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Abstract—Executing agile quadrotor maneuvers with cable-
suspended payloads is a challenging problem and complica-
tions induced by the dynamics typically require trajectory
optimization. State-of-the-art approaches often need significant
computation time and complex parameter tuning. We present
a novel dynamical model and a fast trajectory optimization
algorithm for quadrotors with a cable-suspended payload. Our
first contribution is a new formulation of the suspended payload
behavior, modeled as a link attached to the quadrotor with a
combination of two revolute joints and a prismatic joint, all
being passive. Differently from state of the art, we do not require
the use of hybrid modes depending on the cable tension. Qur
second contribution is a fast trajectory optimization technique
for the aforementioned system. Our model enables us to pose
the trajectory optimization problem as a Mathematical Program
with Complementarity Constraints (MPCC). Desired behaviors
of the system (e.g., obstacle avoidance) can easily be formulated
within this framework. We show that our approach outperforms
the state of the art in terms of computation speed and guarantees
feasibility of the trajectory with respect to both the system
dynamics and control input saturation, while utilizing far fewer
tuning parameters. We experimentally validate our approach on
a real quadrotor showing that our method generalizes to a variety
of tasks, such as flying through desired waypoints while avoiding
obstacles, or throwing the payload toward a desired target. To the
best of our knowledge, this is the first time that three-dimensional,
agile maneuvers exploiting the system dynamics have been
achieved on quadrotors with a cable-suspended payload.

SUPPLEMENTARY MATERIAL

This paper is accompanied by a video showcasing the
experiments: https://youtu.be/s9zbSMRXiHA

I. INTRODUCTION
A. Motivation

Aerial manipulation with Micro Aerial Vehicles (MAVs) is
a compelling application domain with applicability within a
wide variety of dangerous situations, such as disaster sce-
narios. Potential applications are post-disaster response, to
quickly provide victims with life-saving aid, and fire fighting,
in the case that flames cannot be easily and safely reached
by human operators or ground-based fire-fighting systems. In
each of these scenarios, time is a critical factor and the vehicles
have to be capable of executing agile maneuvers at high speed
to render aerial manipulation effective.
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Fig. 1.
carrying a cable-suspended payload.

Our quadrotor flying a trajectory through multiple waypoints while

Partially or fully actuated manipulators have been used for
aerial manipulation by attaching them to quadrotors [10} [11}
22,[277]]. Although this solution is suitable for fine manipulation
and interaction with the environment, it has a number of
drawbacks (e.g., energy consumption, size of the overall plat-
form, additional inertia) that reduce the agility of the vehicle.
Conversely, object manipulation through cable suspension sig-
nificantly reduces the mechanical complexity and the weight of
the system, and requires minimal energy since no additional
actuation is needed. In contrast to the actuated manipulator
approach, cable suspension systems introduce a variety of
challenges in modeling the system dynamics and parameteriz-
ing specific behaviors to accomplish a desired task. Variations
in the cable tension dramatically change the description of the
dynamics, since the payload can either transfer forces through
the cable to the vehicle or not, depending on whether the rope
is taut or not. A hybrid dynamic model is usually introduced
to deal with the varying structure of the system, with different
mathematical descriptions (also called modes) depending on
the cable tension. This provides an accurate description of the
system but renders the trajectory optimization difficult to solve.
Indeed, hybrid optimization is computationally expensive and
requires a-priori specification of the desired mode sequence
through the trajectory. Furthermore, this formulation often
leads to difficulties in specifying convex constraints for safety-
critical features, such as cable-snagging and requires complex
task-specific parameter tuning. Additionally, taking workspace
considerations, such as obstacles into account within the set
of constraints is difficult and leads to additional challenges for
the trajectory optimization.

B. Related Work

The state of the art in cable-suspended aerial manipulation
can be broadly classified into two approaches: (i) feedback
control for tracking desired payload trajectories [7, I8, [18];
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(ii) trajectory planning for a quadrotor with slung-load system
[25] 24}, 131 15, (16, 117, 28]]. In this work, we focus on the second
approach.

A possible solution is to minimize the swinging behavior of
the transported load [5, [16} (17} 28, |8]. Reducing the swinging
of the payload leads to sub-optimal results, since it is not
energetically efficient (the quadrotor has to counteract the
swinging motion of the payload) and it does not exploit the
system dynamics, preventing high-speed agile maneuvers.

Trajectory planning for agile navigation leveraging the
swinging dynamics of the system has also been studied
[24] 25| 13| [2]. Although impressive results have been shown,
a number of challenges are not yet solved. Fast methods
for trajectory computation have been proposed but often no
optimality criterion is adopted [24, 2], and constraints on
the behavior of the system through the trajectory are either
not allowed [24, 2] or represent manually computed hard
constraints on the system state [25l 3]. Tasks such as way-
point navigation or obstacle avoidance often require a large
number of parameters [25| 2] that must be hand-tuned by an
expert operator and significantly affect the performance of the
system and the computation time required (e.g., introducing
an integer variable for each obstacle exponentially increases
the complexity of the problem [25]]). Hybrid modes [24, 3| 25]]
often require the specification of the exact mode sequence in
advance. This forces the optimizer to constrain the motion
along a single mode sequence that might not be optimal
and requires time-consuming tuning to achieve satisfactory
results. A critical aspect to guarantee the performance of the
closed-loop system is the feasibility of the computed trajectory.
Differential flatness [15] is often exploited to plan smooth
polynomial trajectories that minimize a cost function based on
the system input [24} 25, 2], but no guarantee on the motor
input saturation is provided. Finally, results have been shown
only in simulation [3} 2], or in real world experiments limited
to two-dimensional motions [24, 25].

C. Contribution

The contribution of this paper is twofold: (i) we present a
novel dynamic model for a system composed of a quadrotor
and a cable-suspended payload that does not require hybrid
modes; (ii) we implement a fast optimization algorithm to
compute energy-efficient, feasible, and safe trajectories for
a variety of tasks. We depart from the the state of the art
by modeling the payload behavior using a description based
on the combination of two revolute joints and a prismatic
joint. Physical properties of the system, such as the maximum
extension of the cable length and angular limit of the payload
with respect to the vehicle, are considered as constraints on
the allowed range for these joints. Furthermore, we do not
constrain the trajectory to (piecewise-) polynomials or reduce
the number of states (differential flatness) but optimize all
states at all sample times. Exploiting this parameterization, we
reformulate the trajectory planning problem as a Mathematical
Program with Complementarity Constraints (MPCC). The
hybrid behavior of the system is captured by the introduction

of a single linear complementarity constraint, represented
by the joint limit of the prismatic joint, into the nonlinear
program. This renders hybrid modes in the dynamic model
and hybrid optimization unnecessary. Inspired by recent work
in the domain of trajectory planning for systems under contact
[19) 120, we solve the MPCC using Sequential Quadratic
Programming (SQP). We show that, with our parameterization,
safety considerations, such as non-snagging, can easily be
captured as a convex constraint while obstacle avoidance is
guaranteed by adopting a constrained formulation similar to
signed-distance functions [21]].

Our framework: (i) outperforms the state of the art in
terms of speed, without restricting the trajectory complexity;
(ii) provides a simple way of parameterizing different tasks;
(iii) guarantees the feasibility of the trajectory with respect
to both the system dynamics and control input bounds. Our
trajectory optimization algorithm typically needs less than
30s on a simple laptop (at least 5 times faster than state
of the art) and can be used for fast planning of complex
tasks. We experimentally validate our approach on a real
quadrotor (cf. Fig. [T), showing that our method can easily
generalize to a variety of tasks, such as flying through desired
waypoints while avoiding obstacles, and throwing the payload
toward a desired target. In the waypoints navigation task, we
avoid both vertical and horizontal obstacles, and demonstrate
tracking of feasible trajectories. In the payload throwing task,
we show how the method generates throwing trajectories
that are near the natural frequency of the swinging payload
system, achieving energy-efficient throws at a desired target
in minimum time. We also analyze the complexity of setting
up each of these tasks within our framework. To the best of
our knowledge, this is the first time that three-dimensional,
agile maneuvers exploiting the full system dynamics have been
achieved on quadrotors with a cable-suspended payload.

D. Structure of the Paper

The remainder of this paper is organized as follows. In Sec.
we present the dynamic model of the system, formalize
the trajectory planning problem, and describe the proposed
optimization algorithm. In Sec. we describe the hardware
and software architecture used for the experiments performed,
whose results are provided in Sec. [[V] In Sec. [V] we discuss
the results and provide additional insights about our approach.
Finally, in Sec. we draw the conclusions.

II. PROBLEM FORMULATION
A. Formulation of the System Dynamics

Most works on aerial manipulation with cable-suspended
payloads model the system using a hybrid approach with two
modes depending on the tension of the cable. In the first
mode, the cable is fully taut and transfers forces between the
quadrotor and the payload; in the second mode, the cable is
slack, leading to the payload obeying free-fall dynamics. This
renders trajectory optimization a complex problem, since a
hybrid trajectory optimization is needed, and constraints on
the system states are often non-convex.
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Fig. 2. Model description and coordinate frames.

TABLE 1
VARIABLES OF THE QUADROTOR AND THE SUSPENDED PAYLOAD SYSTEM.

1,B World frame and body frame of the quadrotor.
pz = [z,y,2]T Position vector of the quadrotor in | and de-
scribed in R3.

Po = [9,6,9]T Orientation of the quadrotor in roll, pitch and
yaw coordinates from B to | and described in
SO(3).

The inputs to the system as single rotor thrusts.
The payload coordinates (positions of the 2
revolute and 1 prismatic joints) described in R3.

u=[f1, fa, s, fa]T
pp = [, 01T

Conversely, we introduce a novel and simpler parameter-
ization of the quadrotor and payload system. We model the
payload as a point-mass attached to the floating-base of the
quadrotor via a system of three passive, constrained joints:
two revolute and one prismatic. This approximation captures
the hybrid behavior of the cable-payload system through the
enforcement of joint-limits on the prismatic joint p: at the
limit, reaction forces are transmitted through the joints back
to the floating base. The generalized coordinates in our model,
as described in Tab. [l and in Fig. 2] are the following:

qcoord = [$7y72,¢,9,¢>ﬂ7M>P]T' (l)

The dynamics can then be described as a second-order
system or using the Euler-Lagrange equation as described in
[23], leading to a formulation similar to [13]:

H(q)4+ C(q,q) + G(q) = B(q)u, 2)
where q= [qcoorda qcom‘d]~

B. Trajectory Optimization Problem

We pose the trajectory optimization problem as follows:

find g subject to
H(q)q + C(q,q) + G(q) = B(q)u, 3)
f(g,u) > 0. “)

The trajectory is divided in N time nodes where the system
dynamics are included by a direct transcription formulation
as in [1]. We decided to use direct methods [9] since they
have several numerical advantages over other techniques, such
as shooting methods [[19]. Furthermore, although they result

in larger optimization problems, these are sparse and can be
solved very fast.

We incorporate the dynamics as equality constraints be-
tween time steps g(n) and g(n + 1) using a first-order Euler
approximation. Such an equality constraint is maintained by
minimizing the defect variable ¢,, defined as:

¢ =q(n+1) — g(n) — dt(n)g(n). ®)

This first-order approximation is the simplest possible inte-
gration scheme and therefore leads to efficient computation.
Furthermore, it results in a well defined approximation of the
non-linear problem which can be provided to a solver together
with its gradients.

C. Quadrotor with Suspended Payload as an MPCC Problem

We pose this specific problem as a Mathematical Program
with Complementarity Constraint (MPCC) as follows:

min L(q, g, u,t) subject to
H(q)j+C(q,q) + G(q) = B(qQ)u + J(q)" ),
f(q,u) >0,
#(q) = (lo —p) 20,
>0,

P(g)A = 0.

In the following we describe the cost function and all the
constraints of our MPCC.

1) Cost Function Formulation: We use a cost function
L(g,u,t) based on the states, inputs, and time.

L(g,u,t) = Syty + / 2(6)"Qq(t) +
u(t)” Ru(t)dt,

where S; is the terminal time cost factor and Q and R
are the diagonal positive-definite cost matrices for states and
inputs with dimensionality R'®*18 and R***, respectively. By
describing the cost as a quadratic function on states and input
with a terminal time cost, we reduce the number of tuning
parameters and exploit the analytical derivative within the
optimization.

2) Linear Complementary Constraint: A complementary
constraint is used to model the limitation of the cable length,
which we treat as a joint limit constraint. This constraint
formulation is similar to the one proposed in [[19] and has
the following form:

(6)

)

¢(q) = (lo —p) 20,
A>0, ®)

P(g)A =0,

where ¢(q) is the non-penetration constraint at length [y, A
is the decision variable representing the constraint force, and
#(g)\ = 0 enforces the complementarity.

3) Input Limit Constraints: We take into account physical
limitations of the actuation system, imposing an upper and a
lower bound on the thrust provided by each motor as:

Tmin S u S Tmax' (9)



4) Joint Limit Constraints: We constrain the maximal angle
between the quadrotor and the payload to prevent the load
cable from getting into the rotors. Therefore, we place a
bounding-box constraint on 7 and p as follows:

Amyin S 777/~L S Omazx- (10)

5) Obstacle Avoidance: To simplify obstacle avoidance,
we model obstacles as spheres in the workspace and use
signed distance functions, similar to but simplified from [21]].
Therefore, the distance between the quadrotor-load system and
a obstacle can be constrained as:

d(q(t)) = \/(p(t) — o) (p(t) —o) —p(t) —=r, (1)

where p(t) = [z(t),y(t),2(t)]T is the quadrotor’s position
and 0 = [2,, Yo, %0]7 is the obstacle position with radius 7.
The same way of describing a signed distance can be applied
to infinite cylindrical obstacles, where the distance function
changes to:

Top(t) = (p(t) —0) = ((p(t) — 0) - m) - m,

d(q(t)) = \/rop(t) T rop(t) — p(t) — 1,

where n is the symmetry axis. This function can be used as
an inequality constraint d(q) > 0 and, therefore, enforce a
conservative but safe trajectory that avoids obstacles for the
quadrotor’s body as well as the load and the links in between.
In this way, we do not need any mode sequences or hybrid
models.

(12)

D. Task Specifications

In this section, we show how our general formulation of
the optimization problem can be particularized for specific
tasks, as waypoint navigation and payload throwing towards a
desired target.

1) Waypoint Navigation: The waypoint navigation task can
be described as a bounding-box constraint on the first three
states p(n) = [z(n),y(n), 2(n)]T of the system at a given time
node n. For the robustness of the algorithm, we do not use
equality constraints but we allow a small tolerance § around
the waypoint p, as follows:

Pw,i — 0 § p(n) S Pw,i + J. (13)

Furthermore, it would also be possible to set the position of
the load, since it is fully defined in the system state.

2) Payload Throwing: A throwing maneuver has the goal of
releasing the payload so that it will fall towards a given target.
After the release, the payload follows a ballistic trajectory,
whose final position can be constrained to be within a given
threshold from the desired target location. Let p,. = [y, Yr-, 2]
be the position, and p, the velocity of the payload in world-
coordinates at the moment of release, respectively. Further-
more, let p; = [x4,yt, 2] be the target position. We define
pr as the position where the ballistic trajectory intersects
with the height of the target. Please note that p, and p,
can be derived from the state g(¢) by a multiplication with

its forward-kinematic Jacobian J(g(t)). Since the equation is
different depending on whether 2, is positive, we can calculate
the hit position py, as:

3 [
b= = if 2z, >' 0 7
0  otherwise
t2
_ : 1
Zmax = Rr + Z’rtl - 957
(14)
2 _
t2 _ tl + (Zma:n Zt)’
g
t

Pr = Dr +p7“t2 + [0707 _g] 2 )

where ¢; is the time at which the free-fall parabolic motion
of the payload reaches its peak, and ¢, is the time until it
intersects with the target’s height. Additionally, we impose
the following constraint:

0 § ||ph 7pt|| S dm,ar; (15)

where d,,q, is the maximal allowed clearance from the target.
This formulation has the advantage that we do not constrain
the position of release, but rather let the optimization process
find its best value.

III. EXPERIMENTAL SETUP

To validate the functionality of our algorithms, we run three
main groups of experiments:

« waypoint navigation (see Sec. [[II-C);
« obstacle avoidance (see Sec. [lII-D);

o payload throwing (see Sec. |lII-E).

In the first experiment group, we show aggressive flight
through a sequence of waypoints. In the second experiment
group, we implemented payload throwing towards a target
from multiple distances. Finally, the third group is similar to
the first one, with the addition of obstacles to avoid through
the trajectory.

A. Control Architecture

To track the optimal trajectory computed as in Sec.
we used state-of-the-art non-linear control techniques for
quadrotors ([4} [14, [12]). From a high-level point of view,
our controller is composed of: (i) a position controller, (ii)
an attitude controller, and (iii) a bodyrates controller. Given a
desired trajectory, specified as a sequence of desired positions,
velocities, and accelerations for the vehicle, and computed
as in Sec. [l the position controller computes the desired
collective thrust and the desired orientation for the robot.
Based on this information, the attitude controller computes the
desired bodyrates to let the vehicle reach the desired attitude
from the current orientation estimate. Finally, the bodyrates
controller computes the torques to apply to the rigid-body.
These torques, together with the collective thrust computed
by the position controller, are then converted into single motor
thrusts according to the scheme proposed in [14].
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Fig. 3. The quadrotor platform, with the magnetic gripper and payload, used
for the experiments.

TABLE II
PARAMETERS OF THE QUADROTOR USED FOR THE EXPERIMENTS.

Description Parameter Value

Mass of the quadrotor mg 0.760 kg
Mass of the load my 0.084 kg
Mass of the gripper myg 0.062 kg
Arm length la 0.22m
Rope length lo 0.82m
Payload angle limits Aminl@man | =B/
Thrust limit Trmin!Tmaz 1/5N

B. Experimental Platform

To validate our approach, we used a custom-made vehicle.
The vehicle is made up of a carbon fiber frame in an X-
configuration, as shown in Fig. E} At the end of each arm, a
T-Motor MT2208-18 motor is mounted to provide actuation.
Motors are controlled by Afro Slim ESC speed controllers and
are tilted by 15° to provide higher control on the yaw angle of
the vehicle, while only losing 3% of the collective thrust. Our
control algorithm is split between an Odroid-XU4 single-board
computer, running the position and the attitude controllers
using Ubuntu 14.04 and ROS, and a PX4FMU autopilot,
connected to the onboard computer through UART. Additional
details about the control pipeline we used are provided in Sec.
[T-Al

The PX4 provides an Inertial Measurement Unit (IMU)
and a microcontroller running our bodyrate controller, and
directly commands the ESCs. Our quadrotor is equipped with
an electromagnetic gripper, also commanded by the PX4. The
mechanical properties of the quadrotor system are provided in
Tab. [[TI-B] The state of the vehicle is estimated using an Op-
titrack motion-capture system, which provides measurements
at 200 Hz.

We used Drake [26] to compute the optimal trajectories
using the ContactimplicitTrajectoryOptimization method de-
scribed in [19]. The properties of the vehicle are implemented
through an URDF description, allowing easy parameter spec-
ification. We used the SNOPT solver [6] due to its superior
capabilities in handling non-linear problem formulations and
its tight integration into Drake.

In each experiment, we first generated a trajectory on a base
computer and then sent it via ROS to the on-board Odroid. The
trajectory wass then tracked by the control scheme described in

Sec. We discuss the results of some waypoint flights and
throwing maneuvers in Sec. [[V-A] [[V-C| and [TV-B| whereas we
show footage of all experiment configurations in the attached
video.

C. Waypoint Navigation

In the first experiment group, we show flight tasks that
include the following situations:

1) hover to hover (waypoints p,, o and P, 2),

2) hover to waypoint to hover (waypoints p,, o and py, 2),

3) triangle flight (waypoints p., o, Pw,1 and py 2),

4) square ﬂight (Waypoints Pw,0> Pw,1> Pw,2 and pw,S),
where the numbered waypoints correspond to the waypoints
marked in Fig. E] at positions p, 0 = [0,—1,1.3]7, py1 =
[2,—1,1.8]T, py2 = [2,1.5,1.8]T and p, 3 = [0,1.5,1.3]T
where all coordinates are in meters.

To set up the problem, we constrained the position of the
quadrotor at given time nodes with a tolerance and defined
the start and end states to be close to hover. Furthermore, we
defined the costs as

Q = diag([0%,1% 13,10 13,0310 % 13,1 % 1%]),
R=10x%1" Sy = 1000,

which leads to a fast trajectory with low bodyrates, low control
inputs, and helps the solver converge towards the constraints
on 7 and p. We used NV,, = 25 time nodes per waypoint,
resulting in N = [25,50,75,100] total nodes depending on
the maneuver.

(16)

D. Obstacle Avoidance

The obstacle avoidance was set up like the waypoint track-
ing, with the same costs but with one additional constraint in
the formulation as mentioned in Sec. We specified a
vertical cylindrical obstacle at position o = [2.0,—0.7,0] in
meters, with symmetry axis n = [0, 0, 1] and radius » = 0.4 m.
Then we set the start and end position to be at waypoints
Puw,o = [0,—0.9,1.3]7 and p,, 1 = [3.8, 0.9, 1.8] in meters.

E. Payload Throwing

The second experiment group consists of throwing maneu-
vers, where the goal state is such that the payload will fly
towards the target. As described in Sec. we constrain
the distance between the target and parabola intersection with
dmaz = 0.05m as 0m < ||py, — p¢|| < 0.05m. The costs are
again defined by

Q = diag([100 % 13,1 % 13,0, 1 % 13,100 x 13, 0%]),
R =100 %1%, Sy = 500,

where opposed to the waypoint costs, we penalized deviation
from the initial position heavily, together with the bodyrates
and inputs. This leads to trajectories that efficiently swing up
the load and exploit the parabolic free fall.

We used N = 51 nodes and fixed the initial position at p; =
[0,0,1.2]T and two target positions p; 1 = [2.8,0,0], pr2 =
[2.3,0,0], where all coordinates are in meters. This resulted
in straight throws in z-direction with a throwing distance of
approximately 2.0m and 1.5 m.

a7
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Fig. 4. Tracking performance of the quadrotor position (top) and payload angle with respect to the vehicle vertical axis (bottom) for a waypoint navigation
task (left column) and payload throwing (right column). Desired values in solid lines, measured values (provided by a motion-capture system in dashed lines.

Waypoint Navigation Trajetory: Position

14

z [m]

0.5 1 15 2
x [m]

Fig. 5. A trajectory computed using our algorithm for a waypoint navigation
task. The quadrotor starts from hover, flies through a waypoint, and returns
to its starting position. The orange line represents the quadrotor desired
trajectory, while the yellow line represents the payload desired trajectory.

IV. RESULTS

In our experiments, we verify the feasibility of the generated
trajectories and show several demonstrations in the attached
video. Moreover we show the tracking performance of the
obstacle avoidance and throwing maneuver with our controller

in Fig. {]
A. Waypoint Navigation

The algorithm was able to fast and reliably find solutions to
the waypoint navigation task. The results show the expected
behavior and exploit the payload’s natural oscillation.

In an first experiment, we did simple flight maneuvers from
hover at p,, 0, to the waypoint p,, 1, and back to the initial
hover position, as depicted in Fig. 3]

Additionally, we also tested trajectories passing through
three and four waypoints (including start/end position), which
form a triangle and a rectangle respectively. We show the
generated trajectories in Fig. [f] with corresponding waypoints.

To show the stability of our algorithm, we additionally
created multiple trajectories through the waypoints while
varying the tolerance 6 = [0,0.1,0.2,0.3,0.4,0.5,0.6]. With

Navigation through Multiple Waypoints

—triangle quad trajectory
—rectangle quad trajectory
4 waypoints

x [m]

Fig. 6. Top-view of the desired position trajectory for two waypoint
navigation experiments. In each trajectory, the quadrotor starts from hover
at the waypoint p,, o0 and returns to the same position after flying through
the waypoints. The intermediate waypoints are placed to form either a triangle

(Pw,1 and Py 2) or a rectangle (Pw,1, Pw,2 and Py, 3) with the waypoint
Pw,0- The solid lines represent the quadrotor trajectory, the dashed lines
represent the payload trajectory.

increasing tolerance, the trajectories tend towards a more
circular solution which has smoother accelerations and lower
bodyrates, as we can see in Fig. [7]

B. Obstacle Avoidance

In our obstacle avoidance experiment, we expected the
algorithm to come up with a solution that conservatively avoids
a vertical cylindrical obstacle by maintaining a clearance
corresponding to the payload state p around the obstacle.
Figure [§] shows the generated trajectory for the quadrotor and
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Fig. 7. Multiple trajectories for the navigation through four waypoints task.
Each trajectory has a different tolerance on the distance to the waypoints, as
reported in the legend.
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Fig. 8. A trajectory for the navigation through one waypoint with obstacle
avoidance task. The quadrotor starts from hover at p,, 0, flies to the waypoint
Pw,1 while avoiding the obstacle (blue circle in the plot), and goes back to the
initial hover position. The black, dashed circle around the quadrotor represents
the conservative safety margin p.

payload, whose swinging motion is exploited, and illustrates
the conservative approach of using the load state p as a
minimal distance constraint. We show the position and angle
tracking data from the real world experiment (including an
obstacle) in the left half of Fig. El Furthermore, we extended
the approach to a horizontal obstacle to show the general
validity and robustness of our algorithm. Both experiments
are documented in the attached video.

C. Payload Throwing

Throwing a payload against a target requires reaching a
certain release position and velocity. To do this, the quadrotor
has to pump energy into the system by swinging it up and
simultaneously going towards the optimal release point, as
visible in Fig. 0]

Note that during the whole maneuver the angle constraints
between quadrotor and payload remain valid and the load is
always at the limit (i.e., cable fully taut), due to unslung states
being energetically less efficient (an intuitive justification is
stated in the discussion [V-B).

Throwing Task Trajetory: Position
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Fig. 9. An example of the computed trajectory for the payload throwing task.
The quadrotor starts from hovers, swings to payload to accumulate energy,
then releases it.
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Fig. 10. Frequency response of payload position in the throwing. As we

can notice, the swinging motion of the payload happens close to the natural
frequency of the pendulum (Eq@). This is an expected behavior, since it
leads to energy-efficient manuevers.

Furthermore, we expect the energy pumping to happen at
the natural frequency of the pendulum due to the optimality
of the trajectory. The natural pendulum frequency can be
approximated as

1 [g 1 [9.806 2
nat = — —_—= — — ST . H . 1
ot =500 T 2\ Osgm S 003 e ()

We conducted 10 throws for each target p; 1, p;2 (specified
as in Sec[l-E) and analyzed the spectrum of the motion
between the payload and the quadrotor (1 angle, cf. Fig. [T0).
As expected, most of the swinging motion takes advantage of
the natural pendulum frequency.

Figure [IT] provides an analysis of the accuracy and precision
of all throws, and showes the error and the corresponding error
ellipses (RMS error along z,y-axes).

D. Computation Time

To prove the computation time advantage of our approach,
we timed multiple executions of the optimization with both
throwing setups and the rectangular waypoint flight setup
(IT-E] [II-C)), each with 5 randomly disturbed initial position
configurations (+0.1m on =z, y, z) and 5 runs per configu-
ration, giving 25 timing measurements per setup. A Lenovo
Thinkpad 460p with Intel Core 17-6820HQ and 32 GB memory
was used for the computation. The results are listed in Tab.
[[V-D] Our algorithm outperforms state-of-the-art approaches
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Fig. 11.  Throwing results over 20 trials from two different distances to

the target (represented as a black route). The blue and red dots represent the
absolute error of the payload landing position with respect to the target, for
the two different target distances, respectively. Similarly, the blue and red
ellipses represent the error standard deviations.

and is over 5 times faster in most comparable scenarios. For
instance, in [25] the authors need more than 3000s, using
less than 60 nodes through the trajectory, for a waypoint
navigation with obstacle avoidance task. They also computed
simpler direct throwing trajectories in another experiment,
with computation times around 100 s, where the trajectory did
not include any longer swing-up (energy pumping) phase. Our
framework takes on average less than 30s for a comparable
experiment using around 50 nodes.

TABLE III
COMPUTATION TIME
Experiment mean [s] | std-dev. [s] min/max [s]
Throwing 1 24.83 6.90 16.99/36.17
Throwing 2 9.86 1.16 7.82/10.96
Triangle flight 50.24 47.09 16.19/140.43

Note that the throwing experiment 2 had a shorter distance
to the target and therefore needed less complicated swinging
maneuvers whereas the longer waypoint trajectory used more
time nodes and therefore was tendentiously slower, with some
outliers (~ 140s) due to the randomized initial state.

V. DISCUSSION
A. Advantages

Our approach is a general 3D-trajectory optimization al-
gorithm capable of generating feasible trajectories that are
not bounded to polynomials and obey all defined limits (con-
straints), while optimally achieving the stated goal in terms of
the defined cost. The algorithm handles the payload throwing,
waypoint navigation and obstacle avoidance task without the
need for excessive cost tuning or setup of intermediate states,
while maintaining the ability to adjust the costs depending
on the desired trajectory properties. Our problem formulation
benefits both the user and the solver, since it keeps the task
description intuitive and the number of parameters low, while
complexity scales only linearly with node number. Moreover,
the inclusion of the full state vector allows a simple constraint
formulation for goals and physical limitations of the platform
(e.g. inputs, joint limits).

B. Optimality of Slung-only Trajectories

For all problems shown in this paper, the optimizater found
solutions where the payload was always at the cable limit
(slung), which can be intuitively described as being the optimal
solution for quadratic costs. This behavior is a consequence
of the fact that during a slack-phase the payload accelerates
downwards due to gravity and this acceleration must then
be compensated at the moment when the payload becomes
slung again. As a consequence of quadratic cost function
(especially input cost R), compensation of the downward
velocity component in finite time would always be worse than
an solution where the cable is always taut. In both cases, the
mean collective thrust required by the trajectory is the same,
although the deviation and, therefore, the cost are higher in
the case the cable becomes slack.

C. Limitations

While we describe the payload dynamics in an efficient way,
we neglect the state of the cable connecting the quadrotor
and the payload, which might be advantageous for dynamic
situations with excessive slack flight phases. Furthermore, the
obstacle avoidance constraint that we present is non-convex
and, thus, there are no guarantees that a feasible trajectory
can be found if one exists — the optimization process could
theoretically get stuck in a local minima. However, this never
happened in our experiments. Nevertheless, a more general
solution with guarantees to both of these problems is out of the
scope of this paper and is currently being tackled in ongoing
work.

VI. CONCLUSION

In this paper, we proposed a method for parameterizing
quadrotors with a slung payload using a complementarity con-
straint and show how this formulation, together with additional
constraints from the robot, environment, or task, can be imple-
mented in a non-linear optimization problem. Our contribution
was twofold: (i) a novel dynamic model for a system composed
of a quadrotor and a cable-suspended payload that does not
require hybrid modes; (ii) a fast optimization implementation
to compute energy-efficient, feasible, and safe trajectories for
a variety of tasks. Our framework: (i) outperformed the state
of the art in terms of speed, with significantly smaller com-
putation times; (ii) provided a simple way of parameterizing
different tasks; (iii) guaranteed the feasibility of the trajectory
with respect to both the system dynamics and control input
bounds. Our trajectory optimization algorithm typically needed
less than 30s on a simple laptop and could be used for fast
planning of complex tasks. We experimentally validated our
approach on a real quadrotor, showing that our method could
easily generalize to a variety of tasks, such as flying through
desired waypoints while avoiding obstacles, and throwing the
payload toward a desired target. To the best of our knowledge,
this was the first time that three-dimensional, agile maneuvers
exploiting the full system dynamics have been achieved on
quadrotors with a cable-suspended payload.
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