (conservative)

volume occupied by object O, e.g, the volume
of the inscribed cylinder

V; The union of admissible volumes occupied by
objects O1.;

in level K of the tree is equal to the optimum value of 1 over
the discretized solution space. The cost of an edge between
state s;_1 in level j and state s; in level j is given by

c(sj—1,8;) = AT + AJI 3)
where,
AJ) = Y OUTLIER(p|])
PEAR;
AJj= ) OUTLIER(p|AR;) + RESIDUAL(j)
pe{INV(0;)}
OUTLIER(p|R if i =K
RESIDUAL(j) = {ZPE{IVK} (plRc) if j =
0 otherwise

Given the tree construction and edge cost formulation, PERCH
uses Focal-MHA* [17] to find the best path from the root state
to any state in the K™ level and returns the last state in the
found path as the solution to the problem. Focal-MHA* is an
informed search algorithm similar to weighted A* (wA*) [19],
with a key difference being that it allows for the use of
multiple inadmissible heuristics in addition to one consistent
(and hence admissible) heuristic. It maintains a single priority
queue of frontier states sorted in the same order as in wA¥*,
and interleaves expansions of the best state with states chosen
greedily by the inadmissible heuristics. Focal-MHA* returns
a solution whose cost is no more than a user-chosen factor
w(> 1) times the optimal solution cost.

An important implementation detail in PERCH is that every
time a child/successor state is generated with a new object
pose, local-ICP is used to refine the pose of that object to
account for discretization artifacts. In more detail, if Oj is
the pose of the last added object and AR; inisa iS the point
cloud corresponding to Oj (after considering occlusions by
existing objects), locally-constrained ICP is used to obtain
an adjusted point cloud AR; j4jusiea and corresponding object
pose O;. Then, the successor state is re-rendered with the
refined pose O; to obtain R; and AR;, which go into the
edge cost computation (Eq. 3).

While PERCH uses a tree search formulation to avoid the
intractability of joint global optimization, it is still brute-
force in many ways since the heuristics it uses (such as the
depth-first ordering) are uninformative and do not leverage any
discriminative techniques to better guide the search.



Input RGB-D Image Clustered Point Cloud

Heuristics Generated from Detections

Clusters back-projected to obtain ROIs

\ \

Obtain Instance Probabilities from R-CNN

' \ \

Odwalla Jug Tide All Detergent
0.936 0.707 0.418
All Detergent
0.463

Fig. 2: Discriminative heuristic generation pipeline: First, the point cloud corresponding to the input scene is clustered into K components
(for e.g., using PCL’s Euclidean cluster extraction) and the points in each cluster are back-projected to obtain ROIs in the depth image. Then,
the ROIs are fed to an R-CNN object detector trained on the complete object instance database, after appropriate scaling and colorization.
Finally, every high-confidence class prediction for an ROI is converted to a heuristic for global search. In this example, we see that the
R-CNN predicts two possible hypotheses for the center ROI, which results in two heuristics being created for that ROL

IV. DISCRIMINATIVELY-GUIDED DELIBERATIVE
PERCEPTION

A. Discriminative Heuristic Generation

We now present the main contribution of this work—a
technique to guide global search using discriminative learners.
At a high level, the idea is to obtain a set of hypotheses
for every object in the scene and treat each hypothesis as a
separate heuristic in the Focal-Multi-Heuristic A* (MHA*)
framework [17]. This permits the global search to indepen-
dently explore different routes down the tree by chaining
different hypotheses. For instance, hypothesis 1 might help
in selecting state s; from level 1 of the tree, while hypothesis
2 could then be used to evaluate all the states in level 2 that
were generated as a consequence of expanding s;. As a result,
the search can quickly progress along the optimal route if the
hypotheses turn out to be useful, while at all times retaining
the ability to backtrack and explore alternative explanations.

While the proposed method is applicable to arbitrary learn-
ing algorithms that produce posterior distributions of individ-
ual object poses in the scene, we will describe our methodol-
ogy in the context of object detectors that produce confidence
scores for a given bounding box in the depth image, without
additional information about 3 DoF pose. Evidently, this is
motivated by the availability of successful object detectors
from the 2D vision community [13].

Let [ denote the label associated with a unique object model,
B; the set of ROIs (bounding boxes) in the depth image and
¢(l| B;) the confidence score for object instance [ being present
in B;. For every detection with ¢(I|B;) > Ciresh, WE generate
a heuristic as follows:

p = PROJECTTOSUPPORTPLANE(CENTROID({p|p € B;}))

00 it id(0;) # 1
h(sj) =40 if ”]3 - T(OJ)HP < Tdetector (4)
|lp—T(0;)|l, otherwise

where || - ||, is the p-norm and T'(O;) is object O;’s center
(assuming all models have been preprocessed such that the
z-coordinate of their origins have been set to the height of
the supporting surface), ignoring the orientation. Essentially,
every heuristic acts as “do not care” when the last added object
is different from the detection’s label and equally prefers all
states within the 7geector p-ball of the detection’s centroid if
the labels match. Figure 2 illustrates the heuristic generation
process. Note that we could have multiple hypotheses for
the same ROI (e.g., when the bounding box covers multiple
objects in the scene), and the onus falls on the search to resolve
conflicts and produce a globally feasible solution.

B. Lazy Focal-MHA*

One of the most computationally expensive components of
PERCH is the rendering of successor scenes when expanding
a state in the tree. This is aggravated by the need to render
each scene twice (first to obtain the point cloud that is used
for ICP adjustment, and the second post-ICP to get the point
cloud on which the edge-cost is computed). We propose two
optimizations to accelerate this process: the first is caching
of first-level states (states with single objects) to quickly
produce depth images for multi-object states in deeper levels
of the tree, and the second, a lazy evaluation (i.e, postponing
exact evaluation until necessary) of edge costs. Together, they
completely eliminate the need to render the successor states
for an expanded parent. Instead, the only time a state is fully
rendered is when it is about to be expanded during the search.
We discuss these optimizations in more detail:

Depth Image Caching. Upon expanding the root node
of the tree, successor states corresponding to all poses of
individual objects are rendered'. We cache depth images
D(0Oj) corresponding to individual object states O;, and then
reconstruct the depth image for a multi-object state comprising
of objects Oy, simply by taking the element-wise minimum

UIn practice, several poses can be pruned before rendering by requiring an
assigned object to ‘explain’ at least one point in the input point cloud.



of depth images D(O1), D(O3),...,D(0O;). This eliminates
the need to render multi-object successors upon expanding a
state in the tree.

Lazy MHA*. Depth-image caching by itself however, is not
sufficient to accelerate successor generation. This is because
the point cloud corresponding to the newly rendered object
goes through ICP refinement and subsequent re-rendering be-
fore the edge-cost can be evaluated. A similar bottleneck exists
in heuristic search-based motion planning, where expanding a
graph state requires time-consuming collision checking of the
edges. This was addressed by Cohen et al. [6] in their lazy
weighted A* algorithm. The key idea is that if we have a
mechanism to inexpensively compute admissible estimates of
the edge cost, then weighted A* search can simply use these
proxy costs while inserting states into the frontier and look
up the true cost only when a lazily evaluated state is about
to be expanded. By using these admissible estimates (i.e, the
estimated edge cost is lesser than or equal to the true cost),
lazy weighted A* retains theoretical properties of bounded
suboptimality. We apply the same idea to Focal-MHA*, albeit
with minor differences. Since Focal-MHA* interleaves admis-
sible expansions with expansions from inadmissible heuristics,
we require that the true edge cost be evaluated any time
it is about to be expanded, irrespective of whether it was
chosen by the admissible heuristic, or an inadmissible one.
This ensures bounded suboptimality of the solution returned
by Focal-MHA* (the proof follows a similar structure to that
of lazy weighted A*, but is omitted here for simplicity).

Next, we describe how a lazy admissible estimate of the
edge cost can be obtained without rendering the successor
state. Let s; be a newly generated successor state of s;_;
with O; as the last introduced object, and AR; be the point
cloud corresponding to the visible portion of object O; given
the other objects in s;. The lazy cost of the edge to s; is
computed as follows:

1) Obtain the depth image corresponding to s; by compos-

ing the cached depth image of its parent (which exists
by induction) with the cached depth image of O;.

2) The differential partial cloud AR; of the newly intro-
duced object is subject to ICP refinement, resulting in
R..

3) Péints in AR; that are self-occluded and occluded by
other objects in s; are removed to obtain AR]-. Removal
of self-occluding points is done by projecting all points
in R; to the depth image and retaining only the mini-
mum depth for each pixel when multiple points project
to the same one. Points occluded by existing objects
in s; are similarly removed by taking the element-
wise minimum of the re-projected depth image with
the cached depth image of the parent state. Finally,
AR]‘ is obtained by unprojecting the depth image pixels
corresponding to O;, following the above process.

4) The lazy edge cost is then computed as

é(sj—1,85) = Z OUTLIER(p|])
pEARj

®)

Theorem 1. Lazy estimates of the edge cost obtained by the
above procedure are guaranteed to be admissible estimates of
the true edge cost.

Proof (Sketch): Let s; be the considered successor state of
sj—1 and AR; . the differential point cloud corresponding
to object O;. By construction, we have ARj C ARj e In-
tuitively, re-rendering an object after ICP refinement will only
introduce new unseen portions of the object, while the existing
parts continue to be visible or become self-occluded/occluded
by other objects. The true cost c(s;_1, s;) is given by

c(sj_1,85) = AJL + AJ? Eq. 3
> AJ! AT >0
= Z OUTLIER(p|])
PEAR; irue

> > OUTLIER(p|T) . AR; C ARjme
PEAR,

= ¢(sj-1,585) O

C. Completeness

Finally, we introduce a notion of completeness for the multi-
object instance detection and pose estimation problem:

Definition 1 (Completeness). An algorithm for multi-object
pose estimation of K objects is complete if it returns any
feasible solution (i.e, a solution that contains guaranteedly
collision-free pose estimates for all K objects) when one
exists, and correctly identifies in finite time that no solution
exists otherwise.

This definition mirrors the notion of completeness in motion
planning. We also say an algorithm is resolution-complete
if it satisfies the above requirements in a smaller solution
space obtained after discretization. D2P and PERCH are both
resolution-complete for the chosen discretization in the ab-
sence of ICP refinement. This follows from the completeness
property of Focal-MHA*. When we do use ICP refinement,
the algorithms are still resolution-complete, but in a solution
space that itself depends on the ICP refinement instead of the
chosen discretization. We will discuss the performance tradeoff
that arises out of larger ICP-basins versus finer discretization
in the evaluation section (Sec. V-C).

We stress upon the notion of completeness since popular
approaches to this problem proceed by obtaining individual
hypotheses for each object and then performing a global
refinement [3], which leads to a restricted solution space and
hence algorithm incompleteness.

V. EVALUATION

We evaluate D2P on the real-world occlusion dataset intro-
duced by Aldoma et al. [2]. We choose this dataset for two
major reasons: first, it satisfies the assumptions we make in
this work—the input RGB-D scene can be preprocessed such
that the resulting point cloud contains points only belonging
to objects of interest. Second, it features an interesting mix
of scenes where objects are occluded as well as occur in
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Fig. 3: (a) and (b) A subset of objects in the RGB-D occlusion dataset.
(c) and (d) Representative test scenes from the dataset.

isolation, thereby allowing us to demonstrate the complemen-
tary strengths of deliberation and discrimination. The dataset
contains 3D models of 36 household objects and 22 RGB-
D scenes with 80 object instances in total, ignoring one
non-compatible scene which fails to satisfy our 3 DoF pose
assumption.

A. D2P Implementation

Parameters. Table II lists all the parameters used in D2P.
Unless otherwise specified in particular experiments, we use
the following values: 6 = 0.003 m, dz = dy = 0.1 m, df =
22.5°, w = 10, max_icp_iter = 20, num_procs = 40. We
perform local ICP adjustments for newly added objects by
constraining ICP to match correspondences only if they are
within a distance of dx/2. All experiments are performed on
a single Amazon AWS m4.10x instance with 40 virtual cores,
using MPI parallelization to compute edge costs for successor
states in parallel.

TABLE II: D2P Parameters

0 Sensor noise resolution used in Eq. 2
dz,dy, dd The discretizations for (z,y, ) coordinates
w Suboptimality factor used by Focal-MHA*

Max. number of ICP iterations for refinement
Heuristic-generation parameters (Eq. 4)
Number of processors used for parallelization

max_icp_iter
Tdetector y Cthresh
num_procs

Deep-Learning Heuristics. We generate heuristics for
Focal-MHA* wusing an object detector as described in
Sec. IV-A. We leverage a state-of-the-art implementa-
tion of region-based convolutional neural networks: Faster-
RCNN [20]. A common trend in the 2D object detection
community is to use networks pre-trained on large training
datasets such as Imagenet [22] to initialize training on a
custom dataset. We have two major concerns to address: the
generation of training data for the 36 object models in our
dataset, and a method to encode depth-images as 3-channel
images—the input format used by available deep neural
network implementations. We generate our training data by

synthetically rendering every object in isolation from camera
poses sampled uniformly on concentric cylinders around the
object. We also create duplicates of the generated scenes by
a) adding artificial noise—treating a randomly chosen 15% of
pixels in the rendered image as no-returns, and b) introducing
occlusions in the form of a circle placed at a random valid
image pixel. The radius of these circles is chosen to be
one-third of the rendered object’s bounding box. Finally, we
obtain 108864 training images in total, with each annotated
by a bounding box and label for the object present in it. For
encoding depth-images as 3-channel images, we follow the
method adopted by [8] who apply a jet-coloring of the [0—255]
rescaled depth-image. While there is no theoretical justification
for this process, the intuition is that jet-color maps encode
discontinuities in depth as discontinuities in color, making
them suitable for networks pre-trained on RGB images. We
use the ZF network architecture [20] by modifying the final
fully-connected (FC) layer train to span 36 object clases, and
use the default 4-stage Faster-RCNN training settings. The
training takes ~ 30 hours on an Amazon g2.2xlarge GPU-
enabled instance. For generating heuristics for the search from
object detections in the depth image, we use Curesn = 0.2
(confidence scores are normalized to [0,1]), 7getector = 0.1 and
p = 1 for the norm in Eq. 4. Note that we are able to use a high
recall threshold because spurious detections simply translate to
uninformative heuristics for the search, without affecting the
final solution quality. However, misleading heuristics could
have a negative impact on the time taken to find a solution.
In addition to the heuristics generated by the deep-learning
procedure, we use one additional depth-first heuristic described
in PERCH: hgepin(s) = K — |s| , where |s| is the number of
objects in state s. This serves to prefer expanding states deeper
in the tree that are closer to a potential goal state. Finally, the
consistent heuristic used by Focal-MHA* is the trivial zero
heuristic.

B. Baseline Implementations

We compare the performance of D2P with PERCH [16],
OUR-CVFH [4] and a brute-force ICP baseline described
in [16]. We configure PERCH to use the same parameters as
D2P where applicable, and include lazy edge-cost evaluation.
Strictly speaking, lazy edge evaluation is a contribution of
this work, however our goal is to study how discriminative
guidance can help global search.

OUR-CVFH. Oriented, Unique and Repeatable Clustered
Viewpoint Histogram (OUR-CVFH) is a state-of-the-art global
descriptor specifically developed for providing robustness to
partial occlusions. During training phase, OUR-CVFH decom-
poses objects into stable surfaces and computes separate view-
dependent descriptors for each surface rather than one view-
dependent descriptor for the entire object, so that descriptor-
matching can be robust to partial occlusions and missing
surfaces. We generate the training point-cloud database by
rendering 642 different views of each object model, sampled
uniformly on the viewsphere. We then use the default Point
Cloud Library implementation of global descriptor pipelines to
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Fig. 4: The first four plots show the percentage of correct poses produced by D2P and PERCH for suboptimality bounds of 5 and 10, where
correctness is defined as having translation error within At and rotation error within Af. The discriminative heuristics used by D2P help
produce a larger number of correct poses within the given time limit of 5 minutes, for identical suboptimality factors. The scatter plot on
the right shows the time taken by D2P and PERCH for every scene, with different shaded regions representing distinct speedup intervals.

upsample all point clouds to the 3 mm Kinect sensor resolution
and compute OUR-CVFH descriptors for each training point
cloud. Since OUR-CVFH operates by clustering the input
cloud into object groups and then detecting the pose of each
one, it could result in producing too many or too few object
estimates due to under or over-clustering (e.g., when objects
are touching each other). Here, we use information about the
number of objects in the scene (K) to create the following pro-
cedure: first, we take the max(K, #detected clusters) largest
clusters in the scene and compute the descriptor distance for
each cluster to every object we know exists in the scene.
Second, we solve a min-cost matching problem over the
descriptor distance scores to obtain an assignment that has
exactly one estimate for every object. Finally, since we know
that the models vary only in 3 DoF, the pitch and roll parts of
the 6 DoF pose estimates produced by OUR-CVFH are set to
0, with a final ICP refinement for each object.

Brute Force ICP. A strawman ICP approach to the multi-
object instance detection problem is to perform a sliding-box
ICP for each object sequentially and take the best fit for each
during the process. Since the order in which the objects are
chosen matters (e.g., if object A occupied a location first, then
object B has fewer locations to be assigned to), the entire
process could be repeated for all possible orderings of the
objects. Note that this does not involve rendering at all, and
uses the point cloud of the full object model at every step for
ICP refinement. We call this baseline BF-ICP.

C. Results

Comparison with Baselines. We measure accuracy of an
algorithm by counting the number of objects that fall within
a given error bound. Specifically, an estimated object pose
(z,y,0) is declared ‘correct’ if ||(z,y) — (Tiue, Yirue) |2 < AL
and SHORTESTANGULARDIFFERENCE(f, Oine) < A6H. The
second portion is ignored for rotationally symmetric objects.
Figure 4 compares the performance of D2P with PERCH
configured with identical parameters (including lazy edge eval-
uation), but for the discriminative heuristics. We set an upper
limit of 5 minutes for each scene and take the best solution
discovered thus far if time runs out. While all experiments are
done on m4.10x AWS instances, the objector detector outputs
for D2P alone are precomputed for all scenes on an Amazon
AWS g2.2xlarge GPU instance (which takes ~ 0.2 seconds
per scene). The first four plots show the cumulative number of

correct poses as Af is increased, for a fixed value of At. Two
trends are evident: a) D2P dominates PERCH consistently, and
b) lower suboptimality factors (w) produce more correct poses
than higher ones. The latter is expected from the behavior
of Focal-MHA*; however it comes at the price of a longer
time to find a solution. The final plot compares the run times
of D2P and PERCH for every scene in the dataset, for a
common suboptimality bound of w = 10. As we expect to
see, D2P has a speedup over PERCH for majority of the
scenes. An interesting observation is that there are also few
cases where D2P is slower than PERCH. We find this to
occur either in scenarios where the heuristics are misleading
(e.g., false positives from the RCNN detector), or when there
are too many heuristics (due to very high recall) resulting in
significant overhead for Focal-MHA*. We believe both these
problems can be alleviated to some extent by following a
technique similar to the one of Phillips et al. [18], where the
“progress” made by each heuristic is monitored to intelligently
schedule computation to each heuristic, rather than following
the naive round-robin scheme used by Focal-MHA*.

Figure 5 depicts an identical comparison to OUR-CVFH
and BF-ICP. We follow the same methodology as for the
comparison with PERCH, and give D2P a maximum time limit
of 5 minutes to find a solution. OUR-CVFH being a descriptor-
matching method requires no time limit, whereas BF-ICP is
provided sufficient time to exhaust all possible orderings of
the objects. The results show that D2P consistently dominates
the baselines, while showing most gain for strict error mea-
surement criteria. Although BF-ICP performs an exhaustive
search over all possible orderings of the object, the lack of
any intermediate rendering to account for self-occlusions and
occlusions by other objects inhibits its performance. The mean
computation time per scene for BF-ICP, OUR-CVFH and D2P
(w = b) were 104.35, 5.02, and 139.74 seconds respectively.
BF-ICP required no training, while OUR-CVFH needed ~
14 hours to render the objects from different viewpoints and
build the descriptor database (Sec. V-B). The training time for
D2P depends on the discriminative learner used, which in our
particular implementation is the R-CNN. As noted in Sec. V-A,
the training time for the ZF R-CNN was ~ 30 hours.

Utility of Lazy Edge Evaluations. We next study how
useful lazy edge cost evaluations are, with regard to the
branching factor of the tree and the amount of parallelization
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with each trace corresponding to a specific correctness criterion.

available. Figure 6a plots the mean speedup of lazy D2P over
non-lazy D2P for a varying number of processors available,
setting w = 10. We observe that lazy evaluation is most useful
when parallelization is limited and vice versa. If ¢ were the
time required to compute the true cost of an edge, tia,y (<< t)
the time to compute the lazy edge cost, £ the number of
expansions required to find a solution for both lazy and non-
lazy variants, N the number of processors used to compute
edge costs in parallel, and b the branching factor for every tree
state, then non-lazy D2P would take ¢(b/N)E time to return
a solution, whereas lazy D2P would take tE + ti,y(b/N)E
to return a solution. Clearly, the benefits of lazy D2P are
pronounced when the effective branching factor (b/N) is large.
While we vary effective branching as a function of N in
Fig. 6a, a similar trend would show if we vary b instead, e.g.,
using a finer discretization or more objects in the scene.
Discretization vs. ICP Tradeoff. A key implementation
detail is that of local ICP refinement for every newly added
object to a successor state. In our implementation, we restrict
ICP refinement to only use correspondences that are within
dz /2 when iteratively estimating the 3 DoF transformation, to

Fig. 7: Synthetic example demonstrating the complementary strengths
of discriminative and deliberative methods.

keep ICP ‘local’ to the grid cell at which an object is placed by
the search. This immediately introduces the following tradeoff:
for coarse discretizations, ICP would have a larger basin of
attraction to get to the best fit; the price being that the initial
object locations generated by the search might altogether miss
small objects. While using a finer resolution might help, it
comes at the cost of a larger branching factor and restricted
locality for ICP. This tradeoff is captured in Fig. 6b, which sug-
gests a sweet-spot somewhere in the middle. More generally,
our future work here entails using adaptive-resolution search
as well as smarter local refinement techniques to combat the
aforementioned problems. This experiment uses a maximum
time limit of 10 minutes, to accommodate large branching
factors resulting from finer discretizations.

Synthetic Example We conclude with a synthetic example
that reiterates the complementary strengths of discriminative
guidance and systematic search. Figure 7 shows two scenes
containing the same set of 5 objects in different configurations.
In the first scene, the objects are mostly isolated and non-
occluded. Search by itself takes a long time to obtain a solution
(over 13 minutes for dx = 0.1 and 8-core parallelization) since
it has no informative heuristic. However, by using the guidance
from the discriminative R-CNN which correctly identifies
all objects, the time to obtain a solution is reduced to just
under 7 minutes. The second scene is more complex and
features severe occlusions. Here, D2P manages to reconstruct
the complete scene although the R-CNN correctly identifies
only the 3 non-occluded objects.

VI. CONCLUSION

We presented a novel paradigm, D2P, for integrating dis-
criminative algorithms with global search for the task of multi-
object identification and 3 DoF localization. D2P achieves
this by treating the predictions of discriminative learners as
heuristics in a multi-heuristic search framework. While our
results indicate significant improvement in performance over
state-of-the-art methods, several improvements remain to be
made. For example, one future direction of work is to handle
full 6 DoF pose estimation by using constraints from physics
to eliminate large portions of the search space. Other directions
include the use of RGB data and optimizations in the search
backend (e.g., through partial and parallel node expansions)
for faster solutions. Finally, our implementation of D2P is
available at www.sbpl.net/Software/d2p.
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