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Abstract—This paper considers the problem of routing and
rebalancing a shared fleet of autonomous (i.e., self-driving)
vehicles providing on-demand mobility within a capacitated trans-
portation network, where congestion might disrupt throughput.
We model the problem within a network flow framework and
show that under relatively mild assumptions the rebalancing
vehicles, if properly coordinated, do not lead to an increase
in congestion (in stark contrast to common belief). From an
algorithmic standpoint, such theoretical insight suggests that the
problem of routing customers and rebalancing vehicles can be
decoupled, which leads to a computationally-efficient routing and
rebalancing algorithm for the autonomous vehicles. Numerical
experiments and case studies corroborate our theoretical insights
and show that the proposed algorithm outperforms state-of-the-
art point-to-point methods by avoiding excess congestion on the
road. Collectively, this paper provides a rigorous approach to
the problem of congestion-aware, system-wide coordination of
autonomously driving vehicles, and to the characterization of
the sustainability of such robotic systems.

I. INTRODUCTION

Autonomous (i.e., robotic, self-driving) vehicles are rapidly
becoming a reality and hold great promise for increasing
safety and enhancing mobility for those unable or unwilling
to drive [, [2]. A particularly attractive operational paradigm
involves coordinating a fleet of autonomous vehicles to pro-
vide on-demand service to customers, also called autonomous
mobility-on-demand (AMoD). An AMoD system may reduce
the cost of travel [3]] as well as provide additional sustainability
benefits such as increased overall vehicle utilization, reduced
demand for urban parking infrastructure, and reduced pollution
(with electric vehicles) [1]]. The key benefits of AMoD are
realized through vehicle sharing, where each vehicle, after
servicing a customer, drives itself to the location of the
next customer or rebalances itself throughout the city in
anticipation of future customer demand [4].

In terms of traffic congestion, however, there has been no
consensus on whether autonomous vehicles in general, and
AMoD systems in particular, will ultimately be beneficial or
detrimental. It has been argued that by having faster reaction
times, autonomous vehicles may be able to drive faster and
follow other vehicles at closer distances without compromising
safety, thereby effectively increasing the capacity of a road
and reducing congestion. They may also be able to interact
with traffic lights to reduce full stops at intersections [3].
On the downside, the process of vehicle rebalancing (empty
vehicle trips) increases the total number of vehicles on the
road (assuming the number of vehicles with customers stays
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the same). Indeed, it has been argued that the presence of
many rebalancing vehicles may contribute to an increase in
congestion [6], [7]. These statements, however, do not take
into account that in an AMoD system the operator has control
over the actions (destination and routes) of the vehicles, and
may route vehicles intelligently to avoid increasing congestion
or perhaps even decrease it.

Accordingly, the goal of this paper is twofold. First, on an
engineering level, we aim to devise routing and rebalancing
algorithms for an autonomous vehicle fleet that seek to mini-
mize congestion. Second, on a socio-economic level, we aim to
rigorously address the concern that autonomous cars may lead
to increased congestion and thus disrupt currently congested
transportation infrastructures.

Literature review: In this paper, we investigate the problem
of controlling an AMoD system within a road network in
the presence of congestion effects. Previous work on AMoD
systems have primarily concentrated on the rebalancing prob-
lem [4], [3], whereby one strives to allocate empty vehicles
throughout a city while minimizing fuel costs or customer
wait times. The rebalancing problem has been studied in [4]]
using a fluidic model and in [8]] using a queueing network
model. An alternative formulation is the one-to-one pickup and
delivery problem [9]], where a fleet of vehicles service pickup
and delivery requests within a given region. Combinatorial
asymptotically optimal algorithms for pickup and delivery
problems were presented in [10], [L1], and generalized to
road networks in [12]. Almost all current approaches assume
point-to-point travel between origins and destinations (no road
network), and even routing problems on road networks (e.g.
[12]) do not take into account vehicle-to-vehicle interactions
that would cause congestion and reduce system throughput.

On the other hand, traffic congestion has been studied in
economics and transportation for nearly a century. The first
congestion models [[13], [14]], [15] sought to formalize the rela-
tionship between vehicle speed, density, and flow. Since then,
approaches to modeling congestion have included empirical
[L6], simulation-based [17], [L8], [19], queueing-theoretical
[20]], and optimization [21]], [22]]. While there have been many
high fidelity congestion models that can accurately predict
traffic patterns, the primary goal of congestion modeling has
been the analysis of traffic behavior. Efforts to control traffic
have been limited to the control of intersections [23l], [24]
and freeway on-ramps [25] because human drivers behave
non-cooperatively. The problem of cooperative, system-wide
routing (a key benefit of AMoD systems) is similar to the
dynamic traffic assignment problem (DTA) [22] and to [26],
[27] in the case of online routing. The key difference is that
these approaches only optimize routes for passenger vehicles
while we seek to optimize the routes of both passenger
vehicles and empty rebalancing vehicles.



Statement of contributions: The contribution of this paper is
threefold. First, we model an AMoD system within a network
flow framework, whereby customer-carrying and empty rebal-
ancing vehicles are represented as flows over a capacitated
road network (in such model, when the flow of vehicles along
a road reaches a critical capacity value, congestion effects
occur). Within this model, we provide a cut condition for
the road graph that needs to be satisfied for congestion-free
customer and rebalancing flows to exist. Most importantly,
under the assumption of a symmetric road network, we inves-
tigate an existential result that leads to two key conclusions:
(1) rebalancing does not increase congestion, and (2) for
certain cost functions, the problems of finding customer and
rebalancing flows can be decoupled. Second, leveraging the
theoretical insights, we propose a computationally-efficient
algorithm for congestion-aware routing and rebalancing of
an AMoD system that is broadly applicable to time-varying,
possibly asymmetric road networks. Third, through numerical
studies on real-world traffic data, we validate our assumptions
and show that the proposed real-time routing and rebalancing
algorithm outperforms state-of-the-art point-to-point rebalanc-
ing algorithms in terms of lower customer wait times by
avoiding excess congestion on the road.

Organization: The remainder of this paper is organized as
follows: in Section [lI] we present a network flow model of an
AMoD system on a capacitated road network and formulate
the routing and rebalancing problem. In Section [[II| we present
key structural properties of the model including fundamental
limitations of performance and conditions for the existence of
feasible (in particular, congestion-free) solutions. The insights
from Section [[I] are used to develop a practical real-time
routing and rebalancing algorithm in Section Numerical
studies and simulation results are presented in Section [V] and
in Section [Vl we draw conclusions and discuss directions for
future work.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

In this section we formulate a network flow model for an
AMoD system operating over a capacitated road network. The
model allows us to derive key structural insights into the vehi-
cle routing and rebalancing problem, and motivates the design
of real-time, congestion-aware algorithms for coordinating the
robotic vehicles. We start in Section with a discussion
of our congestion model; then, in Section we provide a
detailed description of the overall AMoD system model.

A. Congestion Model

We use a simplified congestion model consistent with clas-
sical traffic flow theory [13]]. In classical traffic flow theory,
at low vehicle densities on a road link, vehicles travel at the
free flow speed of the road (imposed by the speed limit). This
is referred to as the free flow phase of traffic. In this phase,
the free flow speed is approximately constant [28]]. The flow,
or flow rate, is the number of vehicles passing through the
link per unit time, and is given by the product of the speed
and density of vehicles. When the flow of vehicles reaches
an empirically observed critical value, the flow reaches its
maximum. Beyond the critical flow rate, vehicle speeds are
dramatically reduced and the flow decreases, signaling the

beginning of traffic congestion. The maximum stationary flow
rate is called the capacity of the road link in the literature.
In our approach, road capacities are modeled as constraints
on the flow of vehicles. In this way, the model captures the
behavior of vehicles up to the onset of congestion.

This simplified congestion model is adequate for our pur-
poses because the goal is not to analyze the behavior of
vehicles in congested networks, but to control vehicles in
order to avoid the onset of congestion. We also do not
explicitly model delays at intersections, spillback behavior due
to congestion, or bottleneck behavior due to the reduction of
the number of lanes on a road link. An extension to our model
that accommodates (limited) congestion on links is presented

in Section [V-Al
B. Network Flow Model of AMoD system

We consider a road network modeled as a directed graph
G = (V,€&), where V denotes the node set and £ C V x V
denotes the edge set. Figure [T] shows one such network. The
nodes v in V represent intersections and locations for trip
origins/destinations, and the edges (u,v) in & represent road
links. As discussed in Section [[I-Al congestion is modeled
by imposing capacity constraints on the road links: each
constraint represents the capacity of the road upon the onset
of congestion. Specifically, for each road link (u,v) € &, we
denote by c(u,v) : £ — N5q the capacity of that link. When
the flow rate on a road link is less than the capacity of the
link, all vehicles are assumed to travel at the free flow speed,
or the speed limit of the link. For each road link (u,v) € &,
we denote by t(u,v) : £ — Rx¢ the corresponding free flow
time required to traverse road link (u,v). Conversely, when the
flow rate on a road link is larger than the capacity of the link,
the traversal time is assumed equal to oo (we reiterate that our
focus in this section is on avoiding the onset of congestion).

We assume that the road network is capacity-symmetric
(or symmetric for short): for any culﬂ (S,8) of G(V,€), the
overall capacity of the edges connecting nodes in S to nodes
in S equals the overall capacity of the edges connecting nodes
in S to nodes in S, that is

>

(u,v)EE: uES,veES (v,u)€EE: ueS,veS
It is easy to verify that a network is capacity-symmetric if
and only if the overall capacity entering each node equals the

capacity exiting each node., i.e.

weV:(v,w)eE

weV:(u,v)€E
If all edges have symmetrical capacity, i.e., for all (u,v) € £,
¢(u,v) = ¢(v, u), then the network is capacity-symmetric. The
converse statement, however, is not true in general.
Transportation requests are described by the tuple (s,t, ),
where s € V is the origin of the requests, ¢ € V is the
destination, and A € R+ is the rate of requests, in customers
per unit time. Transportation requests are assumed to be
stationary and deterministic, i.e., the rate of requests does not
change with time and is a deterministic quantity. The set of

c(u,v) = c(v,u)

c(u,v) = c(v,w)

IFor any subset of nodes S C V, we define a cut (S,S) C & as the set
of edges whose origin lies in S and whose destination lies in S = {V \ S}.
Formally, (S,S) = {(u,v) € £ :u € S,v € S}.



Fig. 1. A road network modeling Lower Manhattan and the Financial
District. Nodes (denoted by small black dots) model intersections; select
nodes, denoted by colored circular and square markers, model passenger trips’
origins and destinations. Different trip requests are denoted by different colors.

Roads are modeled as edges; line thickness is proportional to road capacity.
transportation requests is denoted by M = {(sm, tm, Am ) }m.
and its cardinality is denoted by M.

Single-occupancy vehicles travel within the network while
servicing the transportation requests. We denote f,,(u,v) :
E — Rso, m = {1,...,M}, as the customer flow for
requests m on edge (u, v), i.e., the amount of flow from origin
Sm to destination t,, that uses link (u,v). We also denote
fr(u,v) : &€ — R as the rebalancing flow on edge (u,v),
i.e., the amount of rebalancing flow traversing edge (u,v)
needed to realign the vehicles with the asymmetric distribution
of transportation requests.

C. The Routing Problem

The goal is to compute flows for the autonomous vehicles
that (i) transfer customers to their desired destinations in
minimum time (customer-carrying trips) and (ii) rebalance
vehicles throughout the network to realign the vehicle fleet
with transportation demand (customer-empty trips). Specifi-
cally, the Congestion-free Routing and Rebalancing Problem
(CRRP) is formally defined as follows. Given a capacitated,
symmetric network G(V, ), a set of transportation requests

M = {(Sm;tms Am) }m» and a weight factor p > 0, solve
minimize Z Z (u, V) frm (u,v)+p Z t(u,v) fr(u, v)
Fm G fR() meM (u,v)eE (u,v)e€
(D
SubjeCt to Z fm(U7 Sm) + A = Z fm(sm7w) vm e M (2)
uey weV
ST fnlttm) = Am + D fr(tm,w) Yme M (3)
ueV weV
S fnlw,0) = 3 fnlv,w)
ueV weV

Ym € M,v € V\ {sm,tm} C)

ZfR(u7 U) + Z 11):tm)\m

ueV meM
=Y frw,w)+ Y limapAm YWEV )
wey meM
fr(u,v) + meuv < c(u,v) Y(u,v) €€ (6)
meM

The cost function (I) is a weighted sum (with weight
p) of the overall duration of all passenger trips and the
duration of rebalancing trips. Constraints (Z), (3) and @)
enforce continuity of each trip (i.e., flow conservation) across
nodes. Constraint (B) ensures that vehicles are rebalanced
throughout the road network to re-align vehicle distribution

with transportation requests, i.e. to ensure that every outbound
customer flow is matched by an inbound flow of rebalancing
vehicles and vice versa. Finally, constraint (6) enforces the
capacity constraint on each link (function 1, denotes the
indicator function of the Boolean variable x = {true, false},
that is 1, equals one if x is true, and equals zero if x
is false). Note that the CRRP is a linear program and, in
particular, a special instance of the fractional multi-commodity
flow problem [29].

We denote a customer flow { fy, (1, v)}(u,0),m that satisfies
Equations (@), (3), @) and (6) as a feasible customer flow.
For a given set of feasible customer flows { fr, (1, )} (u,v),m>
we denote a flow {fr(u,v)} . that satisfies Equation (5)
and such that the combined flows { f, (v, v), fr(%, V) } (u,v),m
satisfy Equation (6) as a feasible rebalancing flow. We remark
that a rebalancing flow that is feasible with respect to a set of
customer flows may be infeasible for a different collection of
customer flows.

For a given set of optimal flows {fy (u,v)}(u,v),m and
{f£(u,v)}(u,v), the minimum number of vehicles needed to
implement them is given by

PRI

mEM (u,v)EE

This follows from a similar analysis done in [4] for point-to-
point networks. Hence, the cost function (I)) is aligned with
the desire of minimizing the number of vehicles needed to
operate an AMoD system.

Vinin = (fm(u v) + fr(u, U))

D. Discussion

A few comments are in order. First, we assume that trans-
portation requests are time invariant. This assumption is valid
when transportation requests change slowly with respect to
the average duration of a customer’s trip, which is often
the case in dense urban environments [30]. Additionally, in
Section we will present algorithmic tools that allow one
to extend the insights gained from the time-invariant case
to the time-varying counterpart. Second, the assumption of
single-occupancy for the vehicles models most of the existing
(human) one-way vehicle sharing systems (where the driver
is considered “part” of the vehicle), and chiefly disallows
the provision of ride-sharing or carpooling service (this is an
aspect left for future research). Third, as also discussed in
Section [[I-A] our congestion model is simpler and less accurate
than typical congestion models used in the transportation
community. However, our model lends itself to efficient real-
time optimization and thus it is well-suited to the control
of fleets of autonomous vehicles. Existing high-fidelity con-
gestion models should be regarded as complementary and
could be used offline to identify the congestion thresholds
used in our model. Fourth, while we have defined the CRRP
in terms of fractional flows, an integer-valued counterpart
can be defined and (approximately) solved to find optimal
routes for each individual customer and vehicle. Algorithmic
aspects will be investigated in depth in Section with the
goal of devising practical, real-time routing and rebalancing
algorithms. Fifth, trip requests are assumed to be known. In
practice, trip requests can be reserved in advance, estimated
from historical data, or estimated in real time. Finally, the



assumption of capacity-symmetric road networks indeed ap-
pears reasonable for a number of major U.S. metropolitan
areas (note that this assumption is much less restrictive than
assuming every individual road is capacity-symmetric). In the
extended version of this paper [31], by using OpenStreetMap
data [32]], we provide a rigorous characterization in terms
of capacity symmetry of the road networks of New York
City, Chicago, Los Angeles and other major U.S. cities. The
results consistently show that urban road networks are usually
symmetric to a very high degree. Additionally, several of our
theoretical and algorithmic results extend to the case where
this assumption is lifted, as it will be highlighted throughout
the paper.

III. STRUCTURAL PROPERTIES OF THE
NETWORK FLOW MODEL

In this section we provide two key structural results for
the network flow model presented in Section First,
we provide a cut condition that needs to be satisfied for
feasible customer and rebalancing flows to exist. In other
words, this condition provides a fundamental limitation of
performance for congestion-free AMoD service in a given road
network. Second, we investigate an existential result (our main
theoretical result) that is germane to two key conclusions: (1)
rebalancing does not increase congestion in symmetric road
networks, and (2) for certain cost functions, the problems of
finding customer and rebalancing flows can be decoupled — an
insight that will be heavily exploited in subsequent sections.

A. Fundamental Limitations

We start with a few definitions. For a given set of
feasible customer flows {f(u,v)}(u,v),m» We denote by
Fou(S,S) the overall flow exiting a cut (S,S), ie.,
Fout(8,8) = Y emt Zueswes fm(u, v). Similarly, we de-
note by Cou(S,S) the capacity of the network exiting S,
ie., Cou(S,S) = ZuES,veS c(u,v). Analogously, Fi,(S,S)
denotes the overall flow entering S from S, i.e., F},(S,S) :=
Fou(S,S), and C;,(S,S) denotes the capacity entering S
from S, ie., Cin(S,S) = Cou(S,S). We highlight that
the arguments leading to the main result of this subsection
(Theorem [3.4) do not require the assumption of capacity
symmetry; hence, Theorem holds for asymmetric road
networks as well.

The next technical lemma (whose proof is provided in
the extended version of this paper [31]) shows that the net
flow leaving set S equals the difference between the flow
originating from the origins s, in & and the flow exiting
through the destinations ¢,, in S, that is,

Lemma 3.1 (Net flow across a cut): Consider a set of fea-
sible customer flows { f,, (%, vV)} (u,v),m- Then, for every cut
(S8, S), the net flow leaving set S satisfies

Fout(Svs) - En(‘svs) = Z ]-sm,ES)\m - Z ]-tm,ES)\m-
meM meM
We now state two additional lemmas (whose proofs are
given in [31]) providing, respectively, lower and upper bounds
for the outflows Fyy(S,S).
Lemma 3.2 (Lower bound for outflow): Consider a set of

feasible customer flows { fi, (%, v)}(u,0),m- Then, for any cut

(S,S), the overall flow F,(S,S) exiting cut (S,S) is lower
bounded according to

Z 15,,,Les7tme§>\m < Fout(SvS)~
meM
Lemma 3.3 (Upper bound for outflow): Assume there ex-
ists a set of feasible customer and rebalancing flows
{fm(u,v), frR(4,v)}(u,v),m- Then, for every cut (S,S),

1) Fou(S,S) < Cou(S,S), and
2) Fou(S,8) < Cin(S, ).

We are now in a position to present a structural (i.e., flow-
independent) necessary condition for the existence of feasible
customer and rebalancing flows.

Theorem 3.4 (Necessary condition for feasible flows): A
necessary condition for the existence of a set of feasible
customer and rebalancing flows { f,(u,v), fR(4,V)} (u),m>
is that, for every cut (S,S),

1) Zme/\/l 15,,,Les,tme‘§/\m < Oout(SaiS)’ and
2) ZmeM 1sm€$,tm€§)‘m < Cin(S,S).
Proof: The theorem is a trivial consequence of Lemmas
B.2and 3.3l ]
Theorem [3.4] essentially provides a structural fundamental
limitation of performance for a given road network: if the cut
conditions in Theorem are not met, then there is no hope
of finding congestion-free customer and rebalancing flows.
We reiterate that Theorem holds for both symmetric and
asymmetric networks (for a symmetric network, claim 2) in
Lemma [3.3] and condition 2) in Theorem [3.4] are redundant).

B. Existence of Congestion-Free Flows

In this section we address the following question: assuming
there exists a feasible customer flow, is it always possible to
find a feasible rebalancing flow? As we will see, the answer
to this question is affirmative and has both conceptual and
algorithmic implications.

Theorem 3.5 (Feasible rebalancing): Assume there exists a
set of feasible customer flows {f,(u,v)}(u,v),m- Then, it is
always possible to find a set of feasible rebalancing flows
{fR(u7 U)}(u,v)'

Proof: We prove the theorem for the special case where
no node v € V is associated with both an origin and a
destination for the transportation requests in M. This is
without loss of generality, as the general case where a node v
has both an origin and a destination assigned can be reduced to
this special case, by associating with node v a “shadow” node
so that (i) all destinations are assigned to the shadow node
and (ii) node v and its shadow node are mutually connected
via an infinite-capacity, zero-travel-time edge.

We start the proof by defining the concepts of partial rebal-
ancing flows and defective origins and destinations. Specifi-
cally, a partial rebalancing flow, denoted as {fr(u, )} v)
is a set of mappings from £ to R>( obeying the following
properties:

1) It satisfies constraint (3)) at every node that is not an origin
nor a destination, that is Vv € {V\ {{sm}m U{tm}m}},

ng(u,v) = Z fr(v,w).

uey weY



2) It violates constraint (3)) in the “< direction” at every
node that is an origin, that is Vv € V such that Im €

M:v=s,,
Z fR(u,U) < Z fR(uw) + Z Ly=s,, Am
uey wey meM

3) It violates constraint (E]) in the “> direction” at every node
that is a destination, that is Vv € V such that Im € M :

U= t’ﬂh
Yo Frwv)+ 7 Lumi,An > Y frlv,w).
ucy meM weV

4) The combined customer and partial rebalancing flows

{fim(u,v), fr(u, V) } (u,v),m satisfy Equation (6) for every
edge (u,v) € &.

Note that the trivial zero flow, that is fz(u,v) = 0 for all
(u,v) € &, is a partial rebalancing flow (in other words, the set
of partial rebalancing flows in not empty). Clearly a feasible
rebalancing flow is also a partial rebalancing flow, but the
opposite is not necessarily true.

For a given partial rebalancing flow, we denote an origin
node, that is a node v € V such that v = s, for some m =
., M, as a defective origin if Equation (3)) is not satisfied
at v = Sy, (in other words, the strict inequality < holds).
Analogously, we denote a destination node, that is a node
v € V such that v = ¢t,, for some m = 1,...,M, as a
defective destination if Equation (3)) is not satisfied at v = t,,
(in other words, the strict inequality > holds). The next lemma
(whose proof is provided in [31]) links the concepts of partial
rebalancing flows and defective origins/destinations.

Lemma 3.6 (Co-existence of defective origins/destinations):

For every partial rebalancing flow that is not a feasible
rebalancing flow, there exists at least one node u € V that is
a defective origin, and one node v € V that is a defective
destination.

For a given set of customer flows {fp,(u,v)}(u,0),m and
partial rebalancing flows {fg(u, V) }(u,w), We call an edge
(u,v) € & saturated if Equation (6) holds with equality
for that edge. We call a path saturated if at least one of
the edges along the path is saturated. We now prove the
existence of a special partial rebalancing flow where defective
destinations and defective origins are separated by a graph
cut formed exclusively by saturated edges (this result, and its
consequences, are illustrated in Figure [2).

Lemma 3.7: Assume there exists a set of feasible customer
flows { fin(u,v)}(u,0),m. but there does not exist a set of
feasible rebalancing flows { fr(u,v)} (.. Then, there exists
a partial rebalancing flow { fr(u, )} (u,v) that induces a graph
cut (S8,8) with the following properties: (i) all defective
destinations are in S, (ii) all defective origins are in S, and
(iii) all edges in (9, S) are saturated.

We are now in a position to prove Theorem [3.5] The proof
is by contradiction. Assume that a set of feasible rebalancing
flows { fr(u,v)}(u,v) does not exist. Then Lemma [3.7| shows
that there exists a partial rebalancing flow { fR(u V) } u,w)
and a cut (S, S) such that all defective destinations under
{ fR_(u,v)}(W,) belong to S and all defective origins belong
to S. Let us denote the sum of all partial rebalancing flows

Fig. 2. A graphical representation of Lemma If there exists a set of
feasible customer flows but there does not exist a set of feasible rebalancing
flows, one can find a partial rebalancing flow where all the defective origins,
represented as blue circles, are separated from all the defective destinations,
represented as blue squares, by a cut of saturated edges (shown in red). Note
that not all saturated edges necessarily belong to the cut. In the proof of
Theorem we show that the capacity of such a cut (S, S) is asymmetric,
i.e., Cout < Cip — a contradiction that leads to the claim of Theorem

across cut (S,8) as

F(8,8) = > frlu,v)
ucS,wes
and, analogously, define F**(S,S) := (S, ,S). Since all

edges in the cut (S,S) are saturated under {fg(u, V) } u,v)s
one has, due to Equation (6)), the equality

Cout(szg) = Foul(SaS) Freb(S 8)

out

Additionally, again due to Equation (6), one has the inequality
Fin(S,8) + F;°(S,8) < Cin(S, ).

Combining the above equations, one obtains

Fu(S, S)+FR"(S, 8)—Fou(S, 8)—Fout (S, 8) < Cun(S, 8)—Coul(S

To compute F7**(S,S) — FI(S, S), we follow a procedure

similar to the one used in Lemma [3.1] Summing Equation (3]

over all nodes in S, one obtains,

Z |:Z fR(u7U) + Z 117—th7n:|

veS LueVy mem
> Z {Z fr(v,w) + Z 11,_3m)\m} .
veS Lwey mem

The strict inequality is due to the fact that for a partial
rebalancing flow that is not feasible there exists at least one
defective destination (Lemma [3.6), which, by construction,
must belong to S. Simplifying those flows fz(u, v) for which
both u and v are in S (as such flows appear on both sides of
the above inequality), one obtains

E0(8,8) = (S, 8) > Y Laneshm— Y Liesim
meM meM

Also, by Lemma [3.1]

Fou(8,8) = Fn(8,8) = Y Le,eshm— Y li,eshm
meM meM

Collecting all the results so far, we conclude that
0 < Fin(S,5) + F;°(S.8) = Fou(S.8) = FiR(S.S)
= Ci(S,S) — Cou(S,S).

Hence, we reached the conclusion that Ci(S,S) —
Cou(S,8) > 0, or, in other words, the capacity of graph
G(V,E) across cut (S,S) is not symmetric. This contradicts
the assumption that graph G(V, £) is capacity-symmetric, and
the claim follows. [ ]

The importance of Theorem [3.3] is twofold. First, perhaps
surprisingly, it shows that for symmetric road networks it is
always possible to rebalance the autonomous vehicles without
increasing congestion — in other words, the rebalancing of

,S).



autonomous vehicles in a symmetric road network does not
lead to an increase in congestion. Second, from an algorithmic
standpoint, if the cost function in the CRRP only depends
on the customer flows (that is, p = 0 and the goal is to
minimize the customers’ travel times), then the CRRP problem
can be decoupled and the customers and rebalancing flows can
be solved separately without loss of optimality. This insight
will be instrumental in Section to the design of real-time
algorithms for routing and rebalancing.

We conclude this section by noticing that the CRRP, from a
computational standpoint, can be reduced to an instance of the
Minimum-Cost Multi-Commodity Flow problem (Min-MCF),
a classic problem in network flow theory [29]. The problem
can be efficiently solved either via linear programming (the
size of the linear program is |E|(M + 1)), or via spe-
cialized combinatorial algorithms [33]], [34)], [35]. However,
the solution to the CRRP provides static fractional flows,
which are not directly implementable for the operation of
actual AMoD systems. Practical algorithms (inspired by the
theoretical CRRP model) are presented in the next section.

IV. REAL-TIME CONGESTION-AWARE
ROUTING AND REBALANCING

A natural approach to routing and rebalancing would be
to periodically resolve the CRRP within a receding-horizon,
batch-processing scheme (a common scheme for the control
of transportation networks [36], [4)], [37]). This approach,
however, is not directly implementable as the solution to the
CRRP provides fractional flows (as opposed to routes for the
individual vehicles). This shortcoming can be addressed by
considering an integral version of the CRRP (dubbed integral
CRRP), whereby the flows are infeger-valued and can be thus
easily translated into routes for the individual vehicles, e.g.
through a flow decomposition algorithm [38]. The integral
CRRP, however, is an instance of the integral Minimum-Cost
Multi-Commodity Flow problem, which is known to be NP-
hard [39]], [40]. Naive rounding techniques are inapplicable:
rounding a solution for the (non-integral) CRRP does not yield,
in general, feasible integral flows, and hence feasible routes.
For example, continuity of vehicles and customers can not
be guaranteed, and vehicles may appear and disappear along
a route. In general, to the best of our knowledge, there are
no polynomial-time approximation schemes for the integral
Minimum-Cost Multi-Commodity Flow problem.

On the positive side, the integral CRRP admits a decoupling
result akin to Theorem @ given a set of feasible, integral
customer flows, one can always find a set of feasible, integral
rebalancing flows. (In fact, the proof of Theorem [3.5] does not
exploit anywhere the property that the flows are fractional, and
thus the proof extends virtually unchanged to the case where
the flows are integer-valued). Our approach is to leverage
this insight (and more in general the theoretical results from
Section to design a heuristic, yet efficient approximation
to the integral CRRP that (i) scales to large-scale systems,
and (ii) is general, in the sense that can be broadly applied to
time-varying, asymmetric networks.

Specifically, we consider as objective the minimization of
the customers’ travel times, which, from Section and
the aforementioned discussion about the generalization of

Theorem [3.5] to integral flows, suggests that customer routing
can be decoupled from vehicle rebalancing (strictly speaking,
this statement is only valid for static and symmetric networks —
its generalization beyond these assumptions will be addressed
numerically in Section [V). Accordingly, to emulate the real-
world operation of an AMoD system, we divide a given
city into geographic regions (also referred to as ‘“stations”
in some formulations) [4]], [8], and each arriving customer
is assigned the closest vehicle within that region (vehicle
imbalance across regions is handled separately by the vehicle
rebalancing algorithm, discussed below). We apply a greedy,
yet computationally-efficient and congestion-aware approach
for customer routing where customers are routed to their
destinations using the shortest-time path as computed by an A*
algorithm [41]. The travel time along each edge is computed
using a heuristic delay function that is related to the current
volume of traffic on each edge. In this work, for each edge
(u,v) € & we use the simple Bureau of Public Roads (BPR)
delay model [42]

ta(u, v) := t(u,v) <1 T (ch((z;f»ﬂ) ’

where f(u,v) := Zn]\le fm(u,v) + fr(u,v) is the total flow
on edge (u,v), and « and 3 are usually set to 0.15 and 4
respectively. Note that customer routing is event-based, i.e, a
routing choice is made as soon as a customer arrives.

Separately from customer routing, vehicle rebalancing from
one region to another is performed every ¢, > 0 time units as
a batch process (unlike customer routing, which is an event-
based process). Denote by v;(t) the number of vehicles in
region 4 at time t, and by v;;(t) the number of vehicles
traveling from region j to ¢ that will arrive in the next tyicinity
time units. Let 07" (t) := v;(t) + >_, v;i(t) be the number of
vehicles currently “owned” by region ¢ (i.e., in the vicinity of
such region). Denote by v{(t) the number of excess vehicles
in region ¢, or the number of vehicles left after servicing the
customers waiting within region ¢. From its definition, v () is
given by v§(t) = v{""(¢t) — ¢;(t), where ¢;(t) is the number of
customers within region 7. Finally, denote by v¢(t) the desired
number of vehicles within region 7. For example, for an even
distribution of excess vehicles, v&(t) oc Y, v¢(t)/N, where
N is the number regions. Note that the v¢(¢)’s are rounded
so they take on integer values. The set of origin regions (i.e.,
regions that should send out vehicles), Sgr, and destination
regions (i.e., regions that should receive vehicles), Tg, for the
rebalancing vehicles are then determined by comparing v ()
and vd(t), specifically,

if v (1) > o),

if vi(t) < vi(t), regionic Tg.
We assume the residual capacity cg(u,v) of an edge (u,v),
defined as the difference between its overall capacity c(u,v)
and the current number of vehicles along that edge, is known
and remains approximately constant over the rebalancing time
horizon. In case the overall rebalancing problem is not feasible
(i.e. it is not possible to move all excess vehicles to regions
that have a deficit of vehicles while satisfying the congestion
constraints), we define slack variables with cost C' that allow
the optimizer to select a subset of vehicles and rebalancing

region i € Sy



routes of maximum cardinality such that each link does not
become congested. The slack variables are denoted as ds; for
each ¢ € Sg, and dt; for each j € Tk.

Every thor time units, the rebalancing vehicle routes are
computed by solving the following integer linear program

minimize t(u,v u,v) + Cds; + Cdt;
R {dss}(dts) 2 Hwv) frlu,) Z Z
(u,v)€E 1ESR i€TR
subject to Z Fr(u,v) 4 Loesy (VE(t) — vl (t) — ds,)
uey
= 3 frv,w) + Luery (v(8) — v5(8) — dt),
weV
for all v € V

fr(u,v) < cr(u,v), forall (u,v) €&

fr(u,v) €N, for all (u,v) € €

ds;,dt; € N, for all i € Sg,j € Tr
The set of (integral) rebalancing flows { fr(u, )} (u,v) is then
decomposed into a set of rebalancing paths via a flow decom-
position algorithm [38]. Each rebalancing path connects one
origin region with one destination region: thus, rebalancing
paths represent the set of routes that excess vehicles should
follow to rebalance to regions with a deficit of vehicles.

The rebalancing optimization problem is an instance of
the Minimum Cost Flow problem. If all edge capacities are
integral, the linear relaxation of the Minimum Cost Flow
problem enjoys a totally unimodular constraint matrix [29].
Hence, the linear relaxation will necessarily have an integer
optimal solution, which will be a fortiori an optimal solution
to the original Minimum Cost Flow problem. It follows that
an integer-valued solution to the rebalancing optimization
problem can be computed efficiently, namely in polynomial
time, e.g., via linear programming. Several efficient combina-
torial algorithms [29] are also available, whose computational
performance is typically significantly better.

The favorable computational properties of the routing and
rebalancing algorithm presented in this section enable appli-
cation to large-scale systems, as described next.

V. NUMERICAL EXPERIMENTS

In this section, we characterize the effect of rebalancing
on congestion in asymmetric network and explore the perfor-
mance of the algorithm presented in Section [[V|on real-world
road topologies with real customer demands.

A. Characterization of Congestion due to Rebalancing in
Asymmetric Networks

The theoretical results in Section [[II|are proven for capacity-
symmetric networks, which are in general a reasonable model
for typical urban road networks (we refer the reader to [31] for
a detailed analysis of capacity symmetry for major U.S. cities).
Nevertheless, it is of interest to characterize the applicability of
our theoretical results (chiefly, the existential result in Theorem
[3.3) to road networks that significantly violate the capacity-
symmetry property. In other words, we study to what degree
rebalancing might lead to an increase in congestion if the
network is asymmetric.

To this purpose, we compute solutions to the CRRP for
road networks with varying degrees of capacity asymmetry
and we compare corresponding travel times to those obtained

by computing optimal routes in the absence of rebalancing (as
it would be the case, e.g., if the vehicles were privately owned).
We focus on the road network portrayed in Figure [3(a)
which captures all major streets and avenues in Manhattan.
Transportation requests are based on actual taxi rides in New
York City on March 1, 2012 from 6 to 8 p.m. (courtesy of the
New York Taxi and Limousine Commission). We randomly
selected about one third of the trips that occurred in that time
frame (roughly 17,000 trips) and we adjusted the capacities
of the roads such that the flows induced by these trips would
approach the threshold of congestion. The roads considered all
have similar speed limits and comparable number of lanes and
thus we assign to each edge in the network the same capacity,
specifically, one vehicle every 23.6 seconds. This capacity is
consistent with the observations that (i) the customer flow is
only 30% of the real one (so road capacity is reduced accord-
ingly) and (ii) taxis only contribute to a fraction of the overall
traffic in Manhattan. Nevertheless, we stress that the capacity
was selected specifically to ensure that the flow induced by the
trips would approach the threshold of congestion before any
asymmetry is induced. To investigate the effects of network
asymmetry, we introduce an artificial capacity asymmetry
into the baseline Manhattan road network by progressively
reducing the capacity of all northbound avenues.

In order to gain a quantitative understanding of the effect
of rebalancing on congestion and travel times, we introduce
slack variables d¢(u,v), associated with a cost c.(u,v), to
each congestion constraint (6). The cost c.(u,v) is selected
so that the optimization algorithm will select a congestion-
free solution whenever one is available. Once a solution is
found, the actual travel time on each (possibly congested) link
is computed with the heuristic BPR delay model [42]] presented
in Section This approach maintains feasibility even in the
congested traffic regime, and hence allows us to assess the
impact of rebalancing on congestion in asymmetric networks.

Figure summarizes the results of our simulations. In the
baseline case, no artificial capacity asymmetry is introduced,
i.e., the fractional capacity reduction of northbound avenues
is equal to 0%. In this case, the customer routing problem
with no rebalancing (essentially, the CRRP problem with the
rebalancing flows constrained to be equal to zero) admits
a congestion-free solution. On the other hand, the CRRP
requires a (very small) relaxation of the congestion constraints.
Overall, the difference between the travel times in the two
cases is very small and approximately equal to 2.12%, in line
with the fact that New York City’s road graph has largely
symmetric capacity, as discussed in Section [IIj and shown
in [31]]. Interestingly, even with a massive 50% reduction in
northbound capacity, travel times when rebalancing vehicles
are present are within 4.12% of those obtained assuming
no rebalancing is performed. Collectively, these results show
that the existential result in Theorem proven under the
assumption of a symmetric network, appears to extend (even
though approximately) to asymmetric networks. In particular,
it appears that vehicle rebalancing does not lead to an appre-
ciable increase in congestion under very general conditions.

We conclude this section by noticing that for a 40% reduc-
tion in capacity, the travel times with vehicle rebalancing dip
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Fig. 3. Left: Manhattan road network. One-way roads are represented as
dashed lines. Centers of rebalancing regions are represented in red. Right:
Customer travel times with and without rebalancing for different levels of
network asymmetry.

slightly lower than those without. This effect is due to our use
of the BPR link delay model: while in our theoretical model
the time required to traverse a link is constant so long as a link
is uncongested, the link delay in the BPR model varies by as
much as 15% between free-flow and the onset of congestion.

B. Congestion-Aware Real-time Rebalancing

In this section we evaluate the performance of the real-
time routing and rebalancing algorithm presented in Section
against a baseline approach that does not explicitly take
congestion into account. We simulate 7, 000 vehicles providing
service to actual taxi requests on March 1, 2012, for two hours
between 6 and 8 p.m., using the same Manhattan road network
as in the previous section (see Figure [3(a)). Taxi requests
are clustered into 88 regions corresponding to a subset of
nodes in the road network. Road capacities are reduced to
account for exogenous vehicles on the roads to the point that
congestion occurs along some routes during the simulation.
The free flow speed of the vehicles is set to 25 mph (11 m/s)
and approximately 55,000 trip requests (from the taxi data set
discussed before) are simulated using a time step of 6 seconds.
The simulated speed of the vehicles on each link depend on
the number of vehicles in the link, and is calculated using the
BPR model. Other delay factors such as traffic signals, turning
times, and pedestrian blocking are not simulated.

Three simulations are performed, namely (i) assuming every
customer has access to a private vehicle with no rebalanc-
ing, (ii) using the congestion-aware routing and rebalancing
algorithm presented in Section [[V] and (iii) using a baseline
rebalancing algorithm. The baseline approach is derived from
the real-time rebalancing algorithm presented in [8], which is a
point-to-point algorithm that computes rebalancing origins and
destinations without considering the underlying road network.
In the baseline approach, customer routes are computed in
the same way as in Section For rebalancing, the origins
and destinations are first solved using the algorithm provided
in [8]], then the routes are computed using the A* algorithm
much like the customer routes. In simulations (ii) and (iii),
rebalancing is performed every 2 minutes.

Table [] presents a summary of the performance results
for simulations (ii) and (iii). Note that the service time is
the total time a customer spends in the system (waiting
+ traveling). Only data from simulations (ii) and (iii) are
presented in Table [[] because the only applicable performance
metric in simulation (i) is the mean travel time which was
264.69 s. Comparing our algorithm with (i), we notice that

TABLE I
RESULTS OF THE REAL-TIME SIMULATIONS

Performance metric | Congestion-aware  Baseline

# of trips completed 49,585 42,219

mean wait time (all trips) 163.57 s 406.03 s

mean travel time (completed trips) 265.13 s 275.19 s
mean service time (completed trips) 286.96 s 324 s
% with wait time > 5 minutes 5.4% 20%
mean # of rebalancing vehicles 204 1489

the additional rebalancing vehicles have no significant impact
on the travel time. Comparing our algorithm with (iii), we
notice that the congestion-aware algorithm outperforms the
baseline algorithm in every metric: low congestion allows the
vehicles to service customers faster, resulting in a reduction in
wait times as well as travel times. The baseline algorithm will
send rebalancing vehicles to stations with a deficit of vehicles
regardless of the level of congestion in the road network. This
results in many more empty vehicles dispatched to rebalance
the system (see Table[l), which causes heavy congestion in the
networki’l Our congestion-aware algorithm drastically reduces
this effect, resulting in very few congested road links.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a network flow model of an
autonomous mobility-on-demand system on a capacitated road
network. We formulated the routing and rebalancing problem
and showed that on symmetric road networks, it is always
possible to route rebalancing vehicles in a coordinated way
that does not increase traffic congestion. Using a model
road network of Manhattan, we showed that rebalancing
did not increase congestion even for moderate degrees of
network asymmetry. We leveraged the theoretical insights
to develop a computationally efficient real-time congestion-
aware routing and rebalancing algorithm and demonstrated its
performance over state-of-the-art point-to-point rebalancing al-
gorithms through simulation. This highlighted the importance
of congestion awareness in the design and implementation of
control strategies for a fleet of self-driving vehicles.

This work opens the field to many future avenues of
research. First, note that the solution to the integral CRRP
can directly be used as a practical routing algorithm. For
large scale systems, high-quality approximate solutions for the
integral CRRP may be obtained using randomized algorithms
[43l], [44]. Second, from a modeling perspective, we would like
to study the inclusion of stochastic information (e.g., demand
prediction, travel time uncertainty) for the routing and rebal-
ancing problem, as well as a richer set of performance metrics
and constraints (e.g., time windows to pick up customers).
Third, it is worthwhile to study how our results give intuition
into business models for autonomous urban mobility (e.g. fleet
sizes). Fourth, it is of interest to explore other approaches
that may reduce congestion, including ride-sharing, demand
staggering, and integration with public transit to create an
intermodal transportation network. Fifth, we would like to
explore decentralized architectures for cooperative routing
and rebalancing. Finally, we would like to demonstrate the
real-world performance of the algorithms using high fidelity
microscopic traffic simulators and by implementing them on
real fleets of self-driving vehicles.

2See the Media Extension, available at https://youtu.be/70ivalicCHU
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