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Abstract—Autonomous surface and underwater vehicles (ASVs
and AUVs) are increasingly being used for persistent monitoring
of ocean phenomena. Typically, these vehicles are deployed for
long periods of time and must operate with limited energy
budgets. As a result, there is increased interest in recent years
on developing energy efficient motion plans for these vehicles
that leverage the dynamics of the surrounding flow field. In this
paper, we present a graph search based method to plan time and
energy optimal paths in a flow field where the kinematic actuation
constraints on the vehicles are captured in our cost functions.
We also use tools from topological path planning to generate
optimal paths in different homotopy classes, which facilitates
simultaneous exploration of the environment. The proposed
strategy is validated using analytical flow models for large scale
ocean circulation and in experiments using an indoor laboratory
testbed capable of creating flows with ocean-like features. We also
present a Riemannian metric based approximation for these cost
functions which provides an alternative method for computing
time and energy optimal paths. The Riemannian approximation
results in smoother trajectories in contrast to the graph based
approach while requiring less computational time.

I. INTRODUCTION

To better understand oceanic processes, researchers are em-
ploying autonomous underwater and surface vehicles (AUVs
and ASVs) for long-term surveillance of the dynamics of
plankton assemblages [5], temperature and salinity profiles
[19, 29, 27], and the onset of harmful algae blooms [6, 9]. In
these and similar environmental monitoring applications in the
ocean, AUVs and ASVs are often deployed over long periods
while operating with limited energy budgets. As such, there is
increased interest in recent years on developing more energy
efficient motion and trajectory plans for AUVs and ASVs.

In recent years, researchers have demonstrated how
AUV/ASV motion planning and adaptive sampling strategies
can be improved by incorporating either historical or current
ocean flow data [24, 26, 25]. In [24, 26], Smith et al. rely on
regional ocean model systems (ROMS) to predict the dynamics
of an evolving ocean front and uses the resulting predictions
to generate waypoints for the AUV to enable it to track the
feature of interest. The approach was then integrated with an
unscented Kalman filter to better estimate the vehicle’s dead-
reckoning error along a given path in [25]. Path planning for
an AUV tasked with an adaptive sampling task was achieved in
[8] by employing Lagrangian drifters to drift along a “patch”
of water of interest. Rather than rely on ROMS data, Das et al.
effectively achieves real-time sampling of the ocean currents
in the region of interest using the drifters. Wu et al. solves
the inverse problem in [30] where differences in actual and

predicted AUV surfacing positions are leveraged to estimate
the at-depth flow field. In all these works, the idea is to
leverage available ocean data to improve the selection of future
vehicle sampling locations, thus minimizing the vehicle’s
energy expenditure by avoiding navigation to erroneous or low
information value regions.

While the high inertia environment of the ocean couples the
environmental dynamics to the dynamics of the vehicles that
operate in them, it presents a unique opportunity for vehicles
to exploit these surrounding flow dynamics for more efficient
navigation. However, the exploitation of the surrounding flow
field in the planning of optimal trajectories is an extremely
challenging endeavor since it requires full knowledge of the
flow field in both space and time. Our limited understanding
of the complexities of ocean dynamics means that in general
accessibility to and the overall quality of the flow data and/or
numerical models is highly dependent on how well a given
region of interest is instrumented. While it is possible to obtain
ocean current hindcasts, nowcasts, and forecasts from Naval
Coastal Ocean Model (NCOM) databases [1] and regional
ocean model systems (ROMS) [26], the data is assimilated
from satellite and field observations in conjunction with pre-
dictions from numerical models [22, 23]. And since numerical
partial differential equation models are derived through a
combination of theoretical and field observations, existing data
sets are mostly finite-time, of low spatio-temporal resolution,
and limited to specific regions.

Recently, a level-set approach for AUV/ASV path planning
where the external flow was explicitly accounted for was
described in [16, 17]. In the level-set approach, time-optimal
trajectories for single and multiple vehicles are determined
by employing a level set expansion of the flow field given
the desired start and goal positions for the vehicle(s). The
underlying motion model behind the level-set method assumes
that the net velocity of the vehicle is composed of the flow
velocity component and a velocity component orthogonal to it
(due to actuation). This velocity model is, very often, restric-
tive. Furthermore, such a model does not take into account
kinematic constraints of the vehicle, and provides limited
flexibility in the choice of the optimization objective. Since the
strategy requires full knowledge of the flow field and requires
significant computational resources when performing the var-
ious level set expansions, the strategy is mostly applicable for
pre-deployment planning purposes and not amenable for real-
time planning purposes. Graph-based strategies for computing



Fig. 1. Snapshot (August 2005) of visualization of ocean surface currents for
June 2005 through December 2007 generated using NASA/JPLs Estimating
the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean model.

minimum energy paths for marine vehicles subject to external
flow conditions include [10, 11, 15, 14]. These works mostly
employ a variant of A∗ with a suitably selected energy or
time based heuristic. However, these approaches are generally
restrictive in their optimization objective, are computationally
expensive, and/or too simplistic in their assumptions about the
dynamics of the fluid environment.

In this work, we present a graph-based path planning
approach for computing time and energy optimal paths for
vehicles operating in a general flow field. Similar to [16, 17,
10, 15, 14, 11], the strategy leverages the surrounding flow
field in the synthesis of optimal trajectories. Different from
these existing strategies, we employ graph search-based meth-
ods coupled with more accurate cost functions in computing
the optimal trajectories. In particular, the primary merits of
our method are the following:
(a) We are able to design cost functions for obtaining both

time and energy optimal trajectories. More complex op-
timization objectives can also be constructed.

(b) In our method we are able to impose kinematic con-
straints such as maximum still-water speed of the vehicle.

(c) We provide a Riemannian approximation of our cost
function so as to be able to model them as Riemannian
metrics. This allows us to develop insights into the
problem as well as pose the optimization problem as
one of solving the geodesic equation on a Riemannian
manifold.

(d) Lastly, large scale ocean circulation often exhibit signifi-
cant eddy and jet structures (see Fig. 1), which gives rise
to the presence of fixed points and invariant manifolds
in the flow field. Coupled with the presence of obstacles,
e.g., islands and archipelagos, the result is multiple topo-
logical classes of trajectories. Recent work showed the
importance of reasoning about such topological classes
in marine operations in the presence of obstacles [4]. As
such, a fundamental advantage of our proposed graph-
based strategy over existing ones [10, 15, 14, 11] is the
ability to use computational tools from topological path
planning in the computation of time/energy optimal paths
in different homotopy classes of the environment.

The rest of the paper is organized as follows: in Section
II we present the preliminaries of the problem and its for-
mulation, in Section III we describe the methods used to
solve the optimization problem, Sections IV and V describe
the simulation and experimental results respectively and we
conclude with a discussion of our findings and directions for

(a) (b)
Fig. 2. (a) The flow vector, V, at a point, p, and the flow-parallel coordinate
system. (b) The net velocity of the vehicle is the vector sum of the field
velocity and the vehicle’s still-water velocity.

future work in Section VI.

II. PROBLEM FORMULATION

We begin with a brief description of our assumptions and
then describe the development of our time and energy cost
functions. We conclude this section with a formal statement
of our problem.

A. Flow Model
In this work, we consider the planning of time and/or energy

optimal paths in a two-dimensional (2D) planar flow field of
the form

ṗ(t) = v(t) = F(p) (1)

where p ∈W denotes the position in the 2D workspace W ⊆
R2. Then v denotes the velocity of the flow field at p at a
given time t. In the case when the flow field is time-varying,
(1) becomes v = F(p, t) with (p, t) ∈ WT ⊆ R3 where
the third dimension denotes time. We employ a flow-parallel
coordinate representation of the vector field given by (1), such
that for every point p ∈ W , its axes are aligned along the
unit vectors v̂p = F(p,t)

‖F(p,t)‖ (the “x” axis) and v̂p⊥ (the “y”
axis, orthogonal to the x axis – see Fig. 2(a)). We note that
this coordinate system is not “co-moving” with the flow and
thus for simplicity we will drop the p subscript wherever it is
possible to do so without ambiguity.

Thus, in the flow-parallel coordinate system, the flow vector
at p can simply be written as v = vv̂, where v = ‖v‖ is the
speed of the flow at p. With a little abuse of notation, we
will also write the coordinate representation of v in the flow-
parallel coordinate system as v = [v, 0]T .

B. Vehicle Kinematics
We assume the following 2D kinematic model for the planar

autonomous underwater/surface vehicle:

Ẋ = vstill cos θ + vX , Ẏ = vstill sin θ + vY (2)

where X and Y denote the global Euclidean coordinates of the
vehicle (in contrast to x and y denoting the local flow-parallel
coordinates), vstill = ‖vstill‖ denotes the speed/velocity of
the vehicle in still water (relative to the flow), and θ denotes
the angle of vstill with respect to the global X axis.

In general, a vehicle which travels infinitesimal distances,
dx and dy, along v̂p and v̂p⊥ respectively in time dt, has a net
velocity vnet = [dx, dy]T /dt (expressed in the components of
the flow-parallel coordinates). If vstill is the velocity of the
vehicle in still water, its flow-parallel coordinate representation



is vstill = vnet − v = [dxdt − v,
dy
dt ]T (see Fig. 2(b)). Thus the

speed of the vehicle in still water is given by

vstill = ‖vstill‖ =

√(
dx

dt
− v
)2

+

(
dy

dt

)2

. (3)

As such, Ẋ and Ẏ in (2) are the components of vnet in the
global coordinate frame with vX and vY denoting the X and
Y components of the background flow velocity respectively.
In this work, rather than focusing on the non-holonomic
constraints enforced by the vehicle kinematics given by (2),
we instead focus on the kinematic actuation constraints of
the vehicle at the trajectory planning stage. This is because
for energy constrained vehicles deployed in geophysical fluid
environments like the ocean, the environmental dynamics tend
to dominate. As such, we assume that the actuation capability
of the vehicle is limited and slower than the surrounding flow
(vstill < Vmax < maxp∈W vp) and that the vehicle’s lower
level controllers can achieve the desired still water speed
dictated by the trajectory planner.

C. Cost Functions

We will assign (infinitesimal) costs to infinitesimal dis-
placements of the vehicle. Thus, in general, it is a function
of differentials, dx and dy (where x and y are the flow-
parallel coordinates), and is of the form dc2 = f(dx, dy).
However, if necessary, our framework lets us incorporate
the differential time element (time required to produce the
differential displacement) in the function, in which case the
form will be dc3 = f(dx, dy, dt). This also lets us define cost
functions and thus find optimal trajectories in time-varying
flow fields, although we will primarily focus on time-invariant
flows in this work.

1) Time Minimizing Cost: If we assume vstill = Vmax, a
fixed maximum still-water speed for the vehicle, we can solve
for dt using (3) as follows,((

dx

dt
− v
)2

+

(
dy

dt

)2
)

= V 2
max

⇒ dx2 − 2vdxdt+ (v2 − V 2
max)dt2 + dy2 = 0

⇒ dt =
v

v2 − V 2
max

dx−
√
V 2
max(dx2 + dy2)− v2dy2

v2 − V 2
max

. (4)

Note that we discard the solution with the positive root since
when dy = 0, we should have dt = dx/(v + Vmax).

Thus, the time-minimizing cost for a differential elements
in W is

dc2,time =
v

v2 − V 2
max

dx−
√
V 2
max(dx2 + dy2)− v2dy2

v2 − V 2
max

. (5)

The corresponding still-water velocity of the vehicle will be
vstill,time = [dxdt − v,

dy
dt ]T , where dt is given by (4).

Without imposing any velocity restrictions when computing
time optimal trajectories, the differential cost of a differential
element in WT would simply be the time taken to traverse the
differential element: dc3,time = dt.

2) Energy Minimizing Cost: The differential cost in this
case is the energy expended in achieving a differential dis-
placement, [dx, dy]T in time dt. If vstill is the still-water ve-
locity of the vehicle required for achieving this displacement,
the drag force generated is assumed to be F = κvstill (where κ
is the drag coefficient) [20], and the displacement in still water
is dxstill = vstilldt. Thus, using (3), the cost of a differential
element in WT is

dc3,energy = F · dxstill = κ‖vstill‖2dt

= κ

((
dx

dt
− v
)2

+

(
dy

dt

)2
)
dt

= κ

(
dx2 + dy2

dt
+ v2dt− 2vdx

)
(6)

If we fix dx and dy, the differential displacement, and
let the vehicle choose any velocity so as to minimize the
differential cost, it is easy to check that the cost given in

(6) is minimized when dt =

√
dx2+dy2

v . Now since we can
effectively remove the time dimension from the cost function,
the cost of a differential element in W is

dc2,energy = 2κv
(√

dx2 + dy2 − dx
)

(7)

and the corresponding still-water velocity of the vehicle is,

vstill,energy = v

[(
dx√

dx2 + dy2
− 1

)
,

dy√
dx2 + dy2

]T
. (8)

D. Problem Statement
Given the above time and energy cost functions, the objec-

tive is to find paths that minimizes the respective total costs.
As such, the objective of this work is to find a path γ?, such
that it is the solution to the following optimization problem:

min
γ

∫
γ

dcα,β

subject to γ(τ0) = ps, γ(τg) = pg, vstill ≤ Vmax.
(9)

Here, ps and pg are the desired start and goal positions, α
denotes the dimension of the workspace, and β denotes either
time or energy.. When α = 2, the infinitesimal element
belongs to W and when α = 3 it belongs to WT . We present
our graph based search strategies for computing γ? in the
following section.

III. ALGORITHM
A. Graph Search-based Optimal Trajectory Planning

We use a discrete graph, G = (V,E), to represent the
workspace W (or WT ). Vertices in this graph are centroids
of cells in a uniform square/cubic discretization (in the global
coordinates), and edges are established between immediate
neighbors as well as some 1-hop neighbors.

Fig. 3. The connectivity of a vertex with other neighboring vertices in the
graph G.



In particular, for the planar case, each vertex is connected
to 16 neighboring vertices as illustrated in Figure 3. Each
edge in the graph can now be approximately considered as
an infinitesimal segment with projections dx and dy along
v̂(p) and v̂⊥(p) respectively, where p is the position of the
vertex at the base of the edge. This lets us assign a cost to the
edge using formula (5) (time optimal search) or (7) (energy
optimal search).

Given a start and a goal vertex in the graph, we can thus use
Dijkstra’s optimal search algorithm [7] to find the shortest path
in the graph connecting the vertices. Whenever possible, we
can also design admissible heuristic functions, h : V → R≥0,
in order to run more efficient search algorithms such as A* [7].
In particular, if (Xs, Ys) is the coordinate of the start vertex
in a global Euclidean coordinate system, and (Xg, Yg) is the
global coordinate of vertex g ∈ V then in case of the time min-
imizing search, a lower bound for the minimum time required

to reach g from s is htime(g) =

√
(Xg−Xs)2+(Yg−Ys)2

Vmax+vmax
, where

vmax is the maximum speed of the flow over all points in W .
However for the energy minimizing search one cannot write a
reasonable heuristic function other than the trivial h(q) = 0,
in which case the A* search becomes equivalent to Dijkstra’s.

B. Planning Optimal Trajectories in different Topological
Classes

In multi-robot applications such as exploration or data col-
lection in the ocean, it is vital that the team of surface vehicles
can be distributed effectively across the region of interest.
This task is made particularly challenging in the presence
of obstacles or fluidic structures. An effective approach to
this problem is topological exploration [12], where robots
are assigned different topological classes of trajectories to
disperse into and explore (see Figure 4(a)). Reasoning about
topological classes of trajectories is also vital to automated
surface cleaning operations using surface vehicles [4]. Thus
we demonstrate, using the proposed approach, how such
topological path planning can be performed for multi-robot
systems.

Presence of obstacles in W give rise to multiple topological
classes of trajectories. Since we plan trajectories in a graph,
our method lends itself quite naturally to homotopy-aware path
planning, where we can compute shortest trajectories restricted
to different homotopy classes. The basic algorithm for doing
this is outlined in [3, 13]. The fundamental idea is to use cer-
tain homotopy invariants (called h-signature) [2] to construct
a homotopy-augmented graph, Gh = (Vh, Eh), in which every
vertex is a pair of the form (m,w) ∈ Vh, with m ∈ V and w
is a “word” made up of letters associated with non-intersecting
rays emanating from connected components of obstacles (see
Figure 4(b)). The edge set, Eh is described incrementally as
follows: If (m,w) ∈ Vh, then for every [m,n] ∈ E (where
m,n ∈ V ), there exists an edge [(m,w), (n,w◦h(mn))] ∈ Eh
(where w ◦ h(mn) indicate concatenation of the words w
and the h-signature of the directed segment mn). The cost
of an edge in Gh is taken to be same as the cost of the
corresponding projected edges in G. Executing a graph search
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Fig. 4. Homotopy-aware path planning: (a) Simultaneous explo-
ration/sampling around a set of islands by a set of ASVs. Homotopy aware
planning allows the generation of optimal paths in different classes of
trajectories simultaneously (b) Non-intersecting rays emanate from every
connected component of obstacles. The homotopy invariant (h-signature) of a
path, γ, is constructed by tracing the curve and constructing a word, in which
we insert a letter or its inverse everytime we cross a ray from right-to-left or
left-to-right respectively. Thus, in the figure, h(γ) = “r−1

1 r4 r
−1
2 r−1

4 r−1
6 ”.

in the h-augmented graph, Gh, can give us optimal trajectories
constrained to different homotopy classes connecting given
vertices s, e ∈ V .

C. An Alternative Approximate Model for Fast Computation
of Smooth Trajectories

The optimal trajectories obtained using the graph search-
based approach, being constrained to the graph, are piece-wise
linear, and in general not smooth. In order to be able to solve
the problem efficiently, we need to employ an approximation
at some level, which in case of the graph search-based method
is the discrete representation of the free space. In this section
we present an alternative approximate model, derived from
the cost functions described in Section II-C, to represent the
optimal trajectory in the form of a solution to an ordinary
differential equation. Thus the solutions obtained using this
method can be made arbitrarily smooth. Moreover integration
of a differential equation is in general faster to compute than
running a graph search algorithm. In particular, we construct a
Riemannian metric [21] that approximates the cost functions.
This method is particularly useful for two reasons: (i) trajecto-
ries obtained as a solution to the geodesic differential equation
are smooth, unlike paths in a graph that are restricted to the
discrete graph, and (ii) computing solutions to the geodesic
equation is often less computationally intensive than a full-
blown graph search.

The Riemannian metric, g(p), for every p ∈W is defined as
a (symmetric, positive-definite) bilinear form over differentials
dx and dy (and dt if we use p ∈WT as the workspace) such
that the cost (equivalently the “length” induced by the metric)
of the differential element can be written as

dc =

√
[dx, dy] g(p)

[
dx
dy

]
(10)

where g(p) is a 2 × 2 matrix, and is called the matrix
representation of the Riemannian metric in the flow parallel
coordinate system. Using this framework, we propose the fol-
lowing approximate time and energy minimizing Riemannian
metric modes.

Riemannian Metric Model for Time Minimization: From
equation (5) one has,



dc22,time =
(V 2
max + v2)dx2 + (V 2

max − v2)dy2

(v2 − V 2
max)2

−
2vdx

√
V 2
maxdx2 + (V 2

max − v2)dy2

(v2 − V 2
max)2

.

In order to make the above quadratic in dx and dy, we use
the approximation that the velocity of the vehicle is almost
parallel to that of the flow, i.e.,

∣∣∣ dydx ∣∣∣� 1. With this approxima-

tion,
√
V 2
maxdx2 + (V 2

max − v2)dy2 u Vmaxdx+ 1
2

V 2
max−v2

Vmax

dy
dx
dy.

Thus we get,
dt2 u 1

(v + Vmax)2
dx2 +

1

Vmax(Vmax + v)
dy2

Thus, the matrix representation of the metric tensor in the
2-dimensional flow-parallel coordinates can be written as,

g =

[
1

(v+Vmax)2
0

0 1
Vmax(Vmax+v)

]
. (11)

Riemannian Metric Model for Energy Minimization: Similar
to above, from (7), one can write,

dc22,energy = 4κ2v2

2dx2 + dy2 − 2dx2

√
1 +

(
dy

dx

)2
 .

Using the approximation that the velocity of the vehicle is
almost parallel to that of the flow, i.e.,

∣∣∣ dydx ∣∣∣ � 1, we could
rewrite above as,

dc22,energy = 4κ2v2dy2. (12)

However, the matrix representation of the metric tensor that
arises from (12) is singular and cannot be used with the
geodesic equation. As such, we use the following matrix
representation of the metric tensor in flow-parallel coordinates:

g =

[
ε
v2

0
0 4κ2v2

]
(13)

where ε� 1.
From g, one can use a coordinate transformation, G =

RT gR, to compute the matrix representations of the metric
tensors in the global Euclidean coordinates, where R =[
v̂X −v̂Y
v̂Y v̂X

]
is a suitable rotation matrix for local-to-global

coordinate transformation. We can then solve the geodesic
equation [21], d2γi

dτ2 + Γijk
dγj

dτ
dγk

dτ = 0, which is a second
order ODE describing the shortest path, γ, parameterized by
τ , the cumulative cost of the trajectory. Note that summation
over repeated indices is assumed by Einstein notation. The
quantities Γijk are called the Christoffel symbols, and are given
by Γijk = 1

2
G
im
(
dGkm
dXj +

dGjm

dXi −
dGjk

dXm

)
with G = G−1.

One consequence of the Riemannian approximation is the
fact that the metric is indifferent to the direction of the
flow, and the vector field in effect gets converted to a line
field. Geodesics computed using the approximate Riemannian
metric can thus be both in the direction of the flow and
against it. However, the Riemannian model does not involve
any discretization of the free space and can perform better than
the graph search-based approach with a coarse discretization.
This is illustrated in the example of Figure 8, where a coarse
discretization gives a path in the graph that is significantly

different and of higher cost than the geodesic computed using
the Riemannian metric. However, making the discretization
finer (increasing connectivity of the graph) gives a path in
the finer graph that matches the geodesic more closely. Other
than this particular example, however, all the simulation and
experimental results presented in this paper use the graph
search-based method and the exact cost functions described
in Section II-C.

IV. SIMULATIONS

In this section we present simulation results for planning
time and energy optimal paths in a flow field using the exact
cost functions described in Section II-C and the graph search-
based approach described in Section III-A. We begin with the
wind-driven double gyre model which is an analytical model
often used because its flow patterns are similar to those seen
in large scale recirculation regions in the ocean [28]. The flow
velocity components in the global coordinate system are given
in this model by,

Ẋ = −πA sin(π
X

s
) cos(π

Y

s
), (14a)

Ẏ = πA cos(π
X

s
) sin(π

Y

s
), (14b)

where A determines the amplitude of the flow velocity vector
and s scales the dimensions of the gyres. In our simulations,
we set A = 0.02 and s = 1 so that the flow field approximately
matches the flow field generated in the experimental setup
with an average flow velocity of 0.025 m/s. In each of the
simulations, we used the Dijkstra’s search algorithm to find
optimal paths in a 3m×3m workspace discretized as described
in Section III-A.

Additionally, we present simulations with ocean current
data obtained from the Naval Coastal Ocean Model (NCOM)
database hosted by the Coastal Observing Research and De-
velopment Center (CORDC) [1] for simulations involving
homotopy aware path planning. In particular, we used ocean
current data from January 2016 for the Santa Barbara Channel
along the California coast. This region is instrumented with
several high frequency radar stations which provide hourly
surface current measurements on a 2 km grid.

A. Time Optimal Paths
For this case, the differential cost given in (5) was used in

the graph search. The flow field given by (14) was used for
the simulations. Two cases, Vmax = 0.01m/s (< ‖v(p)‖) and
Vmax = 0.05m/s (> ‖v(p)‖) were simulated. Figure 5 shows
the results for these two cases for two start-goal combinations.
As expected, in the case with the larger maximum velocity, the
planned path takes a more direct route to the destination, and
it demonstrates how the proposed method is able to explicitly
account for actuation constraints of the vehicle.

B. Energy Optimal Paths
For this case, the differential cost given in (7) was used

for the graph search. Similar to the time optimal case, two
cases, Vmax = 0.01m/s (< ‖v(p)‖) and Vmax = 0.05m/s (>
‖v(p)‖) were considered. Figure 6 shows the energy optimal
paths for several start-goal combinations. For the energy



Fig. 5. Planned optimal time paths for two start-goal combinations. In red:
Vmax = 0.01m/s, in blue: Vmax = 0.05m/s. Path costs, (a) red: 87.3s, blue:
33.5s, (b) red: 76.2s, blue: 30.5s.

Fig. 6. Planned optimal Energy paths for two start-goal combinations. In red:
Vmax = 0.01m/s, in blue: Vmax = 0.05m/s. Path costs, (a) red: 1.48×10−3

Nm, blue: 1.05 ×10−3 Nm, (b) red: 1.48×10−3 Nm, blue: 1.05 ×10−3 Nm.

optimal case, Vmax does not play as an important role as in
the time-optimality case, since the cost function selects the
minimum possible vstill < Vmax to minimize the expended
energy.

C. Planning in Multiple Homotopy Classes
A described in Section III-B, the proposed path planning

framework can be used to plan optimal trajectories in different
homotopy classes. This approach can be used for simultaneous
navigation in regions riddled with obstacles, e.g., the Philip-
pine archipelago. Furthermore, as mentioned in Section III-B,
this approach is particularly attractive for energy efficient
exploration/sampling of ocean phenomena around a set of
islands using a team of ASVs. This approach generates optimal
paths along each coastal segment off an island. Figure 7(a)
shows optimal energy paths generated around the Santa Cruz
island and Figure 7(b) shows optimal energy paths generated
around the Anacapa island, both off the coast of California. In
both cases, the blue path shows the globally cost optimal path
between the start and goal locations, and the red path shows
a cost optimal path that is in a different homotopy class (i.e.,
on the opposite side of the island).

D. Using the Approximate Riemannian Metric Model for Path
Planning

The time and energy minimizing Riemannian metric tensors
developed in Section III-C were also used to generate time and
energy optimal paths. Finding a path from the start position to
the goal position translates to solving the two point boundary
value problem posed by the geodesic equation. This was
achieved by the shooting method: integrating the geodesic
equation from the start position for a succession of initial

(a) (b)
Fig. 7. (a) Optimal Energy paths around Santa Cruz island. Path costs, blue:
1607 Nm, red: 2871 Nm. (b) Optimal Energy paths around Anacapa island.
Path costs, blue: 396 Nm, red: 1390 Nm. In both cases, the blue path is the
globally optimal path while the red path is optimal on the opposing side of
the island. The blue cross gives the start location and the red cross gives the
goal location.

directions until the goal position was reached, i.e., the problem
was solved as a series of initial value problems.

Figure 8 shows the comparison between the graph search
method and the geodesic integration method, for Vmax =
0.01m/s. Figure 8(a) shows an instance where the graph search
method considers 16 neighbors for each node in the graph.
Clearly the geodesic and the graph search generated paths do
not agree. The cost of the path generated by the graph search is
1.96. In Figure 8(b), where the results of the two methods are
in agreement, the graph search method considers 48 neighbors
for each node in the graph, and the resulting path cost is
only 1.53 (which is less than the previous case). However,
in this instance, the graph search method takes around 50s to
compute the path while the geodesic method takes less than
2s. This example clearly highlights three important advantages
of the geodesic integration method: (i) it produces smooth
trajectories (see Figure 8(a)), (ii) in contrast to graph search
methods, the accuracy of the generated path is not limited
by the resolution of the underlying workspace, and (iii) the
geodesic integration method is much faster.

However, it was observed that for some instances, the
geodesic integration method gave undesirable results. Figure 9
shows the optimal time path obtained from geodesic integra-
tion for Vmax = 0.05m/s. The generated path is not necessarily
a time-optimal path since parts of it fall along flow opposing
directions. This occurs due to the symmetry of the Riemannian
metric, where the cost heading against the flow is equal to the
cost heading along the flow (see discussion in Section III-C).
However, a method can be developed to construct a piecewise
geodesic path from the start to the goal which ignores flow
opposing directions. This is a direction for future work.

E. Performance comparison with existing methods

We compared the proposed method with (i) a level set
method for planning optimal time paths [18], (ii) a graph
search based method for planning optimal energy paths [14].

Level set method for optimal time paths: In this method
introduced by Lolla et al., a virtual front (a zero level set of
a distance function), that is initialiazed around the start point,
is advected by the flow as well as by a velocity component
perpendicular to the front, until it reaches the goal position.
The point on the front that reached the goal position is then
integrated backwards in time to find the optimal time path. We



(a) (b)
Fig. 8. Comparison of optimal energy paths generated by the graph
search method (blue) with the path generated by integrating the geodesic
equation (red). (a) Coarse graph constructed by connecting each vertex with
16 neighbors: Paths not in agreement and the cost of the path in graph is
significantly worse, (b) Finer graph constructed by connecting each vertex
with 48 neighbor: Paths in agreement and produces a lower cost path.

Fig. 9. Comparison of exact optimal cost paths (blue) with the paths
generated by integrating the geodesic equations obtained from the approximate
Riemannian metric model (red). In this instance the Riemannian metric model
fails to generate a feasible path.

implemented a first order integration to compute time optimal
path using the level-set method. To compute the path costs,
we use the exact minimum-time cost function in (5), on the
discretized level set path. As seen in Fig. 10 and Table I, the
paths and the corresponding path costs obtained from the two
methods are almost identical.

It can be seen that the proposed method produces com-
parable results to those obtained from the level set method.
However, for a workspace containing n grid points, the com-
putational cost of the level set method is O(n3)[18] while
for graph search method with E connected neighbors, the
computational cost is only O(nE log(n)). Furthermore, the
level set method periodically performs a re-initialization step,
which has a computational cost of O(n3). In addition to lower
computational cost, a further advantage of our method is the
ability to incorporate different cost functions, whereas the level
set method can only generate time optimal paths.

Comparison with a graph search method for optimal energy
paths: We compared the optimal energy paths generated from
our method with another graph search based method presented
by Koay et al.[14] (henceforth referred to as the Koay method).
Even though the approach is similar, the cost function pro-
posed in the Koay method is approximate. In their method,
the authors minimize vstill for each path segment in the graph
and use this minimized value to compute the energy cost for
that path segment. In effect, the cost of each path segment
is computed to be

∫
κ‖min(vstill)‖2dt whereas the actual

energy cost should be min
∫
κ‖vstill‖2dt. Fig. 11 shows the

“optimal” energy paths computed using the two methods near

(a) (b)
Fig. 10. Comparison of time optimal paths obtained from the level set method
(red) with paths from the graph search method with 48-neighbors (black). The
costs for (a) path 1 and (b) path 2 are given in Table I, and are comparable.

TABLE I
COMPARISON OF PATH COSTS AGAINST THE LEVEL SET METHOD FOR

TIME OPTIMAL PATHS. THE PATH COSTS OBTAINED FROM THE TWO
METHODS ARE COMPARABLE.

Level Set Graph Search(48-con.) Graph Search(16-con.)
Path 1 30.39 30.53 31.07
Path 2 22.47 22.76 23.07

the Santa Cruz island. The cost of the path generated from the
Koay method, when evaluated using the cost function given
in (7), is 3% higher than the actual optimal path, and it lies
on the opposite side of the island. Furthermore, the cost of
the actual optimal energy path (generated using the proposed
method), is 16% higher when evaluated using the cost metric
used in the Koay method.

V. EXPERIMENTS

We further validate the paths computed by our proposed
graph search method (using the exact cost functions described
in Section II-C) through experiments. The experiments were
conducted using the multirobot Coherent Structure Testbed
(mCoSTe) which consists of a micro Autonomous Surface
Vehicle (mASV) and the 3 × 3 × 1 m3 Multi Robot flow
tank (MR tank). The mASV is a differential drive vehicle
with a maximum forward speed of 0.2m/s. Localization for the
vehicle was provided by an external motion capture system.
Multi-gyre flows were created in the MR tank using four flow
driving cylinders rotating at approximately 100 rpm. Figure 12
shows the components of the experimental setup.

In Section IV, the parameters of (14) were selected such that
the simulated flow field closely approximates the flow field
generated in the tank. Therefore, we use the paths generated
in the simulations as reference trajectories for the mASV to
follow. In particular, we used the path generated for the case
where Vmax = 0.05m/s from start location [0.6, 0.6]

T to goal
location [2.3, 1.6]

T . For the experiments, we considered three
paths between the start and goal locations: the time-optimal
path, the energy-optimal path and the minimum-distance path.
The minimum-distance path was considered in order to provide
a baseline to compare the results of the time-optimal and
energy-optimal paths. Seven runs were carried out for each
case and results were recorded. The energy expended by the
mASV was computed as,



Fig. 11. Comparison of optimal energy paths generated using the proposed
method and the Koay method. Path costs: our method (red path): 1802
(2097) Nm, Koay method (blue path): 1864 (1942) Nm. The values outside
parenthesis are the energy values computed using the exact energy cost (7),
while in parenthesis are the path costs calculated using the approximate cost
metric used in the Koay method.

Fig. 12. Experimental setup, right: four flow driving cylinders creating a
double gyre like flow in the MR tank, left: mASVs used for the experiments.

E =

∫ (
V 2
Lmotor + V 2

Rmotor

)
dt ≈ V 2

in

2552
∆t
∑
i

(
L2
cmdi +R2

cmdi

)
where VLmotor and VRmotor are the voltages applied to the
left and right motors respectively, Vin is the battery voltage,
Lcmdi and Rcmdi are the PWM signal commands sent out
to the mASV during the ith command cycle, and ∆t is the
duration of each command cycle.

Table II shows the average time taken and the average
energy expended by the mASV to complete each path. As
expected, the mASV completes the time-optimal path the
quickest and expends the least amount of energy while
completing the energy-optimal path. On average the time-
optimal path is 19% faster than the minimum-distance path
and the energy-optimal path expends 51% less energy than the
minimum-distance path. Fig.13 shows the paths taken by the
mASV against the path planned by the graph search method
and Fig. 14 shows the path taken by the mASV overlaid on
an image of the tank.

VI. CONCLUSIONS AND DISCUSSIONS

In this work we presented graph-search based methods to
plan optimal trajectories in flow fields. We designed exact cost
functions which explicitly consider the kinematic constraints
of the vehicle for both time and energy optimal path planning.
In addition, we used tools from topological path planning
to generate optimal paths in different homotopy classes of
the environment. We were able to verify the efficacy of the

TABLE II
PATH COSTS FOR THE THREE PATHS AVERAGED OVER SEVEN TRIALS

time optimal energy optimal min distance
Time (s) 44.8 92.7 55.4

Energy (W) 250.3 222.3 449.3

(a) time-optimal path (b) energy-optimal path
Fig. 13. Paths taken by the mASV in the MR tank (in red) and the paths
planned by the graph search algorithm (in blue).

(a) t=20s (b) t=40s

(c) t=60s (d) t=80s
Fig. 14. Path taken by the ASV in the tank while following the optimal
energy path. The dotted white line is the reference path, the solid white line
shows the path taken by the ASV and the solid triangle represents the ASV.

planned paths through experiments conducted in an indoor
laboratory testbed, where, despite having partial/noisy flow
information, our method was successful in planning optimal
trajectories. Even though in this paper we only considered
time-invariant flow fields, the presented methods can easily be
extended for path planning in time-varying flows. However,
the utility of such an extension is limited by the accuracy of
flow model used to predict the future time variations of the
flow. We compared our results with other methods in literature:
The level-set method, although being computationally expen-
sive and be able to compute time-optimal paths only, give
comparable time-optimal path costs; and the Koay method for
energy optimal paths give more expensive paths than ours.

We also presented a Riemannian approximations to the
exact cost functions used for the graph search method. We
showed how these Riemannian metrics could be used with
the geodesic equation to generate approximations to time and
energy optimal paths. Even though some drawbacks were
observed in this method, we believe that this approach to path
planning in a flow not only provides better insights into the
problem but also opens up new possibilities for path planning
in a flow field, and as a results warrants further investigation.
For example, a possible application for this approach would be
the generation of real-time energy efficient paths for a team of
autonomous vehicles using in-situ flow velocity measurements.
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