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Abstract—Human machine teaming has, for decades, been
conceptualized as a function allocation (FA) or levels of autonomy
(LOA) process: the human is suited for some tasks, while the
machine is suitable for others, and as machines improve they
take over duties previously assigned to humans. A wide variety
of methods—including adaptive, adjustable, blended, supervisory
and mixed initiative control, implemented discretely or continu-
ously, as potential fields, as virtual fixture interfaces, or haptic
interfaces—are derivatives of FA/LOA. We formalize FA/LOA
(and all their derivatives) under a single mathematical formula-
tion called classical shared control (CSC). Despite the widespread
adoption of CSC, we prove that it fails to optimize human and
robot agreement and intent if either the human or robot model
displays “intention ambiguity” (e.g., the human’s intended goal is
unclear or the robot finds multiple viable solutions). Practically,
this suboptimality can manifest as unnecessary and unresolvable
disagreement (an unnecessary deadlock). For instance, if the
robot chooses to go left around an obstacle and the human
chooses to go right, CSC only provides two solutions: freeze
in place or collide with the obstacle (we provide a wide variety
of failure examples in [52], https://arxiv.org/abs/1611.09490). We
find that CSC suboptimality stems from arbitrating over model
samples, rather than over models. Our key insight is thus to arbi-
trate over human and robot distributions; we prove this method
optimizes human and robot agreement and intent and resolves
deadlocking. Our key contribution is computationally efficient
distribution arbitration: if the human and robot carry Nh

t and
NR

t “intentions,” the joint (naively) has Nh
t N

R
t intentions. In our

approach, deadlock solutions have vanishingly small coefficients
and only Nmin = argmin{Nh

t , N
R
t } non-zero coefficients remain:

our joint has fewer modes than the individual agent models. We
call our approach Nmin-sparse generalized shared control.

I. INTRODUCTION

Leveraging the complementary capabilities of human and
machine has long been a goal of computer science. Typically,
researchers focus on a specific aspect of this broad vision. For
instance, [42] focuses on fusing human and machine “percep-
tion.” Likewise, attempts to blend human and machine “deci-
sion making” occur in the machine learning [60], [36], control
theory [29], and human robot interaction literature [32]. A
special case of shared decision making is shared control: fuse
human and robot platform commands. Examples of shared
control abound; assistive wheelchair technology [31], brain-
computer interface telemanipulation [43], surgical robots [45],
search and rescue [9], extraterrestrial robotics [6], and assistive
automobile driving [3] are just a few examples. For any of
these cases, shared control can be broken down into a human
and robot modeling step, a human and robot prediction step,
and an arbitration step over the human and robot predictions
(see Section II and [23] for justification of this schema).

In this paper we focus on the performance limits that arise
as a consequence of the “classical” shared control architecture
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Fig. 1: Classical shared control (CSC) arbitrates robot and human predictions.
We prove that no matter what predictions, models or arbitration function are
used, CSC fails to optimize human-robot agreement and intent if intention
ambiguity is present. Generalized shared control arbitrates distributions, op-
timizing human-robot agreement and intent, and is computationally efficient.

(top half of Figure 1). By identifying the cause of these classi-
cal performance limits—arbitrating over prediction samples—
we gain insight into how to repair them. We thus introduce
generalized shared control (GSC), where instead of arbitrating
over predictions from the human and robot models, we arbi-
trate over the full human and robot distributions themselves
(bottom half of Figure 1). Our approach is motivated by the
following: distributions represented in a Gaussian process (GP)
basis [49], [54], [55], [5], [30] explicitly capture multifaceted
intentionality (which we call “intention ambiguity”) as well as
an agent’s willingness to compromise within a given strategy
(which we call “flexibility”). In Figure 2, we illustrate inten-
tion ambiguity and flexibility, and in Section III we define
intention ambiguity and flexibility. Critically, finite human
and robot samples fail to fully reflect intention ambiguity or
flexibility, and so classical arbitration is unable to balance
these nuanced attributes. For instance, suppose that we cannot
determine if the human wishes to go to the left or right food
station, and we represent this with a bimodal distribution:
p(h | zh1:t) =

∑
i=L,R w

h
i N (h | µhi ,Σh

i ). If whL > whR then
the most likely route for the human is left. Arbitration over
this statistic can be misleading since the R mode is ignored.

Our key insight, then, is to simultaneously optimize the
ambiguous and flexible intentions of the human and robot.
Our key contribution is to provide a computational mech-
anism so that distribution arbitration is both well defined
and computationally tractable. By formulating shared control
as a special case of joint decision making (simultaneously
optimizing human and robot agreement and intent), we can

https://arxiv.org/abs/1611.09490


leverage “negotiation” pruning: if a joint action is unresolvable
(e.g., the human prefers left and the robot prefers right), then
it is removed from arbitration. However, pruning is judicious:
it enables arbitration over complementary joint human-robot
actions for visiting both left and right. In general, the human
and robot models carry Nh

t and NR
t time varying possibilities

in a GP basis. Naively, the human-robot joint distribution
will thus have Nh

t N
R
t modes. Pruning, however, eliminates

many joint actions: if Nmin = arg min{Nh
t , N

R
t }, the joint

distribution has only Nmin nontrivial components in the GP
basis. Pruning in a statistically principled manner is a primary
conceptual motivation for using a GP basis: sparsity quantifies
the balance of model complexity against model fidelity. We
call our approach sparse-GSC.

II. RELATED WORK

The levels of autonomy (LOA) paradigm [50] and the closely
related function allocation (FA) approach [27], [46] are the
conceptual bedrock of shared control: many, if not all, ap-
proaches can be traced back to these early theories of human-
machine complementarity. According to [32], LOA/FA is
typically implemented in three ways1: adaptive autonomy,
where the machine determines the level of assistance [39];
adjustable autonomy, where the human determines the level
of assistance (sometimes called supervisory control [41]);
or mixed-initiative control, where the human and machine
deliberate to determine the level of assistance [44]. Sometimes,
the term sliding autonomy is used to indicate one or a mixture
of the three above [21]. Sliding scale autonomy [20] relaxes
discrete LOA to a continuum of assistance. Additionally,
prevailing shared control approaches such as potential field
methods [2], virtual fixture based methods [25], [1], and haptic
shared control [14] are ultimately rooted in LOA/FA. For
example, in [28], the optimal controller of a cart-pendulum
task was used in conjunction with a haptic interface to filter
suboptimal user input (the machine decided when to give
assistance). Some researchers, such as [17], [34], [18], infer
user intent as a maximum likelihood, maximum a-posteriori,
or partially observable Markov decision process estimation
problem; in turn, shared control is computed as a reward
function over the optimal user action and optimal robot action
(g( ¯fR, h̄, θ̄

R
, θ̄
h
) in Figure 1 could be a reward function).

We observe that all of the above approaches are instances of
classical shared control as described in Figure 1: the arbitration
function g(fR,h,θR,θh) could be implemented as adaptive,
adjustable, supervisory or mixed initiative control (by allowing
the arguments [ ¯fR, h̄, θ̄

R
, θ̄
h
] to mediate who controls what

and when); in a discrete or continuous fashion; or as a potential
field, virtual fixture interface driver, or haptic interface driver.
There is no restriction on the form of g(fR,h,θR,θh) other
than that it accepts prediction samples, rather than distri-
butions, as arguments. At its most abstract, any LOA or
FA approach is just some function that actuates the human

1Caveat emptor: the community has not reached consensus on terminology
or definitions here; we choose [32] because it is a plausible representative.
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command, the machine command, or some combination of
human and machine command. In Figure 1, we generically
name that function g(fR,h,θR,θh).

LOA/FA is primarily appealing because it is straightfor-
ward: the tasks of human and machine are cleanly delineated
into separate categories. However, for meaningful teaming
to occur, the agents cannot be limited by dichotomization,
since the complementary capabilities of human and machine
typically overlap. As [16] puts it, the “interface between
human and machine [in LOA/FA] is a trivial ‘you do this, I do
that’ barter”. Importantly, GSC loosens these strict boundaries
by mixing the human and robot distributions. We note that
cognitive systems engineering [11], [16], [33], [15], team
cognition theory [12], [40], [19], [13], [12] and human-agent-
robot teamwork [7], [8] make important conceptual progress
towards understanding such a nuanced human-machine nego-
tiation. However, these approaches lack the mathematical pre-
cision, performance guarantees, and computational tractability
provided by sparse-GSC. Importantly, the implementation of
a cognitive systems engineering, team cognition, or human-
agent-robot teamwork approach are left to the discretion of
the engineer, because the concepts are not reduced to unam-
biguous mathematical guidance.

Similar to [23], we call special attention to the linear
blending framework (a classical shared control framework):

usLB(t+ 1) = KRu
R
t +Khu

h
t (II.1)

= g( ¯fR = uRt , h̄ = uht , θ̄
R

= KR, θ̄
h

= Kh),

where, at time t, usLB(t + 1) is the linearly blended shared
control command, uht is the human input (joystick deflections,
keyboard inputs, etc.), uRt is the autonomy command, and
Kh,KR are the operator and robot arbitration coefficients
which range between 0 and 1 and are time varying (θR,θh

are the parameters of the CSC arbitration function). This
approach can be used to describe a large swath of shared
control approaches, as argued in [23]. For instance, any type
of switching control (arguably the most broadly deployed
type of shared control; for example, anti-lock braking systems
in cars [4] and autopilot in commercial avionics [26] are



switching control systems), where either the human or machine
is in complete control of the platform at time t, is just linear
blending where Kh,KR = 0, 1. Linear blending has enjoyed
wide adoption in the assistive wheelchair community [10],
[58], [38], [57], [61], [47], [56], [35]. In [48], [59], an
even broader adoption of linear blending is advocated. These
three examples are a small sample of the use cases of linear
blending; a more comprehensive bibliographic accounting is
found in [23], [22]. Importantly, [23] argues convincingly that
most of shared control can be formalized as a block diagram
very similar to the classical shared control block diagram in
Figure 1. Also, [24] makes a similar formalization observation.

However, linear blending has fundamental performance lim-
its: in [51] linear blending was proven suboptimal with respect
to safety, efficiency and operator-robot agreement if intention
ambiguity is present ([52] describes a number of concrete
scenarios where the suboptimality causes failure states). For
linear blending systems to be deployed safely, practitioners
often use ad-hoc safeguard mechanisms. An example involves
maneuvering around a static obstacle. If the robot chooses
left and the human chooses right, linear blending can average
the two inputs into a collision. Collision safeguarding itera-
tively discards unsafe solutions until a safe solution is found.
However, as explained in Section 2.2 of [?], these safeguards
have unintended consequences. In congested environments,
collision safeguards can cause the shared control to freeze even
if safe forward trajectories exist.

These shortcomings of linear blending beg the question: if
we sample robot and human predictions ¯fR, h̄ and robot and
human parameters θ̄

R
, θ̄
h from any robot and human model,

does some arbitration protocol g( ¯fR, h̄, θ̄
R
, θ̄
h
) exist that

optimizes human and robot agreement and intent? As we prove
in the following, no matter how the human and robot models
or arbitration function g(fR,h,θR,θh) are chosen, human and
robot agreement and intent is not jointly satisfied if intention
ambiguity is present. Additionally, we prove that sparse-GSC
efficiently optimizes human and robot agreement and intent in
the presence of intention ambiguity and flexibility.

III. TERMINOLOGY

We treat operator inputs uht as measurements zht (zht ≡ uht ,)
of the operator trajectory, h : t ∈ R → X , where X is the
joint action space and h is governed by p(h | zh1:t). We
collect measurements zR1:t of the robot trajectory fR, which
is governed by p(fR | zR1:t). We do not assume that every
measurement of zR1:t, z

h
1:t in 1 : t is present. Technically, then,

both h and fR are stochastic processes. Our human and robot
models are represented in a GP basis (Figure 2):

p(h | zh1:t) =

Nh
t∑

i=1

whi N (h | µhi ,Σh
i ),

p(fR | zR1:t) =

NR
t∑

j=1

wRj N (fR | µRj ,ΣR
j ). (III.1)

N (x | µ(t),Σ(t)) is a GP with mean function µ(t) and
covariance function Σ(t). We suppress time in the mean and

covariance functions for clarity. That is, in the following any
µ ≡ µ(t) and Σ ≡ Σ(t).

Multi-modal models are common in real world applications.
For instance, human goal inference from trajectory data often
results in uncertainty over multiple goals; these possible multi-
ple destinations can instigate Nh

t modes. For robots, congested
environments often result in many NR

t local maxima. We point
the reader to [52] for a thorough discussion of how multi-
modality can arise in human and robot models.

Definition 1 (Intent, intention ambiguity). We call µhi ,µ
R
j

the human and robot intentions. If Nh
t > 1 or NR

t > 1, we
say that intention ambiguity is present. We measure intention
ambiguity through the weights whi , w

R
j . For example, if one

weight is very large, intention ambiguity is small. Conversely,
if the weights are all equal, intention ambiguity is large.

Definition 2 (Flexibility). Flexibility is the willingness of an
agent to compromise about an intention µhi or µRj . Mathe-
matically, the flexibility of intent µhi or µRj is Σh

i or ΣR
j .

Our definition of flexibility is motivated by the following:
suppose an agent is unimodal with model N (x | µ,Σ). If
the agent indicates intent µ strongly (by providing substantial
data supporting µ) then Σ will be small. In other words, the
agent is Σ unwilling to compromise on µ. Conversely, if the
agent has not provided a strong signal supporting µ then the
agent is Σ flexible about intent µ.

Definition 3 (Human-robot agreement). We use human
intent and flexibility µh,Σh and robot intent and flexibility
µR,ΣR to discuss human-robot agreement. In particular

Z−1i,j = exp
[
− 1

2
(µhi − µRj )>(Σh

i + ΣR
j )−1(µhi − µRj )

]
quantifies human-robot agreement, as derived in Equa-
tion IV.5. Large Z−1i,j indicates agreement between modes i, j,
while small Z−1i,j indicates disagreement between modes i, j.

Definition 4 (CSC). Classical shared control has three
components: a human model Mh(h, zh1:t), a robot
model MR(fR, zR1:t), and an arbitration function
g(fR,h,θR,θh) : [fR,h,θR,θh] → X , where X is the
joint action space. At time t, a finite set of samples

[h̄, θ̄
h
] ∼Mh(h, zh1:t)

[ ¯fR, θ̄
R

] ∼MR(fR, zR1:t).

is drawn from the models (where θh,θR are parameters of the
variables h, fR). The classical shared control usCSC(t+ 1) =

g( ¯fR, h̄, θ̄
R
, θ̄
h
) is then executed; the process repeats at t+1.

Example Let Mh(h, zh1:t) = N (h | µh,Σh) and
MR(fR, zR1:t) = N (fR | µR,ΣR). If h̄ = µh =
arg maxhN (h | µh,Σh) and ¯fR = µR = arg maxfR N (fR |
µR,ΣR), then the only statistically valid assignment is
[ ¯fR, h̄, θ̄

R
, θ̄
h
] = [µR,µh,ΣR,ΣR]. The arbitration function

g(µR,µh,ΣR,ΣR) produces the shared control usCSC(t+1).



The arbitration function is often chosen to be

g(µR,µh,ΣR,ΣR) = (Σh)−1µh + (ΣR)−1µR,

which is just linear blending [23]. See Lemma IV.2.

Definition 5 (GSC). Generalized shared control has three
components: a human distribution p(h | zh1:t), a robot distri-
bution p(fR | zR1:t) and an arbitration operator arg maxh,fR .
The human and robot distributions are composed into a
joint p(h, fR | z1:t) and the generalized shared control
usGSC(t + 1) = arg maxh,fR p(h, f

R | z1:t) is then executed
(z1:t = [zh1:t, z

R
1:t]). The process repeats at t+ 1.

Example If p(h | zh1:t) = N (h | µh,Σh) and p(fR | zR1:t) =
N (fR | µR,ΣR) and if we choose (see Section IV-C)

p(h, fR | z1:t) = δ(h, fR)p(h | zh1:t)p(fR | zR1:t)

then usGSC(t+ 1) = (Σh)−1µh + (ΣR)−1µR (Lemma IV.2).

IV. HUMAN ROBOT JOINT DECISION MAKING

In this section, we discuss the origins of sparse-GSC to
motivate our formulation. We start with an overview of how
robot navigation in human crowds is best understood as a
joint decision making problem, rather than as a traditional
path planning problem—that is, optimization is best conducted
over the distributions of the robot and the crowd, rather than
over samples of the robot and crowd. We then discuss an
extension of the navigation framework to shared control. If
shared control is posed as a joint decision making problem
(under a mild set of assumptions), we prove that δ(h, fR) is
the only statistically valid interaction function. We prove that
the human robot joint distribution is sparse in GP basis.

A. Robot crowd navigation as a joint decision making problem

In [53], robot navigation in dense human crowds was
explored. Typically, this is posed as a path planning problem.
The authors took the perspective that it was instead a joint
decision making problem: how should the robot move, in
concert with the humans around it, so that the objectives
of each participant were simultaneously optimized? As was
proved mathematically, unless crowd navigation is treated as
joint decision making, the robot suffers the freezing robot
problem (FRP). The FRP has been experimentally observed
in independent studies [54], [37]: beyond 0.55 people/m2, the
robot was unable to move, and a 3x improvement in safety was
observed when crowd navigation was treated as joint decision
making instead of as path planning.

The high level mathematics of this approach explains how
crowd navigation is best understood as joint decision making
and motivates the formulation of GSC. First, the joint predic-
tive distribution over the robot model fR and the crowd model
f = [f1, . . . , fnt ] was formulated (f i is a human in the crowd
and nt is the number of people), subject to data about the robot
and crowd [zR1:t, z

f
1:t], represented as p(fR, f | zR1:t, zf1:t). The

robot’s next action us(t+1)—what the robot is predicted to do

us(t + 1)

Fig. 3: Illustration of robot navigation in crowds as joint decision making.
The robot and crowd distributions are arbitrated over in the manner of GSC,
thus producing the optimal joint decision for the robot and the crowd.

in order to integrate into the crowd—is then clear (Figure 3):

[fR, f ]∗ = arg max
fR,f

p(fR, f | zR1:t, zf1:t) (IV.1)

us(t+ 1) = fR∗(t+ 1).

We label the robot action us precisely because shared control
is occurring: ψ(fR, f) models the “interacting” decision strate-
gies of p(fR | zR1:t) and p(f | zf1:t) and arg maxfR,f captures
the optimal robot-crowd decision.

B. Shared control as a joint decision making problem

In [51], the work in [53], [54] was extended to the case of
a human sharing control with a robot for navigation through
human crowds (e.g., shared control wheelchairs in crowds).
Instead of choosing the standard shared control paradigm, the
problem was treated as one of optimal joint decision making:
how can human, robot and crowd objectives be simultaneously
optimized? The formulation extends Equation IV.1:

[h, fR, f ]∗ = arg max
h,fR,f

p(h, fR, f | zh1:t, zR1:t, zf1:t)

In this paper, we are not interested in the interplay between the
environment f and the human and robot. Instead, we specifi-
cally explore arbitration between the intention ambiguous and
flexible human and robot. Dropping the notation for f and
letting z1:t = [zh1:t, z

R
1:t], our GSC equation is:

[h, fR]∗ = arg max
h,fR

p(h, fR | z1:t) (IV.2)

Unlike Equation IV.1, it is unclear which arg max component
to choose for the GSC shared control usGSC : h∗ or fR∗?
Typically, this question is resolved using heuristic arguments:
follow an LOA/FA approach, such as “the human retains
control under these circumstances, and the machine retains
control under other circumstances”. The LOA/FA paradigm is
insufficiently nuanced; we search instead for a mathematical
approach inspired by the teaming literature [16], [12], [7]. To
do so, we show how the question—h∗ or fR∗?—is resolved by
requiring that p(h, fR | z1:t) respects the intent and flexibility
information contained in p(h | zh1:t) and p(fR | zR1:t).
C. Valid human-robot interaction functions

To gain insight about whether h∗ or fR∗ is our shared
control, we begin with the decomposition (similar to [51])

p(h, fR | zh1:t, zR1:t) = p(fR | h, zR1:t)p(h | zh1:t)
= ψ(h, fR)p(fR | zR1:t)p(h | zh1:t),

(IV.3)
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Fig. 4: Human model p(h | zh1:t) in black and robot model p(fR | zR1:t) in red
(dotted lines indicate one standard deviation); δ(h, fR) limits “agreement” re-
gion to overlap between human and robot models. Any ψ(h, fR) 6= δ(h, fR)
acts as a flexibility prior on p(h | zh1:t) and p(fR | zR1:t).

where we use the chain rule of probability, and the assumption
that p(fR | h, zR1:t) = ψ(h, fR)p(fR | zR1:t). What should
the interaction function ψ(h, fR) be? First, let h − fR ≡
[h(1), . . . ,h(T )]− [fR(1) . . . , fR(T )], where h(t), fR(t) ∈ X
and we discretize the functions h, fR by 1 : T to define
subtraction. A plausible choice for the interaction function is
ψ(h, fR) = exp(− 1

2γ (h − fR)2) since this function attracts
h and fR. Recall that p(h | zh1:t) and p(fR | zR1:t) encode all
available intention and flexibility information (Equation III.1).
Unfortunately, if we choose γ > 0 we impose flexibility on
p(h | zh1:t), p(f

R | zR1:t). In Figure 4, we illustrate how the
“agreement region” of p(h, fR | z1:t) is enlarged beyond what
either p(h | zh1:t) or p(fR | zR1:t) allow. Thus, we let γ → 0:

δ(h, fR) ≡ lim
γ→0

[
exp(− 1

2γ
(h− fR)2)

]
=

{
1 if h = fR,

0 if h 6= fR.

The purpose of an interaction function is to place the two
agents in a common frame; however, we cannot pollute p(h |
zh1:t), p(f

R | zR1:t) with extra information. Relatedly, δ(h, fR)
can be interpreted as a transform h → fR or fR → h. We
make this precise:

Theorem IV.1 (Delta only choice). If p(h | zh1:t) and p(fR |
zR1:t) contain all flexibility information and if we decompose
the joint as in Equation IV.3, then ψ(h, fR) = δ(h, fR).

Proof: Let ψ(h, fR) 6= δ(h, fR) and suppose the human
intends x ∈ X with Σ→ 0. Then p(h | zh1:t) = δ(h,x), and

p(h, fR | z1:t) = ψ(h, fR)δ(h,x)p(fR | zR1:t)
= ψ(x, fR)p(fR | zR1:t).

Since ψ(h, fR) has finite support, ψ(x, fR) could be large
when p(fR | zR1:t) is small, thus inflating the flexibility of
p(fR | zR1:t) about x. Similarly, p(fR | zR1:t) could be large
when ψ(x, fR) is small, thus diminishing the flexibility of
p(fR | zR1:t) about x. Choosing ψ(h, fR) 6= δ(h, fR) thus
causes the joint distribution in Equation IV.3 to inaccurately
reflect the flexibility of p(fR | zR1:t). The same argument can
be made about incorrectly inflating or diminishing the human’s
flexibility about a robot action.

Conversely, let ψ(h, fR) = δ(h, fR) and suppose the human
intends x ∈ X . Then p(h | zh1:t) = δ(h,x), and

p(h, fR | z1:t) = δ(h, fR)δ(h,x)p(fR | zR1:t)
= δ(x, fR)p(fR | zR1:t)
= p(fR = x | zR1:t).

Thus, the robot’s flexibility about action x is accurately
reflected (the same argument can be made for the human).
The choice ψ(h, fR) = δ(h, fR) thus respects the flexibility
information contained in the human and robot distributions.

Since δ(h, fR)N (h | µhi ,Σh
i ) = N (fR | µhi ,Σh

i ), we have

p(h, fR | z1:t) = δ(h− fR)p(h | zh1:t)p(fR | zR1:t)

= δ(h− fR)

Nh
t∑

i=1

whi N (h | µhi ,Σh
i )

×
NR

t∑
j=1

wRj N (fR | µRj ,ΣR
j )

=

Nh
t∑

i=1

NR
t∑

j=1

Z−1i,j w
h
i w

R
j N (fR | µi,j ,Σi,j) (IV.4)

where

Z−1i,j = exp
[
− 1

2
(µhi − µRj )>(Σh

i + ΣR
j )−1(µhi − µRj )

]
,

µi,j = Σi,j

(
(Σh

i )−1µhi + (ΣR
j )−1µRj

)
,

Σ−1i,j = (Σh
i )−1 + (ΣR

j )−1. (IV.5)

Since δ(h, fR)N (fR | µRj ,ΣR
j ) = N (h | µRi ,ΣR

i ), we have

p(h, fR | z1:t) =

Nh
t∑

i=1

NR
t∑

j=1

Z−1i,j w
h
i w

R
j N (h | µi,j ,Σi,j).

(IV.6)

Because of the equivalence of Equations IV.4 and IV.6, our
initial question—h∗ or fR∗?—is easily resolved:

[h, fR]∗ = arg max
h,fR

p(h, fR | z1:t)

usGSC = h∗ = fR∗. (IV.7)

We immediately note that although the arguments in Equa-
tions IV.4 and IV.6 reduce to either fR or h, each expansion
still carries all the information of both human and robot models
in Z−1i,j , w

h
i , w

R
j ,µi,j and Σi,j . By enforcing ψ(h, fR) =

δ(h, fR) we recover a principle of joint decision making: the
human and robot models must reach consensus. Thus, we do
not have to rely on heuristics to determine who decides what
and when. GSC provides a statistical mechanism to extract the
most meaningful information from both decision makers.

Lemma IV.2 (Recovering linear blending). In Equation IV.4,
if Nh

t = NR
t = 1 then linear blending is recovered.

Proof: If Nh
t = NR

t = 1, then arg maxh p(h | zh1:t) =
µh1 and arg maxfR p(f

R | zR1:t) = µR1 . The linear blending



solution is usLB = Khµ
h
1 +KRµ

R
1 . Further, p(h, fR | z1:t) ∝

N (fR | µ1,1,Σ1,1), so

arg max
h,fR

p(h, fR | z1:t) = µ1,1

= Σ−11,1

[
(Σh

1 )−1µh1 + (ΣR
1 )−1µR1

]
.

By choosing Kh = Σ−11,1(Σh
1 )−1 and KR = Σ−11,1(ΣR

1 )−1, we
recover linear blending. If the human and robot distributions
are unimodal normal, Kh,KR must be the covariances.

GSC thus generalizes linear blending; Lemma IV.3 shows
that GSC is lower bounded in performance by linear blend-
ing. Further, this lemma prompts the following observation:
δ(h, fR) partitions p(h, fR | z1:t) into a mixture of linear
blends, since each µi,j is a linear blend. We explore this idea:

Definition 6 (Mixture based linear blending). Suppose that
p(h | zh1:t) =

∑Nh
t

i=1 w
h
i N (h | µhi ,Σh

i ) and p(fR | zR1:t) =∑NR
t

j=1 w
R
j N (fR | µRj ,ΣR

j ). Then let

µh∗ = arg max
h

p(h | zh1:t)

µR∗ = arg max
fR

p(fR | zR1:t)

with Σh∗,ΣR∗ corresponding to µh∗,µR∗. Mixture based
linear blending is usMBLB = (Σh∗)−1µh∗ + (ΣR∗)−1µR∗.

Mixture based linear blending is an obvious generaliza-
tion of linear blending in Equation II.1. Our motivation is
to make explicit what computations are required for clas-
sical shared control: to determine arg maxh p(h | zh1:t) or
arg maxfR p(f

R | zR1:t) as in Definition 6, we must find all
the modes in the GP mixture.

Lemma IV.3. GSC is performance lower bounded by mixture
based linear blending.

Proof: Suppose that µh∗,µR∗ in Definition 6 are in
agreement (e.g., Z−1h∗,R∗ is large). Since wh∗, wR∗ are the
largest coefficients in the human and robot GP mixtures,
arg maxh,fR p(h, f

R | z1:t) recovers usMBLB .
Conversely, assume that µh∗,µR∗ do not agree (Z−1i,j is

small). Then some other mixture component in p(h, fR | z1:t)
optimizes human and robot agreement and intent better.

V. SPARSITY AND OPTIMALITY THEOREMS OF
GENERALIZED AND CLASSICAL SHARED CONTROL

To illustrate the differences between classical and generalized
shared control, we begin with an example (Figure 5): the
human wants to go left with whL = 0.8 and right with
whR = 0.2, and the robot prefers left with wRL = 0.4 and
right with wRR = 0.6. That is,

p(h | zh1:t) =
∑
i=L,R

whi N (h | µhi ,Σh
i )

p(fR | zR1:t) =
∑
j=L,R

wRj N (fR | µRj ,ΣR
j ).

Sampling the arg max preferences of the individual agents—
µhL = arg maxh p(h | zh1:t) and µRR = arg maxfR p(f

R |

0.8!

0.2!
0.4! 0.6!

Human!

Obstacle!

Robot!

CSC!GSC!

Fig. 5: The human prefers left with weight 0.8 and right with weight 0.2; The
robot prefers left with weight 0.4 and right with weight 0.6. Classical shared
control (CSC) results in a collision with the obstacle that both agents were
trying to avoid. GSC efficiently finds the optimal solution.

zR1:t)—requires fusing µhL with flexibility Σh
L and µRR with

flexibility ΣR
R. CSC directs the platform to head for the

obstacle (blue arrow in Figure 5); by reasoning over inde-
pendent samples, we have created an unresolvable disagree-
ment between the two agents. In other words, no function
g(µRR,µ

h
L,Σ

R,Σh) exists that can resolve this situation, be-
cause the information necessary to resolve the disagreement
is unavailable. We make this argument precise:

Theorem V.1 (CSC suboptimal). For any robot model
Mh(h, zh1:t) and any human model MR(fR, zR1:t), classical
arbitration g(fR,h,θR,θh), which reasons over finite sets of
independent model predictions [h̄i, θ̄

h
i ]Ni=1 ∼Mh(h, zh1:t) and

[ ¯fRi, θ̄
R
i ]MJ=1 ∼ MR(fR, zR1:t), optimizes human and robot

agreement and intent only if intention ambiguity is absent.

Proof: If we only finitely sample from independent hu-
man [h̄i, θ̄

h
i ]Ni=1 and robot [ ¯fRi, θ̄

R
i ]MJ=1 models, we cannot

guarantee that agreement and intent will be optimized (contrast
with Theorem V.3). In the language of multi-objective opti-
mization, finding the Pareto front is inefficient. If N,M →∞
(or, equivalently, if the samples capture all the information in
the parameters of the human and robot GP expansions), then
the optimal human and robot agreement and intent solution
can be recovered. Importantly, as N,M →∞, classical shared
control becomes generalized shared control.

This theorem is a strong negative result: independent agent
sampling results in shared controllers that are fragile to human
or robot ambiguity; classical shared control is unsuitable for
real world application. We now provide a positive result: GSC
is human and robot agreement and intent optimal and sparse.

We revisit Figure 5: how should this situation be resolved?
The human-robot system should either go left or right; going
straight is not preferred by either agent; the robot views left
and right as having similar value; and the human strongly
prefers left. The optimal shared control is to proceed left.
Consider Equation IV.4, adapted for our scenario:

p(h, fR | z1:t) =
∑

i,j=L,R

Z−1i,j w
h
i w

R
j N (fR | µi,j ,Σi,j),

and note that Z−1L,R ≈ Z−1R,L ≈ 0 by Equation IV.5. This
is an example of sparsity (illustrated in Figure 6); naively,
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Fig. 6: Transforming p(h, fR | z1:t) into a GP basis for the example in
Figure 5. L: “native” coordinates model all joint actions as equivalent (blue
arrows). On transforming into the GP basis, interactions are ranked according
to joint optimality: unresolvable actions have trivial weight; viable joint
actions are weighted heavily. GSC is Nmin = arg min{Nh

t , N
R
t } sparse.

p(h, fR | z1:t) has four components. However, the normal-
ization coefficient Z−1i,j prunes those actions that cannot be
resolved. GSC is well approximated by 2 modes:

p(h, fR | z1:t) ≈ Z−1L,LwhLwRLN (fR | µL,L,ΣL,L)

+ Z−1R,Rw
h
Rw

R
RN (fR | µR,R,ΣR,R).

Note that Nmin = 2 = arg min{Nh
t = 2, NR

t = 2}.
The µL,L and µR,R modes are far enough apart that
arg maxh,fR p(h, f

R | z1:t) can be determined by coefficient
inspection and the fact that Z−1L,L ≈ Z−1R,R. Thus,

usGSC = µL,L = ΣL,L

(
(Σh

L)−1µhL + (ΣR
L)−1µRL

)
.

Nmin-sparse GSC simultaneously optimizes human and robot
agreement and intent in the presence of intent ambiguity and
flexibility. We make this observation precise and general:

Theorem V.2 (GSC is Nmin-Sparse). Given p(h | zh1:t)
and p(fR | zR1:t) as in Equation III.1 and Nmin =
arg min{Nh

t , N
R
t }, then p(h, fR | z1:t), as derived in Equa-

tion IV.4, has Nmin non-trivially weighted components.

Proof: Recall that

Z−1i,j = exp
[
− 1

2
(µhi − µRj )>(Σh

i + ΣR
j )−1(µhi − µRj )

]
.

Thus, Z−1i,j dominates whi , w
R
j , since 0 ≤ whi , w

R
j ≤ 1. By

computing Z−1i,j for all i, j, we can efficiently rank the joint
modes in terms of importance to the joint p(h, fR | z1:t):
in order for a Z−1i,j to be exponentially small, (µhi − µRj )2

must be large (e.g., the human and robot disagree). Further,
only Nmin modes can have non-trivial weight: if the human or
robot holds Nmin intentions, they cannot agree with more than
Nmin intentions of the other agent.

Theorem V.3 (GSC optimal). For the human model p(h |
zh1:t) and the robot model p(fR | zR1:t) as in Equation III.1,
determining the arg maxh,fR of the Nmin-sparse distribution
p(h, fR | z1:t) optimizes human and robot agreement and
intent.

Proof: Consider

usGSC = arg max
h,fR

p(h, fR | z1:t)

= arg max
h,fR

δ(h, fR)p(h | zh1:t)p(fR | zR1:t)

≈ arg max
fR

Nmin∑
k=1

Z−1k whkw
R
k N (fR | µk,Σk).

The coefficient Z−1k whkw
R
k models human and robot agreement

Z−1k , human intent preference whk , and robot intent preference
wRk . Since the discarded Z−1i,j ’s correspond to disagreement
modes, the solution that optimizes human and robot agree-
ment and intent is the arg maxfR solution of the Nmin-sparse
mixture. In the language of multi-objective optimization, the
GP basis renders Pareto front discovery efficient.

Returning to Figure 5: what if the human only wants to go
left and the robot only wants to go right (whL = wRR = 1)? Con-
ceptually, we have a fundamental human-robot disagreement;
GSC reveals this disagreement, since the joint distribution
p(h, fR | z1:t) has zero probability everywhere (the left
and right modes have coefficients whR = wRL = 0). Since
there is no solution for usGSC , the platform stops. Critically,
stopping is the only reasonable solution: the two decision
makers have taken irreconcilable positions with respect to
communication via trajectory data. A standard fix would be to
place a prior on the human model or instantiate rules of control
dominance. Both approaches are fundamentally flawed: a prior
violates Theorem IV.1, and rules of dominance are a form of
g(fR,h,θR,θh), albeit at another level of information, and
would instigate a suboptimality with respect to “negotiation:”
since only trajectory data is available, precedence cannot be
resolved without additional information.

This presents an opportunity: the derivation of GSC pro-
vides a template for systematically incorporating additional
human-robot interaction functionality. For instance, models of
negotiation should be equipped with the right amount of data
and the models should match that amount of data. Rather than
blindly equipping our robots with elaborate capabilities, we
are better advised to examine the limitations of available data
sources. As we incorporate additional information sources—
speech, gesture, etc—following the GSC derivation prevents
us from building in architectural shortcomings, or, perhaps
worse, using unnecessary data sources. By examining the
mathematical foundations of human machine interaction, we
can gain insight into more efficient design mechanisms.

Thus, Nmin-sparse GSC provides an optimal and computa-
tionally efficient solution to the shared control problem, and
generalizes existing shared control approaches; [52], provides
numerous examples showing the superiority of GSC over CSC.

VI. EVALUATION: SHARED CONTROL IN CROWDS

The variety of shared control applications is too large to
discuss here. In [52] (https://arxiv.org/pdf/1611.09490.pdf), we
explore the performance of GSC against CSC for numerous
scenarios including remote tele-operation over unreliable net-
works, task handoffs, assistive driving in congestion, mode

https://arxiv.org/pdf/1611.09490.pdf


Fig. 7: L: Overview of scenario: “Shared control surrogate” can choose to go
left or right. R: Human chooses robot suboptimal direction for social reasons.
CSC blends left and right, collision results. GSC optimally arbitrates.

switching in commercial avionics, and explanation interfaces.
Here, we evaluate GSC against CSC in a pedestrian crowd,
where the choice to proceed left or right happens often.
We compare the architectures of GSC and CSC when each
framework is supplied with the same robot model and the same
human model. Following Figure 1, we letMh(h, zh1:t) = p(h |
zh1:t) and MR(fR, zR1:t) = p(fR | zR1:t), and assume these
models are known. Because we only have access to overhead
video data, we simulate a human robot team, i.e., we treat
human movements as inputs to a hypothetical shared platform
and run a multimodal path planner starting from the same
position. We then combine the human inputs and the robot
inputs using GSC or CSC. As illustrated in Figure 7, both the
human and robot models are bi-modal so arbitration ambiguity
occurs (since we do not know if the human will go to the left
or right goal, the human model is bi-modal). We observe some
results from our experiments:

1. When the robot optima µR∗ disagrees with the human
optima µh∗, CSC fails severely, often with a collision. See
Figure 7 and Table I.

2. Computational costs for GSC and CSC are nearly the
same because GSC is sparse (∆t in Table I is the computa-
tional overhead of GSC as compared to CSC). In our experi-
ments, the modes in p(h, fR | z1:t) are far enough apart that
the arg max is the largest coefficient in {Z−1i,j whi wRj }

Nh
t ,N

R
t

i,j=1 .
In general, this is not true, and finding the arg max requires
gradient or expectation-maximization (EM) methods. Even if
the modes in Equation IV.4 are not far apart, however, the
sparsity of GSC allows us to eliminate large portions of the
joint search space, so gradient/EM computation is improved.

3. Testing shared control on static data can tell us only
so much; in the real world, the human reacts to platform
movements, interfaces, etc. Thus, our experiments are not
exhaustive. These experiments serve to validate the above
theorems, and demonstrate the utility of the GSC approach.

4. Since humans are naturally adept at maneuvering through
crowds, it is difficult to draw conclusions such as “the shared
controller improves the trajectory of the human.” That is, the
humans almost always choose safe and efficient paths, once a
direction is chosen (i.e., going left might have been more safe

CCSC µhus
CSC

CGSC µhus
GSC

µ(Z−1
i6=j/Z

−1
i=j) ∆t

Y 0.12m N 0.015m 5× 10−5 5× 10−5s
Y 0.11m N 0.013m 1× 10−13 2× 10−4s
Y 0.24m N 0.07m 8× 10−4 2× 10−4s
Y 0.32m N 0.1m 3× 10−8 3× 10−5s
N 0.03m N 0.03m 3× 10−7 3× 10−4s

TABLE I: Rows report results from the runs. CCSC , CGSC is Y if CSC/GSC
induced a collision/deadlock and N otherwise. The values µhus

CSC
, µhus

GSC
are the average distance between the human trajectory and usCSC , u

s
GSC re-

spectively. The value µ(Z−1
i6=j/Z

−1
i=j) computes the run average of “disagree-

able” solutions divided by “agreeable” solutions; it quantifies the difference
in “importance” value of disagreeable versus agreeable solutions. The value
∆t is the additional compute time required by GSC compared to CSC. The
last row is a run with no ambiguity; GSC recovers CSC.

and efficient, but along the right route the human stays safe and
efficient). Thus, we compare how well the shared controller
compares to the human trajectory: how close does GSC or
CSC come to what the human does (variables µhus

CSC
, µhus

GSC

in Table I)? Overall, CSC strays quite far from the human’s
trajectory, while GSC stays very close.
Test sequence identification We tested sequences where the
human pursued a robot suboptimal but still safe and efficient
path (e.g., overriding the human was unnecessary; typically,
the human followed social conventions, as in Figure 7). We
chose these sequences in order to test Theorems V.3 (GSC
optimal) and V.1 (CSC suboptimal), and we ran computational
efficiency tests to validate Theorem V.2 (GSC sparse) against
a baseline of mixture based linear blending. We also tested a
sequence where the human chose the robot optimal strategy
in order to test that GSC is indeed lower bounded by linear
blending, as in Lemma IV.3 (last row in Table I).
Testing procedures In all sequences, we tested mixture based
linear blending (Definition 6) against GSC (Equation IV.7).
For GSC, we leveraged sparsity by computing values Z−1i,j for
all i, j, identified the i∗, j∗ that corresponded to the largest
value of Z−1i,j , and then computed

usGSC = µi∗,j∗ = Σi∗,j∗

(
(Σh

i∗)−1µhi∗ + (ΣR
j∗)−1µRj∗

)
.

We catalog our findings in Table I.

VII. CONCLUSIONS AND FUTURE WORK

We formalized classical shared control and proved that re-
gardless of human model, robot model, or arbitration function,
CSC is not guaranteed to optimize human and robot agreement
and intent unless intention ambiguity is absent. We introduced
generalized shared control, and proved that it optimizes human
and robot agreement and intent under arbitrary ambiguity in
a computationally efficient manner. After Theorem V.3, we
discussed the limitations of GSC; for example, trajectory data
does not provide enough information to manage a negotiation
with appropriate guarantees. We must be careful however,
since Theorem V.1 still applies: if the models and data are
extended in a CSC architecture, negotiation will be suboptimal.
However, the derivation of GSC provides a template for how
to accommodate additional functionalities—like negotiation—
without building in suboptimalities.
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