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Abstract—We explore the capabilities of Auto-Encoders to fuse
the information available from cameras and depth sensors, and
to reconstruct missing data, for scene understanding tasks. In
particular we consider three input modalities: RGB images;
depth images; and semantic label information. We seek to
generate complete scene segmentations and depth maps, given
images and partial and/or noisy depth and semantic data. We
formulate this objective of reconstructing one or more types
of scene data using a Multi-modal stacked Auto-Encoder. We
show that suitably designed Multi-modal Auto-Encoders can solve
the depth estimation and the semantic segmentation problems
simultaneously, in the partial or even complete absence of some
of the input modalities. We demonstrate our method using the
outdoor dataset KITTI that includes LIDAR and stereo cameras.
Our results show that as a means to estimate depth from a single
image, our method is comparable to the state-of-the-art, and can
run in real time (i.e., less than 40ms per frame). But we also show
that our method has a significant advantage over other methods
in that it can seamlessly use additional data that may be available,
such as a sparse point-cloud and/or incomplete coarse semantic
labels.

I. INTRODUCTION

In a mobile robotic platform, real-time imagery, scene
depth and semantic scene labels potentially provide crucial
information for navigating through and interacting with the
scene. Within the robotics community the trend has been to
rely on expensive sensing suites including, e.g., laser ranging
systems, and to perform inference about scene labels using
both depth and image data. Recently, there has been significant
interest in the computer vision community in the possibility of
inferring the depth of the scene from 2D camera images alone,
by training a system using large datasets comprising both
imagery and depth. However often these algorithms for depth
estimation or semantic labelling (or both) are time consuming
and therefore not appropriate in a robotic vision context in
which real-time constraints are present. Our work is motivated
by these recent computer vision successes that apply learning
to capture prior information about the relationship between
local and global image features and their depth in a scene.
However we seek a method that (i) permits real-time inference;
and (ii) does not disregard other information that may be
available from the sensor/algorithm suite, such as a sparse
point cloud data or rough semantic segmentation of the scene,
but instead uses it seamlessly to improve the scene estimates.
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Fig. 1: Learning Models. (a) shows an AE with only one
input, its hidden layer and its input’s reconstruction as the
output. (b) show a MAE after stacking three independent
AEs by concatenating their independent hidden layers and
learning a shared representation (another AE) to reconstruct
the concatenation.

To that end, in this work we explore the capabilities of
the denoising Auto-Encoder (AE) (Fig. [Ta) [25] to fuse the
information available to estimate missing data, even when
there exists a complete absence of some of the sensors or
modalities. We tackle the problem using a Muti-modal stacked
denoising Auto-Encoder (MAE) [20], which handles three
input modalities — RGB image data; scene depth; and semantic
information; as illustrated in Fig. [Ib] — and apply this model
to the problem of outdoor scene understanding for a mobile
robotic platform. A significant advantage of this approach is
that it allows us to naturally exploit even partial information
to improve our predictions; e.g., when estimating the depth or
semantics from a single image we would like to use all the
information available, such as the sparse depth from a Struc-
ture from Motion (SfM) system, or a foreground/background
segmentation algorithm.

We are inspired by [20]], which fuses audio and video data
for speech classification. This work demonstrated that better,
more informative, features are learnt when different modalities
are taken into account. Furthermore, it demonstrated that after
having a suitable training stage, it is then possible to use



the data from one modality (in the absence of data from the
other) to recover the missing data at test time. We leverage
this insight to estimate the depth and semantics of a scene
jointly, given only the RGB information.

Originally, the AE was developed as an unsupervised tech-
nique for feature learning. We focus instead on its use for
reconstruction. Although the shared representation could be
used as a pre-trained feature for other classification tasks, we
do not address that possibility in this paper.

II. RELATED WORK

The problem of geometry estimation from a single image
has a long history. The earliest work (e.g., [5]) was concerned
only with understanding the geometry of the scene and relied
on significant manual intervention to create 3D scenes from a
single view. Subsequent to this, various works considered how
3D “pop-ups” or more complex scenes could be reconstructed
automatically by combining machine learning of scene labels
with perspective inversion [9} 12| [13]. These, and a number
of more recent learning approaches (such as [15} 17, 23]),
have typically relied on hand-crafted features and are com-
putationally expensive, taking on the order of seconds to
minutes per image. Saxena et al. [23] use only the appearance
information to estimate the depth of the scene. Liu et al. [17]]
first estimate a semantic segmentation to guide a better depth
estimation — i.e., they use the semantic information as an input
to their inference mechanism. On the other hand, Ladicky et
al. [15]] propose to jointly estimate the depth and the semantic
segmentation obtaining better depth estimation than by depth
inference alone. Both depth and semantics are outputs of their
system. Our work is related to both: we exploit semantic
information to learn models that are able to jointly estimate
depth and semantics at test time, even when only the image
information is available. Unlike the previous approaches, our
model estimates the depth using any semantic information
available at test time, and simultaneously (re-)estimates the
full semantic segmentation.

An alternative to the models described above is to take a
non-parametric, data-intensive approach to depth estimation,
notably [1} 21]. In these approaches patches from an image
are matched to a database of patches each of which is labeled
with its correct depth. The current patch then takes the depth
of closest match in the database. In addition to the burden
of the hand-crafted features, these approaches require to keep
great number of samples to transfer the correct depth to each
patch. Moreover, [21] uses this idea to densify an existing
depth map, rather than estimate depth from 2D image data
only.

Recently, there has been significant interest in the possibility
of using Convolutional Neural Networks (CNN) for the depth
estimation problem [6, [7, 18]. Eigen er al. [7] formulate
the depth estimation as regression problem, using multi-scale
CNNs to produce a depth map. Liu et al. [18] combine
a CNN with a continuous Conditional Random Field that
encodes scene smoothness priors. Eigen and Fergus [6] extend
their previous work to estimate not only depth, but surface

normals and semantic label estimation. Although they use the
same network structure for each task, each network is learnt
independently, and inference is also independent, meaning
they do not capitalise on the synergy between the different
modalities. In contrast our approach aims explicitly to take
advantage of the correlations that exist between the scene’s
semantic labels and its depth.

These previous deep learning approaches have all been
based on CNNs. We deliberately adopt a different architecture
since we seek a model that is flexible enough to support
partial knowledge from different inputs and powerful enough
to be able to estimate the missing parts. For this purpose we
make use of the AE learning structure. AEs have been used
for related purposes in the past, such as for image denoising
and inpainting [26], joint feature learning for speech recog-
nition [20], while [24] explored multimodal learning deep
boltzmann machines for image classification using images and
text.

III. AUTO-ENCODERS

Auto-Encoders belong to the family of unsupervised neural
network models. They are trained to compute a representation
of the input (this representation is known as the “code”), from
which we can recover the input as accurately as possible [25]].
In their most abstract form an AE encodes a visible input
v € R", to a hidden representation h € R™ through a
deterministic mapping:

h = 0.(W,v +b,) (1)

where o is a non-linear function. The hidden representation h
—i.e., the code — is then decoded into a reconstruction v with
the same dimensions as v, (see Fig. [Ta) through:

v =04(Wgh+ by) 2)

v should be seen as a prediction of v, given the code h. The
parameters W, b., W, and b, are optimized during training
such that the average reconstruction error on the training set
is minimized.

Since the objective of an AE is to reconstruct the signal from
the hidden layers, the typical loss function used for training
considers the reconstruction error. This can be measured in
many ways depending on the assumed distribution of the input
given the code. Often the squared error L(v,V) = ||v — V||3,
is used. We follow this convention in our work.

If the dimensionality of the hidden layer is greater than or
equal to the input layer a trivial (identity) solution could be
learnt. Therefore, different strategies have been proposed to
learn useful representations in the hidden layer [2, |3} 25]. One
popular strategy is the denoising AE [25]]. In a denoising AE
the input data is randomly corrupted during training; since we
want to recover the original un-corrupted input, this deliberate
corruption forces the hidden representation to learn a more
global structure of the input.

This ability of AEs to clean the inputs under missing data
(e.g., missing parts of a depth map) can be extended to recover
full chunks of missing data (e.g., missing an entire depth



Fig. 2: Inputs during training. Top: we enrich the sparse depth
data coming from the LIDAR with the sparse depth coming
from a stereo computation [10], then it is parametrized as the
inverse depth. Middle: the image is processed independently
for each channel until a shared representation is needed.
Bottom: a semantic segmentation over the image is obtained
[L6] and then we independently process each class as binary
image until a shared representation is learned; semantic color
code: Mground, Wobjects, " building, Mvegetation and Msky.

map). In other words, while we train with full information
(i.e., all sensor modalities), the model can recover some of
those modalities if they are missing at test time. It is this
opportunistic use of whatever data that is present at test time
that makes AEs so attractive for deployment in our work. We
explore this in more detail in the next section.

IV. PROPOSED ARCHITECTURE

In this section we describe our MAE learning architecture
along with other possible network topologies to estimate the
same missing information (depth and semantics).

One (naive) approach is to simply concatenate the different
input channels and try to learn a single AE. However, [20]
demonstrated that this option was not able to learn useful
representations of the intrinsic correlations across modalities.
Their work showed that it was better first to learn useful
independent representations and then learn the correlations
among those features. Their result motivates our approach as
follows.

The first step in our MAE model is to learn an independent
denoising AE for each input modality, as in Fig. The input
modalities that we handle are: RGB images; sparse depth
images (such as those provided by LIDAR); and the coarse
semantic classes ground, building, vegetation, sky and “other”,
a general object class (see Fig. [2). This selection give us a
total of nine channels, three for RGB, one for depth and five
for semantics, in which each semantic class input is a binary
mask.

A. Models

It is possible to learn the shared representations that capture
the inter-relationships among the inputs using networks with

different topologies. In this paper we explore three of them,
as shown in Fig. [3[a,c.d).

a) Full Flat MAE:: (flat-MAE) In this model we directly
concatenate the hidden layer for each channel in a full stacked
AE, similarly to [20] (Fig. [3a). We aim to learn a full shared
representation capturing the inter-relationships or correlations
across all inputs.

b) Full MAE:: (full-MAFE) In this model we first stack
the AEs corresponding to the semantic classes to learn a shared
representation that will capture the global context among these
coarse classes, Fig. This semantic shared representation is
then concatenated with the hidden layers for the depth and
RGB channels in a full stacked AE, see Fig.

¢) RGB to Depth-Semantics:: (rgb2sd) Here we use the
encoders from the RGB stacked with the decoders from the
depth and semantic AEs, see Fig. This model is the closest
one to a standard supervised learning model that tries to predict
depth and semantics from images. As with the other models
we use the AE pre-training stage to obtain initial estimates for
the network parameters, and then use images as inputs and the
corresponding known depth and semantics as output “labels”.
We use this model as a baseline to illustrate the benefits of
models flat-MAE and full-MAE which learn a shared hidden
representation.

B. Training setup

For each independent denoising AE we corrupt the input
data by forcing 10% of pixels to be zero. The only data
augmentation that we have used is horizontal flip for all the ex-
amples. For RGB and semantic channels we use the Rectified
Linear Unit (ReLU) activation function in the encoder, Eq.
and the sigmoid activation functions in the decoder, Eq. |2} For
reconstruction we choose the Euclidean loss function on these
channels. Note that each semantic class is a separate input,
coded as a binary image mask; for these data the Euclidean
loss on the sigmoid function is approximately a zero-one loss.

We parametrize the 3D information as the inverse depth
in the depth channel, which allows for representation of
points that are effectively at infinite depth (e.g., sky), and has
better convergence properties when estimating the 3D. In this
channel we use mean subtraction, ReLU in the encoder, and
no activation function in the decoder. Active depth sensors
have different blind spots, for instance due to specularity or
out of range measures, making the depth input sparse in most
cases. For this reason we use a Euclidean loss over only the
valid depth data. For the non-valid depth we assign the loss,
and its gradient, to zero.

When stacking the AEs we use ReLUs for both encoder
and decoder parts in the shared representations. Since each
stacked AE is composed of smaller components that are
already trained, we copy the parameters from these to pre-
train the stacked versions. New parameters in a stacked model,
which are not inherited from a smaller pre-trained model, are
randomly initialized following a zero-mean Gaussian. We first
run an initialization training stage for a few epochs, allowing
only the new parameters to be updated, while the pre-trained
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Fig. 3: Auto-Encoder models to estimate depth and semantic segmentation.

ones are kept fixed. After the initialization epochs, we then
optimize all the parameters.

Since we aim to reconstruct the full scene in the presence
of missing data (most ambitiously to estimate the depth and
semantic segmentation from a single monocular image), it
is essential to augment the training data with examples of
missing data. For example, as well as training the MAE with
a full set of RGB, semantics, and depth (at both its input and
output), we also train it with RGB alone presented at the input
(and the full set at the output). Of course this applies only to
full-MAE and flat-MAE, and not to rgbh2sd.

The size of the models, pre-training setups, and training
parameters are illustrated in Table [E There, ind. refers to the
hidden layer of each channel’s AE.

V. EXPERIMENTS

We have evaluated our model on outdoor scenes from the
KITTI dataset [11]. This dataset provides stereo RGB images
and 3D point clouds from a rotating LIDAR scanner. We use
the same sequences for training and testing as proposed by
[7].

We use both images from the each stereo pair as indepen-
dent examples, and project the 3D information on each one
to obtain the ground truth depth using the official toolbox
provided with the dataset. This projection results in sparse
depth images covering the bottom part of the RGB images.
We enrich the depth evidence in the upper part of the RGB
images by computing disparity (i.e., inverse depth) from the
stereo pair. This has the advantage that we include evidence

that is otherwise missed by the LIDAR such as the tops of
trees and buildings.

The semantic segmentation ground truth is not available for
these sequences. Thus, we determine an “approximate ground
truth” for all images using a top performing system [16 We
fine-tuned [[16] using the semantic segmentation hand labeled
data (140 images), a subset of the same KITTI dataset, made
available by [28]]. Although computationally expensive (> 2s
per image), [16] provides highly accurate segmentations on the
testing set (112 images), with an average accuracy of 94.5%
per class (96.4% per pixel accuracy). By determining a proxy
ground truth in this manner we run a small risk of training
our system to make the same errors as [16]; this expedient
does not diminish our overall contribution and it would be
trivial for us to retrain using actual ground truth if such were
available.

The original RGB images are around 1240x370 pixels in
size, but each sequence has different image size. As a starting
point for comparisons between different AE models we down-
sampled them to 60x18 pixels. Later, the full-MAE is retrained
to handle 120x36 and 240x72 down-sampled versions.

The training set has 30602 images in total, augmented with a
horizontally flipped version in each case, resulting in a dataset
of 61204 training images. We used all the images (and depth
maps) in each sequence even when the car has stopped. This
is because even when the scene remains the same, the sensor

lat the time of writing, the top performer on PASCAL VOC 2012 segmen-
tation



TABLE I: Models settings.

Model pre-training layer size learning rate total params. time
input [ ind. [ sem. [ full (at epoch) epochs M] training
60x18 resolution
independent-AEs — 1080 1024 — — le-2, 1e-3(100) 150 2.2 10min
Semantic-MAE S-AEs 5x1080 5x1024 | 1024 — le-3, 1e-4(100) 150 21.6 45min
full-MAE g;g’gﬁﬁ;s 9x1080 | 9x1024 | 1024 | 1024 le-3, 1e-4(100) 150 419 | 1h40min
flat- MAE D,R,G,B-S-AEs 9x1080 9x1024 — 1024 le-3, 1e-4(100) 150 38.8 1h10min
gg’p}?hf‘;em' 2{3’5’13?;5 1080 1024 | 1024 | 1024 le-3, 1e-4(100) 150 20.5 1h
120x36 resolution
full-MAE [ Tll-MAE 60x18 | 9x4320 | Ox1024 | 1024 | 1024 | le-5, 1e-6(20), Ie-7(50) | 60 | 1017 | _ 2h
240x72 resolution
full-MAE [ Tull-MAE 120x36 | 9x17280 | Ox1024 | 1024 | 1024 | Ie-6, 1e-7(20), 1e-8(30) | 60 | 340.7 | I8h

measurements are different.

A. Depth estimation results

We evaluate the depth estimation with different error metrics
that have been proposed in previous works [7, 22]. There are
697 frames from 28 different sequences in the testing set.
When evaluating, all the depth predictions are up-scaled by
bilinear interpolation to match the corresponding frame size
of each sequence.

With d, and ch denoting the ground-truth and predicted
depths respectively at pixel p, and T the total number of pixels,
with valid ground truth and prediction, in all the evaluated
depths, the Ametrics we use are: the Absolute Relative Error,
T2 M”T_pd”l; the linear RMSE, (/£ 3" (d, — d,)?: the log
scale invariant RMSE, £ >, (log d, —log dp + a(dy, dp))%
and the Accuracy under a threshold, max (g—z, Z—z =4 < th.

In our first experiment we compare different learning mod-
els to estimate the depth information at resolution of 60x18
pixels, where the depth input is set to zeros. We show the
errors for several models computed on the full testing dataset
in Table

In addition to the models described in Section [V-Al we have
trained the multi-modal AE without the semantic information
(rgbd-MAE) and a model with only the rgb encoder and the
depth decoder (rgb2d). In general, better results are obtained
by the multi-modal AEs, with the full-MAE model providing
the best performance. As reference, we also include the results
of a standard stereo matching system.

We detail in Table [lI| the information used as an input for
each evaluation, the color image of the scene (R,G,B), the
semantic segmentation (S) and the sparse depth on extracted
FAST corner keypoints (sD). In red we highlight the best
values using only the color image as the input. When using the
semantic information as well the best model is the full- MAE
model at 124x72 resolution, (number highlighted in blue). The
best metrics in the full comparison (excluding the stereo) are
in bold.

Let’s take a closer view of Table When comparing
the models at 60x18 with RGB-input only, the model rgb2d
has the lowest errors while our full-MAE is the second best
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Fig. 4: Ratio of the explained 3D point cloud ground truth
by the 3D point cloud from the depth estimation of different
models (y-axis) up to some maximum distance (x-axis). We
show the state-of-the-art model (eigen_fine [7]) on KITTI
dataset, and our model in three resolutions and using only
RGB or RGB plus semantics.

on errors and obtains the highest accuracies on 2 out of 3
thresholds.

If we assess the effect of using more information in MAEs,
a consistent improvement at each resolution is clear by using
either the semantic segmentation or the sparse depth. Further-
more, the best results for each metric are obtained when we
use both semantics and sparse depth.

It is not surprising that the performance improves alongside
the resolution of the MAE models, as they have access to more
information. However we also observe that the impact of using
sparse depth is not as great at the 240x72 resolution than at
lower resolutions. We believe this is because each keypoint
in the higher resolution has to influence a larger number of
pixels, which could result in greater difficulty for the network
to learn the features.

We up-scale our full-MAE model to handle 120x36 and
240x72 pixels resolution inputs. We initialize the weights



TABLE II: Comparison of depth estimation on the KITTI dataset. The inputs column is coded as R,G,B, for the image color
channels, S for the 5-channel semantic inputs, and sD for sparse depth from the stereo matching on a corner detector.

Errors Accuracy
Method (lower is better) (higher is better)
Model [ Inputs [ outres. | abs.rel. [ rms [m] [ logscinv | § <1.25 | § <1.25%2 [ § < 1.253
stereo 0.077 4.36 0.179 0.939 0.969 0.982
eigen_fine [7] R,G,B 144x27 0.320 8.08 0.509 0.512 0.822 0.922
rgb2d R,G,B 60x18 0.275 9.11 0.360 0.537 0.758 0.879
rgb2sd R,G,B 60x18 0.290 9.18 0.363 0.530 0.756 0.879
rgbd-MAE R,G,B 60x18 0.300 9.34 0.368 0.527 0.753 0.873
flat-MAE R,G,B 60x18 0.290 9.50 0.368 0.536 0.757 0.872
flat-MAE R,G,B,S 60x18 0.255 8.87 0.335 0.588 0.796 0.897
full- MAE R,G,B 60x18 0.288 9.44 0.367 0.540 0.761 0.875
full MAE R,G,B,S 60x18 0.252 8.76 0.327 0.586 0.802 0.903
ful-MAE R,G,B,sD 60x18 0.199 7.78 0.290 0.654 0.859 0.943
ful-MAE R,G,B,S,sD 60x18 0.184 7.52 0.276 0.687 0.877 0.948
ful-MAE R,G,B 120x36 0.286 8.99 0.371 0.578 0.781 0.887
ful-MAE R,G,B,S 120x36 0.250 8.34 0.338 0.617 0.815 0.909
fullMAE R,G,B,sD 120x36 0.202 7.53 0.311 0.671 0.870 0.947
ful-MAE R,G,B,S,sD | 120x36 0.179 7.14 0.297 0.709 0.888 0.956
ful-MAE R,G,B 240x72 0.291 8.65 0.363 0.597 0.791 0.894
fullMAE R,G,B,S 240x72 0.243 7.80 0.323 0.643 0.833 0.925
ful-MAE R,G,B,sD 240x72 0.220 7.61 0.317 0.660 0.856 0.940
ful-MAE R,G,B,S,sD | 240x72 0.194 7.10 0.295 0.695 0.881 0.954

for these models with the ones from the immediate lower
resolution in the internal layers, and properly up-scale the
size of the matrices Ws and bs affected by the change in
siz Note that our up-scaled decoders still make use of the
same sized hidden layer. It is possible that increasing this size
would permit the higher resolution decoders access to more
detailed information than is available at present, but we defer
this experiment for future work.

In row 2 of Table [[l] we also show the performance of the
state-of-the-art depth estimation methods, the model proposed
in [[7] (depth predictions downloaded from the authors’ web-
site) eigen_fine in Table [II, which has 90.9M parameters in the
model. Their model outputs are 144x27 pixels, corresponding
to a partial coverage of the image and ground truth depth.

The single metrics of Table [II] do not tell the full story
for a meaningful comparison. For example, the ordering of
performance permutes depending on the chosen metric and
these metrics do not reflect the sparsity or the coverage of the
ground truth and the predictions. For these reasons we report
the ratio of the ground truth explained by the predictions for
different maximum distances in Fig. ] The curves are built
by projecting the predicted depths to a 3D point cloud and
computing the distances for each 3D point in the ground truth
to the closest predicted 3D point, then computing the ratio of
the distances that are less than a certain threshold.

As shown in Fig. fi] the amount of explained ground truth
increases with the resolution of the models for any selected
maximum distance. The estimations from [6] perform better
than our model only when more than 50cm of error are
allowed.

Note that a direct comparison on a level playing field

2We explored different initialization options: random, learning again for
each stage, and RBMs, and found the up-scaling initialization gives the best
results for the same number of epochs.

is almost impossible and we provide these comparisons for
reference only. There are various factors involved in how the
two systems are trained and these should be borne in mind
when interpreting the data. For example: [7] executes more
comprehensive data augmentation to have a training set size
of 1.5M samples; though our training set is smaller, we allow
the system access to the semantic information at training time
to guide the learning of the shared representation.

B. Semantic Segmentation Results

In the previous section we evaluated the depth reconstruc-
tion obtained with our full-MAE using different inputs. In this
section we evaluate the semantic segmentation output when
only the RGB image is available as an input; that is, the depth
and semantic inputs are both set to zeros.

In order to show how our full-MAE semantic segmentation
performs we evaluate it on the same hand-labeled set of [28].
We have selected the images from [28]] that do not overlap
with any of the sequences in our training, resulting in 140
images. We report the recall accuracy and the intersection over
union of our full-MAE semantic segmentation in Table We
also report the results of rgb2sd and flat-MAE. These results
demonstrate that, even under the same inputs, learning the
synergies among the different modalities with the multi-modal
AEs leads to better estimations for all the classes.

Finally, our full-MAE obtains the best overall performance,
meaning that our architecture, Fig. learns better correla-
tions among the semantic classes than a flat model.

For the sake of completeness we also include the results
from two semantic segmentation systems, [28] and [4]], in
Table Please note that a direct comparison is not possible
given that the test sets are different (marked as I). Although
[28] performs better on the semantic segmentation task, the
computation cost for their approach is of the order of several



Fig. 5: Reconstruction results from our full-MAE model. The first row shows the RGB input to the model. In the second and
third row we show the reconstruction for semantics and depth by setting the corresponding inputs to zero. The fourth row
shows an alternative image-only semantic segmentation [16] used as the semantic input, and the depth reconstruction result of
using this together with RGB is shown in the fifth row. The last two rows correspond to the ground truth depth and the results

from [[7]).

seconds per frame, while our approach provides the semantic
segmentation and the dense depth estimation in a matter of
milliseconds per frame, making it potentially much more suit-
able for robotics applications. For a more direct quantitative
comparison, we retrain [4] and evaluate it on the same test set
than ours. Our full-MAE running faster than 25fps outperforms
which runs at 5fps.

TABLE III: Semantic segmentation evaluation with image-
only inputs. Note that the results for [28] are taken directly
from Table II in that paper. Their results refer to a different test
set (1), and require orders of magnitude more computational
time than ours. We present them for the sake of completeness.

Accuracy [%]

Model bldg | sky gnd | veg obj avg. | pixel
[4]-Im f 932 | 919 | 786 | 932 | 325 | 769 | 832
[28]-Im £ | 87.5 | 92.5 | 91.9 | 92.5 | 66.1 | 86.1 | 89.4
[4]-Im 92.7 | 839 | 80.4 | 86.7 | 183 | 724 | 779
rgb2sd 622 | 94.1 | 94.1 | 822 | 338 | 733 | 769
flat-MAE | 66.0 | 955 | 945 | 86.5 | 35.1 | 755 | 79.4
fullMAE | 69.0 | 96.8 | 95.8 | 864 | 42.6 | 78.1 | 81.3
Intersection over Union[%]
Model bldg | sky gnd veg obj average
[4]-Im 555 | 823 | 71.8 | 773 | 173 60.8
rgb2sd 525 | 79.0 | 783 | 62.8 | 27.8 60.1
flat-MAE | 552 | 80.8 | 81.7 | 67.4 | 30.6 63.0
fullMAE | 59.2 | 83.1 | 824 | 69.6 | 36.5 66.2

C. With Partial Inputs

A major advantage of our method is its ability to use
additional information available to obtain a better depth and
semantic segmentation. To illustrate this, we take one complete

TABLE IV: Depth accuracy with partial and noisy inputs.

Inputs
RGB RGB RGB
RGB + PSem | + SfM | + P.Sem
Errors + StM
abs. rel. 0.304 | 0.270 0.292 0.251
RMSE(linear) [m] | 7.94 7.01 7.85 6.96
RMSE(log.sc.inv.) | 0.359 | 0.332 0.350 0.321
Accuracy
§<1.25 0429 | 0.614 0.442 0.610
§ < 1.252 0.695 0.837 0.714 0.838
§ < 1.258% 0.887 0.929 0.896 0.930

sequence of those in the testing set of [7]], and first estimate the
depth and semantics using only the RGB input. An example
frame is shown in Fig.

Next, to show how even partial semantic information is
beneficial, we run a standard object detector [8] on this
sequence to detect cars, Fig. [6dl With the bounding boxes
for cars declared as objects class and one mask for the ground
class on the bottom of the image, we have a rough semantic
segmentation input, Fig. [6e] With this rough and incomplete
segmentation and the RGB as inputs, our model estimates the
dense depth and full semantics as shown in Fig. [6f}

As a final step, we compute a sparse point cloud recon-
struction for this sequence using the SfM implementation,
a monocular visual odometry system, of [10], see Fig.
We now use the network to re-estimate using only the RGB
and this noisy and sparse depth, as well as using all the
inputs available so far: RGB, sparse depth and partial semantic
segmentation. Fig. [61] shows the output.
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(b) RGB input.

(e) Rough semantic input.
T

(g) Point cloud from SfM.

(h) Sparse depth from SfM.

(¢) Output using only RGB input.

.

(f) Output using (b) and (e).

(i) Output using (b), (e) and (h).

Fig. 6: Qualitative results using partial information as inputs.

We report a quantitative comparison on the depth estimation
under these four scenarios in Table [[V] It is clear how every
piece of extra information can be seamlessly incorporated in
our full-MAE to improve the estimation. One interesting aspect
of this table is that the addition of the “sparse semantics”
appears to be of greater assistance than the sparse depth. We
speculate that this is because the system is most likely to make
depth errors around objects such as cars, and the addition of
the semantic information helps to prevent these errors, having
a greater impact on the overall depth performance than the
noisy sparse depth.

D. Computational and Memory Requirements

We used caffe [14] to implement, train and test all the
learning models. The training was carried out using an nVidia
GeForce GTX TITAN X GPU with 3072 cores and 12 Gb
memory. The training times are reported in the last column of
Table [l

All the evaluation was performed using an nVidia GeForce
GTX-680 GPU with 1536 cores and 2Gb memory. Processing
the testing set for our full-MAE model with 60x18 resolution
took 11.2ms for batches of 100 frames to estimate the depth
and the semantic segmentation. Processing only one frame at
a time incurs GPU communication overheads and takes 7.9ms
on average (including the overheads). In the full-MAE model
at 120x36 resolution the timing for batches of 100 was 20ms.
Processing only one frame at a time at this resolution takes
12.8ms. With our full-MAE model at 240x72 resolution the
timing for processing only one frame at a time is 35.5ms.

A more efficient computation is possible when the depth
and/or semantic inputs are set to zero, since in this case it
is possible to pre-compute the corresponding hidden layers in
the encoder stages, saving memory and computational time.

VI. DISCUSSION AND CONCLUSIONS

We have presented a MAE model for depth and semantic
segmentation estimation. By exploiting different modalities
and learning a shared representation, our model performs
better on tasks such as depth estimation from a single image
than a comparable non-shared representation. Even when
using imperfect semantic segmentation during training, the

MAE model is able to learn useful shared codes between the
different modalities, and gives better depth estimations when
the semantic knowledge is available. Furthermore our MAE
model comes with the benefit of being able to use any available
knowledge, even partial data, to arrive at its scene estimation.
By way of example, we have shown how our method can
densify a depth map using sparse point-cloud data along with
a single RGB. To our knowledge no other deep network,
such as CNNs or even other learning approaches (e.g., holistic
methods [27])), are able to handle missing information — even
in extreme cases with full absence of one input modality — to
perform the inference.

In a quantitative comparison with a state-of-the-art depth
estimation system, our MAE model behaves comparably: the
results show either slightly better or slightly worse perfor-
mance depending on the metric. Our system obtains more
accurate estimation for the close range than for long range
(a characteristic of the inverse depth parametrization) and this
means we perform better on log-scale metrics than linear
ones. An interesting question for future work will be to
develop a depth loss function that can produce similar accuracy
across the full range of useful depths. We also hope to
investigate Convolutional Auto-encoders [19] as a means to
exploit greater depth of the network (and therefore potentially
better inference ability) while retaining the benefits we have
demonstrated.
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