
Effective Metrics for Multi-Robot Motion-Planning*
Aviel Atias, Kiril Solovey and Dan Halperin

Blavatnik School of Computer Science
Tel Aviv University, Israel

Abstract—We study the effectiveness of metrics for Multi-
Robot Motion-Planning (MRMP) when using RRT-style
sampling-based planners. These metrics play the crucial role
of determining the nearest neighbors of configurations and in
that they regulate the connectivity of the underlying roadmaps
produced by the planners and other properties like the quality
of solution paths. After screening over a dozen different metrics
we focus on the five most promising ones—two more traditional
metrics, and three novel ones which we propose here, adapted
from the domain of shape-matching. In addition to the novel
multi-robot metrics, a central contribution of this work are
tools to analyze and predict the effectiveness of metrics in the
MRMP context. We identify a suite of possible substructures
in the configuration space, for which it is fairly easy (i) to
define a so-called natural distance, which allows us to predict
the performance of a metric. This is done by comparing the
distribution of its values for sampled pairs of configurations to
the distribution induced by the natural distance; (ii) to define
equivalence classes of configurations and test how well a metric
covers the different classes. We provide experiments that attest
to the ability of our tools to predict the effectiveness of metrics:
those metrics that qualify in the analysis yield higher success rate
of the planner with fewer vertices in the roadmap. We also show
how combining several metrics together leads to better results
(success rate and size of roadmap) than using a single metric.

I. INTRODUCTION

Multi-robot motion-planning (MRMP) is the problem of plan-
ning the motion of a fleet of robots from given start to goal
configurations, while avoiding collisions with obstacles and
with each other. It is a natural extension of the standard
single-robot motion-planning problem. MRMP is notoriously
challenging, both from the theoretical and practical standpoint,
as it entails a prohibitively-large search space, which accounts
for a multitude of robot-obstacle and robot-robot interactions.

Sampling-based planners have proven to be effective in
challenging settings of the single-robot case, and a number
of such planners have been proposed for MRMP [44, 50, 51].
Sampling-based planners attempt to capture the connectivity
of the free space by sampling random configurations and con-
necting nearby configurations by simple collision-free paths.
In order to measure similarity, or “closeness”, between a
given pair of configurations a metric is employed by the
algorithm. The choice of metric has a tremendous effect on
the performance of planners and the quality of the returned
solutions (see Section II for further discussion about metrics
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Fig. 1. Example of ΣL2 for the setting of m = 2 disc robots in the plane.
The red discs, centered in u1, v1, w1 represent possible positions for the
first robot, whereas the blue discs, centered in u2, v2, w2, represent possible
positions for the second robot. We set the positions in the following manner:
‖u1−v1‖2 = ‖u1−w1‖2, ‖u2−v2‖2 = ‖u2−w2‖2. U = (u1, u2), V =
(v1, v2),W = (w1, w2) represent three simultaneous placements of the two
robots. While ΣL2 (U, V ) = ΣL2 (U,W ), it is intuitive that it is easier to
connect U to W rather than to V . This example hints that ΣL2 may not be
suitable for all cases as it fails to capture robot-robot interaction.

that are tailored for various robotic systems). Nevertheless,
no specialized metrics for multi-robot systems have been
proposed, to the best of our knowledge.

Nowadays, a common metric for multi-robot systems is
defined as a sum of metric values for single robots ([38, 44],
and in fact this is the default in OMPL [46]), i.e., the sum of
distances induced by each of the robots separately. We denote
this metric by ΣL2 (to be formally defined in Section IV).
This metric does not always adequately express distance in
the configuration space (C-space) because it does not account
for interactions between different robots. A simple example is
shown in Figure 1.

A. Contribution

In this work we consider the problem of devising good
distance metrics for MRMP. We proceed to introduce several
new metrics for MRMP and show that they improve upon
the standard ΣL2 metric in various settings. Our new metrics
combine ideas from various fields of study such as computa-
tional geometry, shape matching and image processing. The
main benefit of the new metrics, is that they do not only take
the relative positions of the same robot into consideration,
but also the interactions between the different robots. We
consider several properties that such metrics should maintain
and describe how to analyze those properties for a given
metric.

We present experimental results, which show that our met-
rics improve the effectiveness of motion planning, even in
complex environments, and suggest to use this type of metrics
side-by-side with traditional multi-robot metrics in order to be
able to effectively solve various problem instances.



B. Organization

The organization of this paper is as follows. In Section II we
review related work. In Section III we describe the early phase
of our investigation, where we tested a large number of metrics
with different planners, and explain why we chose the metrics
and planner on which we focus in the sequel. In Section IV
we formally define five metrics which will be discussed later.
In Sections V and VI we present methods for analyzing the
proposed metrics using identification of substructures arising
in MRMP. In Section VII we provide experimental results
allowing us to compare the utility of the metrics. Finally, in
Section VIII we outline the possible future work. An extended
version of this paper, to which we refer throughout the text,
is available at https://arxiv.org/abs/1705.10300.

II. RELATED WORK

We start this section with work related to multi-robot motion
planning (MRMP). Then, we proceed to discuss metrics in the
context of robots and beyond. We assume some familiarity
with basic concepts of sampling-based motion planning (see,
e.g., [12, 19, 31]).

A. Multi-robot motion-planning

Approaches to solving MRMP can be roughly subdivided into
two types: coupled and decoupled. In the latter approach (see,
e.g., [5, 33, 48]), a path or an initial plan are found for each
robot separately, and then the paths are coordinated with each
other. Although this approach is less sensitive to the number
of robots, when compared with the coupled approach, it gives
no completeness guarantees.

The coupled approach usually treats the entire system as
a single robot, for which the number of degrees of freedom
(DOFs) is equal to the sum of the number of DOFs of the
individual robots in the system. This approach usually comes
with stronger theoretical guarantees such as completeness
[29, 39, 40, 41, 44] or even optimality [51] of the returned
solutions. However, due to the computational hardness of
MRMP [21, 22, 26, 42, 45], coupled techniques do not scale
well with the increase in the number of robots. We do mention
that, when simplifying assumptions are made concerning the
separation of initial and goal positions, MRMP can be solved
in polynomial time, as function of the number of robots and the
complexity of the workspace environment (see, [1, 43, 47]).

B. Metrics

The choice of a metric for nearest-neighbors queries in a
sampling-based planner can be crucial. Amato et al. [3] were
the first to study the effect of a metric on sampling-based
planners. They consider PRM as the planner and define effec-
tiveness as the number of discovered edges in the roadmap.
They compare effectiveness of some variants of the Euclidean
metric in settings that involve translation and rotation of a
single robot. Kuffner [30] considers metrics for rigid-body
motion and proposes an interpolation between the rotation
component and the translation component.

Extensive research was done in order to find suitable metrics
for other settings of motion planning, such as robots with
differential constraints [7, 8, 32, 36].

Pamecha et al. [37] analyze metrics for systems with a single
robot consisting of multiple modules that must stay in touch
with each other (multi-module systems). Though any module
can be thought of as a robot, the system restrictions are that
modules are only allowed to move on a grid, and must stay
in contact in order to form a metamorphic robot. Hence, their
results are not straightforward to extend to arbitrary multi-
robot systems. Further analysis for multi-module systems can
be found in Winkler et al. [52] and Zykov et al. [53].

Recent methods employ machine learning to develop met-
rics that are tailored to the specific motion-planning problem
at hand. Ekenna et al. [15] introduce a framework in which
there is a candidate set of metrics, and the planner adaptively
selects a metric on-the-fly. The selection may vary over time or
between different regions of the workspace. This implies that
a set of metrics, each suitable for a different setting, can be
combined in order to solve more diverse settings that consist
of smaller, specific, (sub)settings. Morales et al. [35] have
the same observation that different portions of the C-space
may behave differently. In our work we will also refer to the
case where different metrics are more effective than others in
different portions of the C-space.

Estimating distances between sets of points is in broad use
in shape matching (see the survey [49]). Such techniques (see,
e.g., Belongie et al. [6]) are concerned with estimating the
distance between shapes and with finding a matching between
shapes. Kendall [28] provides a rigorous mathematical study of
the subject, where point sets are mapped to high-dimensional
points, on which distance measures can be more easily defined
(see more details in Section IV).

Another area where distance between sets of points is of
interest is graph drawing. Bridgeman and Tamassia [9] list
a large number of distance metrics between planar graphs.
Some of the metrics give a significant weight to the relative
order between the nodes, which is also the guideline for the
metrics we propose in this paper. Lyons et al. [34] address the
same problem, and measure similarity based on both Euclidean
distance and relative order between the nodes.

III. INITIAL SCREENING

We began our study by experimenting with four different
planners, fifteen different metrics and variations of them. For
planners we tried RRT-style and EST-style [23] planners that
are adapted to the multi-robot setting. We tested both single-
tree and bi-directional variants of each algorithm. PRM-style
planners cannot cope with the induced high-dimensional space.
RRT-style planners showed much better success rate in solving
MRMP problems when compared to EST-style planners. This
is why the study continues henceforth with dRRT [44]—
an adaptation of RRT to the multi-robot setting, which can
cope with a larger number of robots and more complicated
tasks than RRT as-is. We mention that M* [51], which is
another sampling-based planner tailored for MRMP, is less
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relevant to our current discussion since it only employs metrics
concerning individual robots.

For metrics, we began by following the common approach
of choosing metrics that have high correlation with the failure
rate of the local planner [12, pp. 210]. Note that this is
also the guideline behind using the swept volume and its
approximations as a metric for rotating robots [3, 15, 30].
It turns out that when using such metrics with RRT-style
planners, the exploration of the C-space is unbalanced— the
explored configurations tend to have the robots separated
from each other. The analogue for single-robot planning is
exploration of configurations that tend to be far from obstacles,
avoiding paths that go near the obstacles. This phenomenon
is reported in the extended version of this paper.

We continued with metrics that adapt geometric methods
from the domain of shape-matching [6, 16, 17, 28], including
existing methods that are used for mismatch measure [2]. We
also used measures of similarities that are employed in the
domain of graph-drawing [9, 34].

Out of the fifteen tested metrics and their variations, we re-
mained with the most successful five metrics that are described
below in Section IV.

Finally, we mention that we experimented with several
types of robots including planar ones that are allowed to
translate and rotate. However, we chose to conduct our final
experiments with robots bound to translate in the plane, as
it makes the presentation clearer. Moreover, we believe that
the study of complex rigid-body motion [30] in the context of
metrics is mostly orthogonal to our current efforts.

IV. METRICS FOR MULTI-ROBOT MOTION-PLANNING

In this section we discuss the role of metrics in sampling-based
MRMP. Then, we formally define the standard ΣL2, maxL2

metrics and introduce the metrics ε2, ε∞, Ctd, which will be
evaluated in Section VII.

We consider m robots r1, . . . , rm operating in a shared
workspace. For simplicity we assume that the robots are
identical in shape and function, i.e., the C-space of each
individual robot can be denoted by some X . Note that we
still distinguish between the different robots. We assume that
each ri represents a translating disc in the plane, and so
X = R2. Denote the joint C-space for the m individual
robots by Xm = X × . . . × X , i.e., a joint configuration
U = (u1, . . . , um) represents a set of configurations for the
m robots. We note that the metrics described below can be
extended to more general settings of the problem, such as
non-disc robots and 3D environments.

Sampling-based tools for single and multi-robot systems
rely on metrics to measure similarity between configurations.
Let U, V,W be joint configurations of our multi-robot system.
A metric in the context of MRMP is a distance function
d: Xm ×Xm → [0,∞), which satisfies the five properties:
(a) non-negativity: d(U, V ) ≥ 0;
(b) identity: d(U,U) = 0;
(c) identity of indiscernibles: d(U, V ) =0⇒ U = V ;
(d) symmetry: d(U, V ) = d(V,U);

(e) triangle inequality: d(U,W ) ≤ d(U, V ) + d(V,W ).
Efficient nearest-neighbors data structures usually do not rely
on property (c) (see, e.g., [10, 11, 13]), and so can be applied
to pseudometrics, which satisfy properties (a), (b), (d) and (e).
We extend the discussion also to pseudosemimetrics which are
functions that satisfy only properties (a), (b), and (d). In that
case, we cannot use sophisticated data structures that rely on
the triangle inequality. For simplicity, from now on we will
refer to any pseudosemimetric as a metric.

Standard metrics. The following two metrics are simple
extensions of single-robot metrics to the multi-robot setting.
Let L be a single-robot metric L : X × X → [0,∞).
For any two joint configurations U = (u1, . . . , um) , V =
(v1, . . . , vm) ∈ Xm we define ΣL and maxL as:

ΣL (U, V ) =

m∑
i=1

L (ui, vi) ,

maxL (U, V ) = max
i=1,...,m

L (ui, vi) .

We consider the two metrics obtained by setting L = L2,
which is the standard Euclidean distance, and denote them
by ΣL2 and maxL2. Those metrics satisfy properties (a)-(e).
We note that the former is used by default in many settings,
whereas the latter has earned much less attention.

ε-congruence metrics. Here we introduce new metrics, which
are based on the notion of approximate congruence or ε-
congruence, described by Alt et al. [2].

Definition IV.1 (ε-congruence). Let L : X × X → [0,∞) be
a single-robot metric, and let T be the set of all translations
T : X → X . For every two joint configurations U =
(u1, . . . , um) , V = (v1, . . . , vm) ∈ Xm the ε-congruence
with respect to L is defined as

εL (U, V ) = min
T∈T

max
i=1,...,m

L (T (ui) , vi) .

This metric expresses the required tolerance
(with respect to L) for the two sets of points
to be equivalent to each other under translation.

U
V

T (U)

1 2 3 4 5We denote ε-congruence
with respect to L2 and L∞
by ε2 and ε∞, respectively.
See illustration on the right:
U is marked with circles, V
with squares, and the trans-
lated configuration T (U)
with stars. Each of the m =
5 robots is denoted by a
different color. If each star
falls inside its corresponding ball then the balls’ (common)
radius corresponds to a valid translation. The ε-congruence is
the minimal valid radius.

Note that ε-congruence satisfies all the properties of a pseu-
dosemimetric, and in case L satisfies the triangle inequality
(which is the case for L2 and L∞) then ε-congruence is a
pseudometric and therefore can be used with any nearest-



neighbor data structure.

Shape-based metric. Let U = (u1, . . . , um) and V =
(v1, . . . , vm) be two joint configurations for m robots. Denote
by xi and yi the x and y coordinates (respectively) of vi−ui.
The Centroid distance is defined as the sum of squared
Euclidean distances between vi−ui and the common centroid
of {vi − ui}mi=1. The centroid distance is calculated using the
following equation:

Ctd (U, V )=

m∑
i=1

(
x2
i + y2

i

)
−

(
∑m
i=1 xi)

2
+ (
∑m
i=1 yi)

2

m
. (1)

The development of Equation (1) is based on the notion of
shape space [28]. Refer to the extended version of this paper
for intuition and full details.

In summary, we have presented five metrics for MRMP: the
more traditional ΣL2 and maxL2, and the novel metrics ε2,
ε∞, Ctd. We will evaluate these five metrics below.

V. CANONICAL SUBSTRUCTURES IN C-SPACE

Here we introduce a new approach to better conquer the
intricate problem of MRMP. We identify several “gadgets”,
which represent local instances of the problem, and which
force the robots to coordinate in a specific and prescribed
manner. Those gadgets can be viewed as a set of representative
tasks that need to be carried out in typical scenarios of
MRMP. Examining these substructures, rather than the entire
complex problem, has two benefits. Firstly, such substructures
can be straightforwardly decomposed into a small number of
equivalence classes (ECs) of (joint) configurations, which can
be viewed as a discrete summary of the continuous problem.
We conjecture that a metric which maximizes the number
of explored ECs by a given planner also leads to better
performance of the planner. Secondly, those ECs of a given
substructure, and the relations between them, induce a natural
distance metric, which faithfully quantifies how difficult it is
to move between any given pair of joint configurations. This
gives an additional method to assess the quality of a given
metric by comparing it to the natural metric.

In the remainder of this section we describe three
such canonical substructures, which we refer to as Per-
mutations, Partitions, and Pebbles, and denote them by
XPermutations,XPartitions,XPebbles. We also describe their corre-
sponding natural metrics. In Section VI we describe tools for
analysis of metrics. Of course there could be many more useful
substructures—see comment in the concluding section.

Each such substructure X is a subset of the joint C-
space Xm. For every X we identify a finite collection of e > 0
disjoint subsets X1, . . . , Xe of X termed equivalence classes
(ECs). Note that each EC is a subset of the joint C-space. We
say that two joint configurations U, V ∈ X are equivalent if
they belong to the same EC Xi. If robots can also leave one
EC Xi and enter another Xi′ , without going through any other
EC then we say that the ECs Xi, Xi′ are neighbors. This gives
rise to the equivalence graph GX whose vertices are the ECs
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Fig. 2. Tunnel scenario. The environment consists of a T-shaped free space
and requires the robots in one side to exchange places with the robots on the
other side. There are 6 translating disc robots of radius 2 and the width of
each arm is 5, so the robots cannot exchange places within an arm without
leaving it. (a) Start configuration. The red, blue and green robots lie on the
left arm, and the yellow, purple and cyan robots lie on the right arm. In the
goal configuration the red, blue and green robots lie on the right arm and the
yellow, purple and cyan robots lie on the left arm. More specifically, the red
robot exchanges places with the cyan robot, the blue robot with the purple
robot and the green robot with the yellow robot. (b) A configuration for which
the permutation in AU is (3, 2, 5, 4), in AR is ( ) and in AL is (1, 6). The
corresponding EC is denoted by [(3, 2, 5, 4) , ( ) , (1, 6)].

of X, and there is an edge between every two neighboring
ECs.

We are now ready to define the natural distance dK between
two given joint configurations U, V ∈ X. For a given U ∈ X
denote by EC (U) the EC of X in which it resides. Then
the natural distance dK (U, V ) is the graph distance over GX
between EC(U) and EC(V ), namely the number of edges
along the shortest path in the graph between the vertices
corresponding to EC(U),EC(V ).

A. Permutations

As an example of XPermutations consider the “Tunnel” scenario
depicted in Figure 2. The workspace consists of three portions
corresponding to the three “arms” of the workspace: upper
arm, right arm and left arm, denoted by A = {AU , AR, AL}.
In this substructure we define the ECs to correspond to the
assignment of robots to portions of the tunnel, and to the
specific order of the robots within each portion. The order in
the upper arm AU is calculated according to the y coordinate,
and the order in the right and left arms AR, AL is determined
according to the x coordinate. See Figure 2b for an illustration.

Two ECs are neighbors if they correspond to a transition of
a single robot that leaves one arm and enters another. For in-
stance, [(3, 4, 2) , (5, 6, 1) , ( )] and [(3, 4, 2, 1) , (5, 6) , ( )] are
neighbors. This condition implicitly induces the equivalence
graph GXPermutations and the corresponding natural metric dK.
For instance, for any two configurations U, V which lie in
the ECs [(3, 4, 2, 5, 6, 1) , ( ) , ( )] , [(3, 4, 1, 6, 5, 2) , ( ) , ( )] ,
respectively, it follows1 that dK(U, V ) = 10.

An illustration for the equivalence graph for the case of
m = 2 robots is depicted in Figure 3.

B. Partitions

As an example of XPartitions we consider the “Chambers”
scenario depicted in Figure 4. Each EC is associated with

1The shortest path over GXPermutations can be obtained in the following
manner: (1) r1 : AU → AR (namely, r1 moves from the upper arm to the
right arm) , (2) r6 : AU → AR , (3) r5 : AU → AR , (4) r2 : AU → AL
, (5) r5 : AR → AL , (6) r6 : AR → AL , (7) r1 : AR → AU
, (8) r6 : AL → AU , (9) r5 : AL → AU and (10) r2 : AL → AU .



Fig. 3. GXPermutations for two robots (m = 2). Each vertex of GXPermutations
represents an EC in the joint C-space Xm.
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Fig. 4. Chambers scenario. The environment consists of three chambers. The
structure of each chamber allows the robots to exit from the chamber in any
order, not necessarily in the order they entered to the chamber (as opposed to
the arms in the Tunnel scenario). (a) Start configuration. (b) A configuration
that corresponds to the assignment [{1, 5, 8} , {4, 6, 7} , {2, 3}]. The natural
distance between it and the configuration in Figure 4a is 4.

a partitioning of the robots to the chambers. Each robot is
mapped to the chamber that has the largest intersection with
the robot and we choose a chamber at random in case that
there is a tie. See Figure 4b. Two ECs are neighbors if exactly
one robot changes its mapped chamber. Unlike the previous
substructure, here the exact order of the robots inside one
chamber does not matter.

C. Pebbles

The “8-Puzzle” scenario, which is a geometric variation of the
classic 15-Puzzle [4], is used as an example for XPebbles. The
problem is depicted in Figure 5. Unlike the discrete version
of the puzzle, where each robot can occupy only one of nine
possible places, in the geometric generalization the robots can
lie in any collision-free configuration.

Each EC of XPebbles is associated with an assignment of
robots to the nine cells. The cell corresponding to each robot
is the one that has the largest intersection with the robot, with
the restriction that at most one robot is assigned to a single
cell, and we choose a cell at random in case that there is a tie.
An example for a configuration along with its correspondent
assignment is described in Figure 5b. Two ECs of XPebbles are
neighbors if exactly one robot changes its cell assignment.

VI. ANALYSIS OF METRICS

In this section we introduce two novel tools for analyzing
metrics, which rely on the concept of canonical substructures,
described in Section V. The following tools assess the quality
of a given metric d by quantifying its similarity to the natural
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Fig. 5. 8-Puzzle scenario. The environment can be naturally partitioned
into nine cells that form 3×3 grid. A robot can translate only between
adjacent cells. (a) Start configuration. The goal is to arrange the robots
in the order r1, . . . , rm, i.e., r1 is situated in the cell in the top left
corner, and so on. (b) A configuration that corresponds to the assign-
ment [{4} , {3} , {6} , { } , {7} , {2} , {8} , {1} , {5}]. The natural distance
between it and the configuration in Figure 5a is 5 since there is a discrete
motion with 5 steps that transforms one configuration to the other (the motion
involves the purple, red, grey, green and cyan robots).

metric dK, and by counting number of explored ECs by a
planner that is paired with d.

In addition to the tools described in this section, we have
a visualization tool that automatically generates an animation
for the expanded tree. Some properties of the metrics can be
inferred by perusing the animations. This tool was essential in
the screening phase and guiding our choice of metrics. Links
to example videos can be found in the extended version of
this paper.

A. Distributions separation

The following technique requires as an input, after fixing a
specific canonical substructure X, a set of ` randomly sampled
joint configurations C = {C1, . . . , C`} from X. Each such
sample is then classified according to its EC in X.

Our working hypothesis is that a good metric should
faithfully reflect the natural distance, and in the rest of the
subsection we spell out what it means to have this property.

When incorporating the metric into a sampling-based plan-
ner, the role of the metric is to compare distances between
different pairs of sampled configurations. Given two pairs of
configurations (U1, V1) and (U2, V2), the planner favors to
check the continuous motion between the first pair in case the
distance between U1, V1 is smaller than the distance between
U2, V2 (Note that in the case of an RRT-style planner, the
compared pairs always satisfy U1 = U2.). How much a metric
reflects the natural distance can be measured by how well the
relation between distances of different pairs of configurations
is preserved when compared to the natural distance. Preserving
the natural distance can be measured by Γd:

Γd = Pr
U1,U2,V1,V2∈X

[
d(U1, V1) < d(U2, V2)

∣∣∣
dK (U1, V1) < dK (U2, V2)

]
.

In one extreme case, if we use the natural distance as d we
have Γd = 1. In the other extreme case, if a metric d has no
correlation with the natural distance we have Γd = 0.5. We
are interested in a metric that gives a large value of Γd.

In the rest of the subsection we formalize the discussion
above and explain how to calculate and compare Γd between



different metrics. For every possible (discrete) value of the
natural distance α ∈ Im dK we compute the set Dd

α of metric
distances given that the natural distance is α:

Dd
α = {d(U, V ) | U, V ∈ C,dK (U, V ) = α} .

With a slight abuse of notation, we treat Dd
α as a dis-

tribution over pairs of configurations from X. Here we use
the fact that C captures the structure of X. Furthermore, we
define Dd = {Dd

α | α ∈ Im dK}. Consequently, Γd can be
represented as

Γd = Pr
[
α0 < β0

∣∣∣ α0 ∼ Dd
α, β0 ∼ Dd

β , α < β
]
,

where the notation α0 ∼ Dd
α indicates that α0 is sampled

from the distribution Dd
α.

Sampling-based planners usually attempt to connect nearby
configurations. Thus, it is more important to identify close con-
figurations than remote ones. Pairs of far-away configurations
(with respect to the natural distance) are practically ignored by
a sampling-based planner that uses a reasonable metric d. We
restrict Γd to natural distances of at most a threshold parameter
τ , using the following definition2 of Γd

τ :

Γd
τ = Pr

[
α0 < β0

∣∣∣ α0 ∼ Dd
α, β0 ∼ Dd

β , α < β, α ≤ τ
]
.

We expect that a metric d1 will be more effective than a metric
d2 if Γd1

τ > Γd2

τ .

B. Explored equivalence classes

RRT-style planners, as the one used and described later on in
Section VII, explore the C-space from a starting configuration.
A desirable property of such planners is to reach various
regions of interest in the C-space. In our setting, we measure
the quality of exploration by the number of different ECs
reached, where a larger number of explored ECs means that
the planner explores the C-space more exhaustively. Since the
planner cannot foresee which parts of the C-space can lead
to a solution, we expect that an effective metric will result
in a larger number of explored ECs when compared to an
ineffective one.

We propose the following experiment to assess d with
respect to the quality of exploration. A single-tree RRT-style
planner is used to build a tree with N vertices. The set of
explored configurations is denoted by Ud. For each configu-
ration U ∈ Ud we identify its representative EC denoted by
EC (U). We count the number of distinct explored ECs, i.e.
the number of distinct ECs in the set {EC (U) | U ∈ Ud}, and
denote it by |Ud/EC|. We anticipate that a metric d1 will be
more effective than a metric d2 if |Ud1/EC| > |Ud2/EC|.

VII. EXPERIMENTAL RESULTS

In this section we make use of the tools developed in Sec-
tion VI to analyze the properties of the metrics in the scenarios
described in Section V. Then we compare the effectiveness of

2We require that α ≤ τ , and not β, since we only care that pairs of
configurations with small value of dK will remain so with respect to d. A
similar correlation is not assumed between large distances.

the metrics as used by dRRT [44] to solve instances of MRMP.
As mentioned in Section III, dRRT is an extension of RRT,
which allows it to cope with a greater number of robots and
more complex scenarios. Later on we show the effectiveness
of the planner incorporated with different metrics in a general
environment that consists of several substructures.

A. Implementation details

All the metrics defined in Section IV can be implemented
with running time linear in the number of robots. Refer to
the extended version of this paper for full description of the
implementation.

All the experiments were performed using a cluster of 40
single-core virtual machines running over Google Compute
Engine [18]. The planning is based on the Open Motion
Planning Library (OMPL) [46].

B. Analyzing properties of the metrics

We show and analyze the results of the experiments described
in Section VI using the scenarios described in Section V.

For each scenario, we show results for the value of Γd
τ

defined in Section VI-A. Then, we count the number of distinct
explored ECs, as suggested in Section VI-B. In order to do
so, we use a dRRT-tree with 10,000 vertices rooted at the start
configuration (see Figures 2a, 4a and 5a) . Finally, we show
the effectiveness of an entire planning algorithm that uses each
of the metrics and show how it correlates with the results of
the analysis tools. We measure the effectiveness of the planner
by inspecting both (i) the number of explored vertices when
a solution is found—the lower the number, the more effective
we consider the metric to be; and (ii) the success rate of the
planner. We mention that the success rate of the local planner
(and not the motion planner) is similar among all the metrics,
and therefore we do not report it. We do not measure running
times since we are interested only in the analytic effectiveness
of each metric. As noted earlier, all metrics require similar
computation time.

Next, for each typical scenario we describe (i) the results
of the distributions-separation predicates, (ii) the results of
the ECs exploration, and finally (iii) the actual behavior of
the planner and its relation to the predictions. These are also
summarized in Table I, Figure 7 and Figure 8, respectively.

Permutations substructure. Figure 6 shows subsets of the
sets of distributions Dε2 and DΣL2

for the Tunnel scenario:
observe that the distributions in Dε2 are better separated than
the distributions in DΣL2

. This separation is expressed by the
dissimilarities between the different distributions. For example,
the common area bounded by the blue and green distributions
(representing Dd

0 and Dd
4 respectively) is smaller for ε2

when compared to ΣL2. This is also the case for the green
and red distributions (representing Dd

4 and Dd
6 respectively).

The value Γd
τ quantifies the distribution separation. For this

scenario we set τ = 4. The values of Γd
τ are given in Table I.

The values for ε2, ε∞ and Ctd are similar to each other, and
are larger than the values for ΣL2 and maxL2.
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Fig. 6. Distributions from Dd for ΣL2 and ε2 metrics in the Tunnel
scenario. Better reflection of the natural distance is expressed by higher level
of separability between the distributions.

Scenario τ Metric (d)

ΣL2 maxL2 ε2 ε∞ Ctd

Tunnel 4 0.810 0.843 0.904 0.904 0.907

Chambers 1 0.858 0.983 0.971 0.962 0.938

8-Puzzle 7 0.953 0.938 0.951 0.921 0.971

TABLE I The value of Γd
τ for different metrics in different scenarios.

Each entry in the table is the value of Γd
τ for the corresponding d, τ and

scenario. Larger values mean higher distributions separation, and in turn better
effectiveness is expected.

The number of distinct explored ECs is shown in Figure 7a:
observe that Ctd and ε-congruence-type metrics show better
results when compared to the standard metrics. In addition,
we expect that ε2 and Ctd will be more effective than ε∞.
Furthermore, ΣL2 shows better results than maxL2.

As described in Figure 8a, the effectiveness of the metrics
correlates with the analysis of Section VI. As expected, ε2,
ε∞ and Ctd are more effective than ΣL2 and maxL2.

Partitions substructure. For the distributions separation we
use τ = 1. The values of Γd

τ are given in Table I. maxL2

has the largest value, then come ε2, ε∞ and Ctd, while ΣL2

is far behind.
Figure 7b shows the number of distinct explored ECs.

maxL2 shows the best results, ε2 and ε∞ have comparable
results, which are better than Ctd, and ΣL2 yields the poorest
results.

For this scenario, by looking at the results of the experi-
ments described in Section VI, one can foresee that maxL2,
ε∞ and ε2 will be more effective than Ctd, which in turn, will
be more effective than ΣL2. This is indeed the case when
measuring the effectiveness of the planner, as can be seen in
Figure 8b.

Pebbles substructure. For the calculation of Γd
τ we use τ =

7. The values are given in Table I. The best value is achieved
by Ctd, then ε2 and ΣL2 have comparable values, then comes
maxL2 and finally ε∞ with the smallest value.

The number of distinct explored ECs is shown in Figure 7c.
Here again, the largest number of explored ECs is achieved
with Ctd, followed by ε2 and ΣL2. Then ε∞, and the lowest
value is for maxL2.

The effectiveness of the planner incorporated with each met-
ric is expressed in Figure 8c. The results are with accordance
to the analysis: Ctd is the most effective metric, ΣL2 and ε2

have comparable effectiveness, and ε∞ and maxL2 are the

less effective metrics.

C. Putting it all together

The C-space of a general MRMP problem may consist of
several substructures. This is the case for the scenario depicted
in Figure 9a, which contains m = 8 robots. Figure 9c shows
the effectiveness of planning with each metric. As can be
inferred from the results, even in more general scenarios, the
novel metrics are more effective than the standard ones. In
some cases, it may be beneficial to alternate between several
metrics—the planner maintains several nearest-neighbors data-
structures, each for a metric. Each time the tree is expanded,
a different data-structure is used in a round-robin fashion.

We have tested the scenario depicted in Figure 9a with 4, 6
and 8 robots (for 4 and 6 robots we eliminate from the scenario
the robots r5, . . . , r8 and r7, r8 respectively). We used each of
the five metrics, along with all the combinations of two out
of the five (total of 15) metrics. For the scenario with m = 4
robots, the effectiveness of all the metrics and their alternation
was comparable. The results for the scenario with m = 6
robots (see Figure 9b) support the fact that it may be better
to alternate between different metrics. Note the interesting
fact that when alternating between ε2 and ΣL2 or Ctd, better
effectiveness is obtained than when using each metric solely.
For the scenario with m = 8 robots (Figure 9c) the novel
metrics are more effective when compared to the standard
ones. Alternating between novel and standard metrics does not
make the planner more effective for the case of 8 robots. As we
move from 4 robots (easier) to 8 robots (considerably harder),
the effectiveness of the metrics becomes more noticeable.

VIII. CONCLUSIONS AND FUTURE WORK

Our conclusion on how to effectively solve MRMP using
sampling-based planners is to use tailored multi-robot metrics,
possibly side-by-side with more traditional metrics. Already
with three substructures we could test and suggest new ef-
fective metrics. There could be many more substructures, in
particular larger, more elaborate ones. We plan to look for
additional such substructures, which could help in finding
more relevant metrics and useful combinations thereof.

Metrics are relevant for other settings of MRMP, includ-
ing moving rigid bodies in 3D, and robots with differential
constraints. The proposed metrics and analysis tools can be
extended to such settings as well. In fact, we already applied
our ideas to simple settings with robots that can translate
and rotate. Another notable variant is the unlabeled setting in
which all the robots are identical and interchangeable. There
are similarity measures for unlabeled point sets that can be
adapted for MRMP [2, 6, 14, 20, 24]. Unlabeled planning
involves matching functions as well, which have common
properties with metrics but make the problem considerably
harder. We began to explore the unlabeled case, and have
some promising initial results in this direction as well. A
demonstration of our initial results for rotating robots and
unlabeled disc robots is provided in the extended version of
this paper.
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(c) Pebbles Substructure

Fig. 7. Different explored equivalence classes experiment. A dRRT tree is expanded until it contains 10,000 vertices. For each vertex in the tree we find
its representative EC, and count the number of different ECs (denoted by |Ud/EC|). Higher value means that we expect the metric to be more effective. The
experiment is repeated 50 times for each metric. The figure depicts the values of |Ud/EC| for each metric.
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Fig. 8. Number of expanded vertices when a solution is found. The experiment is repeated 50 times per metric. The planner success rate is depicted in the
green labels on top of each boxplot. The red labels are the median value. Effectiveness is expressed by high success rate and low number of vertices.
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(c) Effectiveness with 8 robots

Fig. 9. A general scenario. We test the scenario with 8 robots, and the scenario with 4 or 6 robots which we get by eliminating r5, . . . , r8 or r7, r8,
respectively. (a) Start and goal configuration, drawn in solid and empty discs, respectively. (b) Effectiveness of metrics and alternation between metrics
summarized over 20 runs for the case of 6 robots. As in the previous plots, the green labels indicate the success rate. (c) Effectiveness of each metric
summarized over 20 runs of the planner for the case of 8 robots.

In this work we assessed metrics using RRT-style planners,
such as dRRT (see Section III). Although we do not believe
that our reported results are biased towards these specific
types of planners, it would be interesting to see whether the
conclusions can be reproduced for other planners, that operate
differently than RRT, e.g., PRM*, RRT* [27] and FMT* [25].
This also leads to the question of the effect metrics have on
the quality of the solution in MRMP.

Currently, we experimentally fine-tune the parameter τ . It
will be interesting to come up with a theoretical analysis of
the choice of this parameter.
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