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Abstract— Modern perception systems are notoriously com-
plex, featuring dozens of interacting parameters that must
be tuned to achieve good performance. Conventional tuning
approaches require expensive ground truth, while heuristic
methods are difficult to generalize. In this work, we pro-
pose an introspective ground-truth-free approach to evaluating
the performance of a generic perception system. By using
the posterior distribution estimate generated by a Bayesian
estimator, we show that the expected performance can be
estimated efficiently and without ground truth. Our simulated
and physical experiments in a demonstrative indoor ground
robot state estimation application show that our approach can
order parameters similarly to using a ground-truth system,
and is able to accurately identify top-performing parameters
in varying contexts. In contrast, baseline approaches that
reason only about observation log-likelihood fail in the face
of challenging perceptual phenomena.

I. INTRODUCTION

As robots are deployed into an ever-wider variety of
tasks, environments, and situations, so will the generality
and robustness of their capabilities be tested. In this way, the
booming success of robotics is at the same time its greatest
challenge as the field struggles with the transition from lab-
grade to safety-critical.

Of the many core robot competencies, the one perhaps
most challenged by this growing requirement of generality
is perception [1]. In some ways this is natural, as percep-
tion systems typically provide task-specific interpretations
of reality. However, even for a relatively constrained and
controlled task like the Amazon Picking Challenge, subtle
changes in the environment and situation, which we refer to
as the “context”, can result in perceptual failure [2].

One source of this brittleness is the highly parametric
nature of modern perceptual components. Hardware and
software components alike boast numerous parameters that
must be specified or “tuned” to achieve good performance
in a particular context. For instance, a visual odometry algo-
rithm may require looser outlier thresholds when operating in
cluttered outdoor environments and tighter outlier thresholds
in clean indoor environments. This affords a great deal
of flexibility in adapting components, but also means that
an improperly-tuned but otherwise well-designed perception
system may perform poorly.

Ideally, perception systems would be tuned upon de-
ployment to a new context, or when the context changes.
This is realistic for some applications, for instance fac-
tory automation, where the context is unlikely to change
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and a high initial deployment cost is acceptable. In many
applications, however, this “tune on deployment” approach
is impractical. As an example, self-driving cars will likely
regularly experience contextual changes that affect their
perception performance as they drive, and adding a costly
tuning maintenance procedure that must be performed often
is unlikely to be popular with the consumer market.

The high cost of perception tuning stems primarily from its
steep supervisory requirements for evaluating performance,
e.g. human-annotated data [3]–[5] or precision instrumen-
tation [6]–[9]. These external sources of feedback which
are not available during normal operation are known as
“ground truth”. There exist heuristic approaches for certain
systems which do not rely on ground truth, for instance
visual odometry [10], [11], but these are difficult to extend.
We desire a way to evaluate perception performance that is
generalizable and does not rely on ground-truth.

In this work we present a theoretically-motivated approach
to introspectively evaluate the performance of a generic
perception system without ground truth. We refer to our
approach as “introspective” as it reasons about performance
by considering the perception belief state instead of relying
on supervision. This has the benefit of being able to take
advantage of the posterior distributions produced by many
commonly-used Bayesian inference algorithms, for instance
Kalman filters, with little to no modifications to an existing
system.

We rigorously validate our approach on a state estimation
application with simulated and hardware experiments. In our
simulations, we test various state and parameter-dependent
sensor models, and in our physical experiments we test a
laser-based and vision-based odometry system in a variety
of environments. Our results show that our proposed in-
trospective approach produces evaluations that are highly-
correlated with the ground-truth evaluations, even in the face
of challenging perceptual phenomena that cause baseline
approaches to fail.

II. PRIOR WORK

Techniques for evaluating perception systems can largely
be grouped into a few categories, which we review here.

A. Ground Truth Evaluation

Sources of ground truth vary by application, but can
largely be split into human, instrumentation, or by-design.
Manual ground truth relies on humans to produce the ex-
pected result of an algorithm, for instance, identifying human



poses in images [3], aligning planar laser scans [4], or
choosing image feature correspondences [5].

Instrumentation-based ground truth uses precise measure-
ments for supervision, and is typically used in estimation
applications. Motion capture systems can provide excellent
pose data, but are generally restricted to limited indoor
spaces [6], [7]. Automated survey equipment [8], augmented
GPS/INS systems [9] are popular for outdoor applications,
and more recently detailed urban maps [12] have been used
as well.

Perhaps the least common, but most practical source of
ground truth is that which exists automatically, typically
achieved through use of simulation or data augmentation.
In [13] the authors use a photorealistic simulation to study
a visual odometry algorithm. Others have used laser scans
collected at the same location but artificially perturbed to test
a scan-matching algorithm [14]. Our work differs even from
these approaches that do not rely on external ground truth,
as we reason over distributions of outcomes instead of point
instances.

B. Heuristic Evaluation

Heuristic approaches use contextual information or quan-
tities correlated with performance in place of ground truth.
Contextual heuristics use domain information or assump-
tions to provide supervision, and are commonly applied to
classification-type systems. The self-supervised river seg-
mentation approach detailed in [15] assumes that the river
lays below the horizon to generate training data during
operation. Another example can be found in [16] where scale
and ground-plane information are used to find hard-negative
pedestrian detection examples.

Estimation systems often use quantities that are correlated
with performance as heuristics. A common heuristic in point-
based visual odometry systems is the number of matched
features, as these algorithms generally rely on having many
correspondences. This heuristic is used in [17] and [18]
where the authors report the number of correspondences
as a substitute for localization performance. Other works
studying visual odometry performance in adverse conditions
show correlations between image quantities, e.g. brightness,
sharpness, blur, with the number of correspondences [10],
[11]. Unlike these methods, our approach is theoretical in
nature.

C. Statistical Metrics

In the filtering and modeling communities, statistical
metrics are sometimes used in addition to ground-truth
evaluations. Works on SLAM, for instance, often report
the chi-squared test as a measure of solution quality [19]
or the optimization objective itself, which is related to
the joint observation likelihood [20]. Similarly, observation
likelihood is used as an optimization objective in [21] to
select Kalman filter parameters. The authors in [22] report
the normalized estimate entropy for their unscented Kalman
filtering approach, which reflects the state tracking and obser-
vation prediction quality. Our work also utilizes a statistical

formulation, but offers a clearer motivation and connection
to perceptual performance.

D. Introspection
Recently the concept of “introspection” has been intro-

duced in the robotics community to refer to an algorithm’s
ability to assign an appropriate level of confidence in its out-
put. One work reasons about classification output uncertainty
by considering distributions of models [23]. This is similar to
the older concept of filtering optimism, a condition wherein
a filter becomes overly confident in its estimate [24].

Other introspective approaches do not seek to modify
algorithms to produce confidences, but instead to directly
predict the algorithm performance. Much of this work has
been done on vision systems, for instance predicting seg-
mentation or horizon detection failures [25], or traversability
estimation failures [26]. Other work has shown prediction
of the heuristic performance of a vision-based navigation
system [17], [18], and of a classification system [27].

Our work is similar to [23] in that it uses distributions of
hypotheses to introspect performance without ground truth.
However, our approach operates on the posterior distribution
over latents and observations directly, as opposed to over
model hypotheses. In addition, our focus is on evaluating
performance for changing parameters, not on the introspec-
tive capacity of our inference algorithm.

III. QUANTIFYING PERCEPTUAL PERFORMANCE

We begin by formalizing the notion of performance for
a perception system that estimates an unknown quantity,
the latent x ∈ X , from available data, the observations
ξ = {zi ∈ Z}. Depending on the application, the latent
x may take on different forms. For instance, in state esti-
mation it will typically be a sequence of states, whereas in
classification it may be a labeling of a set of inputs.

Now let fθ(ξ, x̂0) = x̂ ∈ X represent the latent estimate x̂
generated from observations ξ and prior x̂0 with perception
parameters θ ∈ Θ. In this work we assume that the prior x̂0 is
fixed and write the estimator function as fθ(ξ) for notational
simplicity. We quantify performance of an estimate compared
to ground truth by defining a loss `(·, ·) : X × X → <.
The loss is typically application-dependent. For instance,
square loss is common in estimation, while hinge loss is
more common in classification. Similar to most statistical
learning work, we define the performance of the system as
the expected loss for all possible latents and observations:

L = Ex,ξ [`(x, fθ(ξ))] (1)

It is often prohibitively difficult to model the generative
distribution p(x, ξ) required to evaluate the expected loss in
Eq. 1. As such, we rely on the empirical loss, its Monte
Carlo approximation:

L̂ =
1

N

N∑
i=1

` (xi, fθ(ξi)) (2)

where ground truth xi and observations ξi correspond to
independent executions of the system.



A. Evaluating Performance with the Posterior Distribution

To show how we can remove the requirement for ground
truth in Eq. 2, we first return to the expected loss in Eq. 1.
We can decompose the generative distribution into a product
of conditionals, and accordingly, the expectation into nested
expectations:

p(x, ξ) = p(ξ)p(x|ξ) (3)
Ex,ξ [`(x, fθ(ξ))] = EξEx|ξ [`(x, fθ(ξ))] (4)

The first conditional in Eq. 3 is the true posterior estimate
distribution p(x|ξ). Bayesian inference techniques such as
the ubiquitous Kalman filter provide an estimate of this dis-
tribution, which we will denote as p̂(x|ξ). It may be possible
to adapt non-Bayesian techniques, for instance SVMs for
classification, by introducing introspection as in [23].

Assuming that an estimate of the posterior is available, we
propose to use it to compute the inner expectation of Eq. 4
without requiring ground truth. The outer expectation can
then be evaluated empirically:

L̃ =
1

N

N∑
i=1

Êx|ξ [`(x, fθ(ξi))] (5)

=
1

N

N∑
i=1

∫
p̂(x|ξi)`(x, fθ(ξi))dx (6)

where Ê denotes an expectation taken with an approximate
distribution. We refer to this quantity as the approximate
posterior error, or APE. It can be interpreted simply as
penalizing uncertainty in the latent with regards to the loss
function. As such, the APE relies on having an accurate
posterior distribution estimate.

B. Application to Kalman filter SSE loss

For certain choices of posterior distribution type and loss
function the inner expectation of the APE can be computed
in closed form. One common choice of loss function is the
sum of squares, or sum square error loss (SSE), defined as:

`SSE(x, x̂) = (x	 x̂)T (x	 x̂) (7)

where 	 computes a vector difference between elements
of X . Substituting Eq. 7 into the expectation in Eq. 5, we
obtain:

Ex|ξ [`SSE(x, fθ(ξ))] = Ex|ξ
[
(x	 x̂)T (x	 x̂)

]
(8)

= Ex|ξ
[
tr
(
(x	 x̂)(x	 x̂)T

)]
(9)

= tr
(
Ex|ξ

[
(x	 x̂)(x	 x̂)T

])
(10)

which is simply the trace of the x̂-centered second moment of
the posterior distribution. This quantity is easily computable
when using many common estimation algorithms, such as
Kalman or particle filters. For the common choice of choos-
ing the posterior mean as the estimate, or x̂ = Ex|ξ [x],
Eq. 10 becomes the trace of the mean-centered second
moment, the covariance.

C. Adaptive Kalman Filtering

It should be mentioned that in a standard Kalman filter
the estimate covariance does not involve the observation
themselves, evolving purely as a function of the system
model, i.e., the transition and observation models. One way,
then, to introspect is to re-identify appropriate system model
parameters whenever the system behavior changes, e.g., with
an EM procedure [28], whenever the context or perception
parameters change. However, such an approach would likely
be data-intensive and complex.

If we assume that only the transition and observation co-
variances change as a function of the context and perception
parameters, we can instead opt to use the much simpler
adaptive Kalman filter (AKF) to estimate the system param-
eters online. Let x(−)t and x

(+)
t denote the estimate mean

before and after performing an update, respectively, with a
similar notation for the estimate covariance P (−)

t and P (+)
t .

Further define the transition function Jacobian as Ft and the
observation function Jacobian as Ht, with the observation at
time t written as yt. Using the approach detailed in [29],
the online estimates of the transition covariance Qt and
observation covariance Rt are:

Qt+1 =
1

WQ

t∑
τ=t−WQ+1

∆xτ∆xTτ (11)

Rt+1 =
1

WR

t∑
τ=t−WR+1

ντν
T
τ +HtP

+
t H

T
t (12)

where WQ and WR are sliding window lengths, ∆xt =

x
(+)
t − x(−)t ) is the state correction, and νt = yt − ŷ(+)

t is
the post-update measurement prediction error, often referred
to as the residual. Intuitively, Eqs. 11 and 12 adjust the
covariances to match the observation prediction errors during
execution: When the state evolves predictably, the state
corrections will be small, resulting in a small Q. Similarly,
when the observations are well-predicted, the residuals will
be small, resulting in a small R.

We note that the AKF estimates rely on an assumption
of uncorrelated transition and observation noise to be mean-
ingful. When the noise is systematic or heavily correlated in
time, e.g., calibration errors or software bugs, the estimated
covariances may not be accurate, resulting in poor introspec-
tion.

IV. EXPERIMENTAL VALIDATION

We validate our proposed approach with simulated and
hardware experiments in evaluating the performance of an
indoor ground robot body velocity estimation system. The
AKF is well-suited for introspecting performance in this
setting, as the perception parameters and context primarily
affect the observation noise magnitude.

Our overall procedure consists of executing a large number
of open loop trajectories on the robot with different percep-
tion parameters and contexts. We then compare ground-truth
evaluations against our proposed evaluation approach and



Fig. 1: An illustration of the system execution procedure. 1.)
The robot drives an open-loop trajectory consisting of 0.5
meters straight forward, followed by a 180◦ turn. 2.) The
robot resets its pose using a side-facing camera to observe
a fiducial. 3.) The robot can then execute its next open-loop
trajectory.

other baseline approaches. To maintain a constant level of
complexity, we only consider six numerical parameters for
each system and normalize them to a domain of [−1, 1].

Both the simulated and physical experimental systems
track the robot body velocity with an AKF as described in
Sec. III-C. The AKF covariance estimation buffer lengths
WQ and WR were heuristically tuned to provide good
filtering performance.

A. Simulated Robot System

Our simulated system consists of simple point mass
second-order dynamics and Gaussian acceleration noise and
simulated body velocity observations corrupted by zero-
mean Gaussian noise. We use heuristically-motivated sensor
models that combine the perception parameters, represented
as real-valued vector θ, and the robot speed v with a single
“hardness factor” κ:

κ = ‖v‖2 · ‖θ‖22 (13)

This hardness relation reflects that, in our experience,
deviating from the optimal parameters θ∗ for a particular
environment increases the effects of higher speeds on per-
formance, and vice-versa. In our experiments we arbitrarily
set θ∗ = 0 and test three sensor models:

1) DN: Dependent Noise: This model captures percep-
tion difficulty as sensor noise covariance R that increases
exponentially with hardness:

R = R0 + R̃ [1− exp(kR · κ)] (14)

where kR > 0 so that R achieves its minimum value R0

at κ = 0 and increases with increasing hardness. The sensor
rate f is fixed at 200 Hz, and we use constants R0 = 1E−6I ,
R̃ = 0.25I , kR = 0.25.

2) DNR: Dependent Noise and Rate: This model builds
upon the DN model by additionally having the sensor rate
exponentially decrease with hardness:

f = f0 + f̃ exp(kf · κ) (15)

where kf < 0 so that f achieves its maximum value f0 + f̃
at κ = 0 and decreases with increasing hardness to a
minimum of f0. We use the same constants as the Dn model
with additionally f0 = 20, f̃ = 180, and kf = −1.0,
corresponding to a maximum rate of 200Hz.

3) DNR+C: Dependent Noise and Rate with Cutout: This
model modifies the DNR model by modeling a phenomena
where the sensor will fail or “cut out” above a certain
hardness κmax and not produce any observations:

f =

{
0, κ > κmax
f0 + f̃ exp(kf · κ), o/w

(16)

We use the same constants as the DNR model with addition-
ally κmax = 1.5.

B. Physical Robot System

The physical robot, shown in Fig. 1, is an indoor ground
robot with an omnidirectional “mecanum” wheel drivetrain,
a visual odometry system using a downward-facing camera,
and a laser odometry system using two planar lidars. Both
odometry systems output body velocity observations and are
intended to run in parallel, but we use one at a time in
our experiments, giving us two test systems. All perception
software ran on an embedded Intel NUC box with an Intel
Core i5-4250U and 16GB of RAM. A Vicon motion capture
system provided ground truth poses for the physical robot at
200 Hz, which we downsampled to 10 Hz and numerically
differentiated to compute ground truth body velocities.

The visual odometry (VO) system uses a single downward-
facing IDS UI-3140CP USB 3.0 camera capturing 400×400
resolution frames at 200 frames per second. We employ high-
intensity lighting under the robot with low camera exposure
times to minimize the effect of motion blur. We perform
Lucas-Kanade tracking on a regularly-spaced set of points in
the images to find correspondences. We then estimate the 2D
rigid displacement of the camera assuming all points are on
a plane parallel to the camera and differentiate it to estimate
the body velocity. Our software uses the OpenCV library’s
implementation of Lucas-Kanade with pyramids and rigid
transformation estimation1. The six VO parameters we tune
in our experiments are described in Tab. I.

The laser odometry (LO) system uses two Hokuyo URG-
04LX-UG01 planar lidars. Each lidar scans 240◦ at 10 Hz
with a maximum range of 5.6m. Sequential scans coming
from a lidar are first preprocessed by a voxel filter and then
registered to one another, with the resulting transformation
differentiated to produce a body velocity estimate. We use
the Point Cloud Library (PCL) implementation of Iterative
Closest Point (ICP)2, which features a large number of

1http://opencv.org/
2http://pointclouds.org/



TABLE I: Physical system parameters and ranges considered
for tuning.

Parameter Type Values
Laser Odometry Parameters
Voxel filter width float ∈ [0.01, 0.2]
ICP max iterations int ∈ [5, 100]
ICP max corresp. distance int ∈ [0, 1]
ICP max solution error int ∈ [0.01, 1.0]
RANSAC iterations float ∈ [5, 100]
RANSAC inlier threshold float ∈ [0.0, 1.0]
Visual Odometry Parameters
Point grid dimension int ∈ [5, 30]
LK min solver improvement float ∈ [10−6, 1.0]
LK search window int ∈ [10, 40]
LK pyramid level int ∈ [0, 5]
LK max solution error threshold float ∈ [0, 7.5]
RANSAC max error float ∈ [0.0, 0.05]

numerical parameters. The six LO parameters we tune in
our experiments are described in Table I.

We performed experiments in two environments for each
of the two physical odometry systems, for a total of four
different physical contexts as shown in Fig. 2:

1) clear: LO in a cleared indoor area
2) clutter: LO in an area cluttered with traffic cones
3) carpet: VO on low-pile speckled carpeting
4) concrete: VO on medium-gloss painted concrete floor

C. Evaluation Approaches Tested

We tested our proposed approach against a standard ap-
proach that uses ground truth, and two baseline approaches
that do not use ground truth:

1) SSE: Sum of Squares Error: The conventional baseline
that uses ground truth to compute Eq. 7 for the body velocity
error. We numerically integrate the SSE computed at each
estimator update to compute the time-averaged SSE over a
trajectory. Low SSE corresponds to better performance.

2) APE: Approximate Posterior Error: Our proposed
approach, computed as described in Eq. 10 as the trace
of the state estimate covariance. Like the SSE, the APE is
computed over a trajectory with numerical integration. Low
APE corresponds to better performance.

3) SOL: Sum Observation Log-likelihood: A baseline that
computes the sum of log-likelihoods for all observations
received in the trajectory, and thus does not use ground truth.
This is equivalent to computing the joint probability of all
received observations assuming they are independent. High
SOL corresponds to better performance.

4) AOL: Average Observation Log-likelihood: The sec-
ond ground-truth free approach that normalizes the SOL by
the number of observations received. High AOL corresponds
to better performance.

Though SOL and AOL may appear to be scaled versions of
each other, they are distinct since the number of observations
changes as a function of the perception parameters. Thus,
SOL captures the “quantity” of observations while AOL
captures the “quality” of observations received. In contrast,
the APE captures the estimation “certainty” or “risk”, which
the SSE measures directly.

(a) The clear area layout. (b) The clutter area layout.

(c) The carpet floor texture. (d) The concrete floor texture.

Fig. 2: The test environments for the physical robot experi-
ments.

D. Experimental Procedure

Our experiments consist of executing a large number of
trajectories with different perception parameters and con-
texts. We assume that the executions are independent of each
other and generated by a stationary distribution. Thus, we
can execute multiple trajectories using the same perception
parameters and context, and average their performances to
predict the expected performance as in Eqs. 2 and 5.

Each system execution is performed with the following
procedure. We note that the robot moves in an open-
loop fashion to avoid affecting the perception performance
through the closed-loop perception-control dynamics.

1) The perception parameters are set to their test values.
Trial data recording begins.

2) The robot remains stationary for one second to initialize
the AKF.

3) The robot drives forward at 0.5 m/s for 1.0 m.
4) The robot turns in place at 1.0 rad/s for a half-rotation

(π radians).
This motion tests the odometry system performance to both
translational and rotational motion and is illustrated in Fig. 1.
In the physical experiments, the robot resets its pose every
two evaluations using a side-facing camera and a fiducial in
the test area to avoid drifting over time, while in simulation
the robot is simply allowed to drift.

We collected a dataset for each of the simulated sensor
models and physical context described in Secs. IV-A and
IV-B. Each dataset was collected by first executing trials for
100 uniformly-randomly sampled parameters from the full
normalized parameter range [−1, 1]. Each trial consists of
10 system executions, and any trials with executions that
did not receive any observations are dropped from final
analysis, as we do not have a reasonable way to compute
the AOL or SOL for these trials. We then executed trials for
30 parameters uniformly randomly sampled from a range
of ±0.1 centered on the best parameters from the first 100



TABLE II: Summaries of datasets, with lowest trial SSE and
corresponding RMS, APE, AOL, and number of observa-
tions.

Dataset Trials
Run

Trials
Dropped

Best
RMS

Corr.
APE

Corr.
AOL

Corr.
Num
Obs

Laser Odometry
clear 100 0 0.127 0.177 3.00 417
clutter 30 0 0.101 0.170 3.18 391

Visual Odometry
carpet 30 3 0.086 0.029 7.20 3064
concrete 100 31 0.065 0.059 6.47 3077

Simulated
DN 30 0 0.078 0.017 2.61 4145
DNR 30 0 0.080 0.023 2.59 4137
DNR+C 30 0 0.078 0.020 2.63 4134

TABLE III: Best-performing parameters across contexts.

Laser Odometry Parameter clear clutter
Voxel filter width 0.034 0.01
ICP max iterations 238 111
ICP max corresp. distance 0.198 0.149
ICP max solution error 0.076 0.014
RANSAC iterations 93 72
RANSAC inlier threshold 0.71 0.52
Visual Odometry Parameter carpet concrete
Point grid dimension 20 13
LK min solver improvement 0.283 0.312
LK search window 21 37
LK pyramid level 4 3
LK max solution error threshold 5.87 4.33
RANSAC inlier threshold 1.28× 10−3 4.67× 10−4

trials. This adds many more near-optimal parameters to the
datasets, which are of interest for parameter tuning.

Overall we collected 4 physical datasets for a total of
520 trials and 5200 executions, as well as 3 simulated
datasets for another 390 trials and 3900 executions. Statistics
summarizing the datasets are presented in Table II. The best
parameters for each physical context are shown in Table III.

E. Analysis Performed

We assert that an accurate performance evaluation will
order trials similarly to the expected loss in Eq. 1. Since
the true expected loss is not known, we approximate it with
the empirical loss over the trial’s executions, which in our
case is the mean SSE. This provides us with a ground-truth
ordering of the trials against which we can compare other
evaluation approaches.

We perform two types of analysis for each simulated
sensor model, each physical system across both contexts,
and all physical experiments. This allows us to analyze
performance not just over different parameters and contexts,
but across physical systems as well.

1) Comparing Rankings with Kendall-τ : Our first analysis
uses the Kendall-τ coefficient to quantify the similarity
between the ground truth ordering and an ordering generated
by another evaluation approach. The Kendall-τ coefficient
can be interpreted as the number of bubble-sort insertions
required to transform one ordering into the other. As such,

making multiple small ordering mistakes produces higher τ
values than a single severe ordering mistake.

In these results, we use the τ -b variant implementation in
SciPy3 which normalizes to the number of data and accounts
for ties. Since this test is not often used in the robotics
literature, we review it briefly here:

Consider a set of joint observations {(xi, yi)}. In our
setting, xi is the trial mean SSE and yi is a performance
evaluation. A pair of observations (xi, yi) and (xj , yj) with
i 6= j is concordant if the ordering of observations match,
i.e., xi > xj and yi > yj , and discordant if the ordering of
observations is reversed, i.e., xi > xj and yi < yj . The τ -b
coefficient is computed as:

τ =
nC − nD√

(nC + nD + Tx)(nC + nD + Ty)
(17)

where nC is the number of concordant pairs, nD is the
number of condordant pairs, Tx is the number of ties in
the xi observations, and Ty is the number of ties in the yi
observations. A τ = −1 corresponds to exactly opposite
rankings and a τ = 1 corresponds to exactly identical
rankings. Thus, in our analysis, approaches that produce τ
values near 1 can be understood as accurately replicating the
ground-truth ordering across all trials.

The Kendall-τ coefficient allows us to measure the ac-
curacy of a single ordering. Accordingly, we can measure
the effect of stochasticity in the executions and the number
of executions N per trial on ordering stability. Ideally we
would collect a large number of independent datasets, but
this is rather impractical, so we instead bootstrap to generate
synthetic datasets by sampling executions from each trial.
We present results using 100 synthetic datasets with N = 1
through N = 9, shown in 3.

2) Comparing Performance with Dataset Partitions: In
parameter tuning, our objective is not to accurately order
parameters, but instead to identify parameters that perform
well. Our second test captures this desire by looking at the
ground-truth performance of what each approach considers to
be the top performing parameters. Specifically, we compute
the mean SSE over the top 1−r ∈ [0, 1] portion of trials in a
dataset, sorted according to a particular evaluation approach.
For instance, the APE r = 0.9 partition is the average SSE
of the top 10% of trials, sorted according to the mean APE.
The r-partition results for all approaches are shown in Fig. 4.
An approach whose top performers all have low SSE can be
considered useful for parameter tuning.

V. DISCUSSION

A. Simulated Results

We observe in Figs. 4a and 3a that both APE and the
baselines perform well on the simplest DN sensor model,
with only slight differences in the τ performance. However,
the baseline performances suffer as the model complexity
increases.

3https://www.scipy.org/
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Fig. 3: Mean τ coefficient for each approach over 100 boot-
strapped dataset subsamplings. Shading denotes ±3 standard
deviations. A τ closer to 1 denotes similarity in ordering to
using the mean SSE.
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(a) Mean SSE for partitionings of simulated datasets.
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(b) Mean SSE for partitionings of physical datasets.

Fig. 4: Mean SSE for top-performing r portion of trials,
according to each approach. Lower SSE for larger r indicate
that an approach is able to identify high-performing param-
eters.



SOL overall ranking accuracy degrades from varying
sensor rate in DNR, and since AOL performs similary on DN
and DNR, the drop in SOL’s τ is likely due to the number of
observations changing across trials. Further, as SOL exhibits
good partition performance for DNR, we conclude that SOL’s
reduced τ is due to a large number of minor ordering
errors. This suggests that the effect of variable sensor rate
alone on SOL is not catastrophic. APE reasons about the
latent directly, and is thus unaffected by changing number
of observations, while AOL explicitly normalizes out this
effect.

Incorporating sensor cutout results in degraded partition
and τ performance for both baseline approaches. This is
because cutout removes the highest-noise observations from
trials with highly suboptimal parameters, which would have
otherwise contributed to decreasing the SOL and AOL. How-
ever, trials with near-optimal parameters are less affected, as
reflected in the good partition performance for the baselines
at r > 0.7. In contrast, APE captures the effect of cutout
on the latent estimate quality as the AKF covariance grows
rapidly in the absence of observations, resulting in good
performance across all trials.

Finally we observe that all approaches perform well for
large r, accurately identifying the top-performing parameters.
This is significantly different from the physical results seen
in Fig. 4b, suggesting that our heuristic “hardness”-based
models do not capture all of the real-world phenomena that
make fine-tuning difficult. Nevertheless, these simulations
are useful in highlighting how varying sensor rates and cutout
cause the baselines to fail.

B. Physical Results

APE significantly outperforms the baselines in overall
ranking for all physical datasets, as seen in Fig. 3b. APE
also performs quite well on the partition test for the LO and
VO datasets, closely matching the SSE curve after roughly
r > 0.5. These results show that APE is able to both order
parameters overall and accurately identify top-performing
parameters across varying contexts.

SOL also achieves good partition performance on LO for
r ≈ 1, and slightly outperforms APE on the combined LO
and VO dataset. This may be due to the heuristic nature of
how the AKF was tuned compounding the approximately
5× difference in sensor rates, resulting in subpar orderings
across systems. However, SOL performs poorly for r ≈ 1 on
VO, possibly due to the camera’s high sensing rate resulting
in significant variance in the number of observations among
the top-performing parameters. In addition, SOL performs
poorly at ordering suboptimal parameters, as seen in its low
τ and poor performance for r < 0.8. We speculate that
this may make APE a better choice for use in an online
search algorithm, such as Bayesian Optimization, which can
use information from suboptimal parameters to guide future
search.

In contrast, AOL performs very poorly on all tests for
the physical datasets, with τ values near 0.2 and extremely
high mean SSE in its top-performing parameters. One likely

explanation is extreme cutout occurring from selecting high
error threshold parameters: When the robot is stationary,
the odometry system outputs very refined, high-likelihood
observations, but as the robot begins moving, the odometry
systems stop outputting observations due to the high error
thresholds. This results in a very high AOL that is difficult
to exceed. As such, though AOL performs slightly better
than SOL in simulation, it is unsuited to parameter tuning on
physical systems where parameters can dramatically change
system behavior.

C. Effect of Number of Executions

Figs. 3a and 3b suggest that running more executions per
trial improves overall ranking and reduces variance, but does
not have a significant effect on the overall performance of
each approach past N = 4. This is likely due to the highly
repetitive nature of our executions. If the executions were
carried over disparate parts of a building, at different speeds,
or extracted from longer executions, for example, we would
expect to see a much stronger effect from N .

VI. CONCLUSION

We have presented a theoretically-grounded and general-
izable approach for evaluating a perception system’s per-
formance without relying on ground truth. Our extensive
physical and simulated experiments with indoor ground robot
velocity estimation highlight the efficacy of our introspective
APE approach in ordering parameters closely to their ground
truth performance. This suggests that our approach can be
practically used to select perception parameters when ground
truth is unavailable. In contrast, baseline methods that reason
only about observation likelihood perform poorly in our
tests due to perception parameters and context affecting the
quantity and distribution of data received.

Removing the need for ground truth for perception eval-
uation enables a number of capabilities. We can consider
perception systems that self-tune upon deployment or during
operation, allowing them to generalize across multiple con-
texts and removing the need for expert human supervision.
In addition, perception performance information can inform
other robot capabilities, such as path planning, allowing
robots to avoid situations where their sensors are likely to
fail.

To achieve these goals, however, a number of shortcom-
ings must be addressed. First, though we have shown that the
AKF’s introspective power is sufficient for a simple velocity
estimation task, more work must be done to understand how
this approach generalizes to different systems and settings.
We have also observed instances where introspection fails
due to systematic errors violating AKF assumptions. We
must be able to detect these conditions and compensate for
them, or develop a more powerful introspection approach
that can work under a wider range of conditions. Finally,
automatic approaches for tuning the AKF parameters should
be developed to replace the current heuristic step, removing
the final reliance on a human expert.
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