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Abstract—Based on the convex force-motion polynomial model
for quasi-static sliding, we derive the kinematic contact model
to determine the contact modes and instantaneous object motion
on a supporting surface given a position controlled manipulator.
The inherently stochastic object-to-surface friction distribution
is modelled by sampling physically consistent parameters from
appropriate distributions, with only one parameter to control
the amount of noise. Thanks to the high fidelity and smoothness
of convex polynomial models, the mechanics of patch contact
is captured while being computationally efficient without mode
selection at support points. The motion equations for both single
and multiple frictional contacts are given. Simulation based
on the model is validated with robotic pushing and grasping
experiments.

I. INTRODUCTION

Uncertainty from robot perception and motion inaccuracy
is ubiquitous. Planning and control without explicit reasoning
about uncertainty can lead to undesirable results. For example,
grasp planning [17, 5] is often prone to uncertainy: the object
moves while the fingers close and ends up in a final relative
pose that differs from planned. Consider the process of closing
a parallel jaw gripper shown in Fig. [T] the object will slide
when the first finger engages contact and pushes the object
before the other one touches the object. If the object does not
end up slipping out, it can be jammed at an undesired position
or grasped at an unexpected position. A high fidelity and
easily identifiable model with minimum adjustable parameters
capturing all these possible outcomes would enable synthesis
of robust manipulation strategy.

Although we can reduce uncertainty by carefully control-
ling the robot’s environment, as in most factory automation
scenarios, such approach is both expensive and inflexible.
Effective robotic manipulation requires an understanding of
the underlying physical processes. Mason [15] explored using
pushing as a sensorless mechanical funnel to reduce un-
certainty. Whitney [23] analyzed the mechanics of wedging
and jamming during peg-in-hole insertion and designed the
Remote Center Compliance device that significantly increases
the success of the operation under motion uncertainty. With a
well defined generalized damper model, Lozano-Perez et al.
[9] and Erdmann [4] developed strategies to chain a sequence
of operations, each with a certain funnel, to guarantee oper-
ation success despite uncertainty. These successes stem from
robustness analysis using simple physics models.

!Our open-source simulation software and data are available at: https:/github.
com/robinzhoucmu/Pushing;
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(c) Grasped with offset. (d) Slipped to free space.

Fig. 1: Simulation results using the proposed contact model
illustrating the process of a parallel jaw gripper squeezing
along the y axis when the object is placed at different initial
poses. The initial, final and intermediate gripper configurations
and object poses are in black, red and grey respectively. Blue
plus signs trace out the center of mass trajectory of the object.

A large class of manipulation problems involve finite planar
sliding motion. In this paper, we propose a quasi-static kine-
matic contact model for such a class. We model the inherent
stochasticity in frictional sliding by sampling the physics
parameters from proper distributions. We validate the model
by comparing simulation with large scale experimental data
on robotic pushing and grasping tasks. The model serves as
good basis for both open loop planning and feedback control.

The proposed contact model is a direct extension of [27],
which presents a dual mapping between an applied wrench
and a resultant object twist. In this paper, we map a given
position controlled input (which is common in most standard
industrial manipulators) to the resultant twist including the no-
motion case for jamming and grasping. The applied wrench
is solved as an intermediate output without needing to control
it. The rest of the paper is organized as follows:

« Section [II| describes the previous work.

« Section [[1l| reviews the convex polynomial representation
of the limit surface [27] and the mechanics of pushing.

« Section develops the contact model of unilateral
frictional contact for both slipping and sticking. Section
develops the model for multiple frictional contacts.
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o Section [V] develops sampling strategies of physically
consistent model parameters that captures the inherent
frictional stochasticity.

« Section |VI| demonstrates experimental evaluation of both
pushing and grasping simulation using the proposed con-
tact model.

We assume quasi-static rigid body planar mechanics [14]
where inertia forces and out-of-plane moments are negligible.

II. RELATED WORK

The mechanics of pushing and grasping involving finite
object motion with frictional support was first studied in [15].
A notable result is the voting theorem which dictates the sense
of rotation given a push action and the center of pressure
regardless of the uncertain pressure distribution. Brost [1]
used this result to construct the operational space for planning
squeezing and push-grasping actions under uncertainty. How-
ever, many unrealistic assumptions are made in order to reduce
the state space and create finite discrete transitions, including
infinitely long fingers approaching the object from infinitely
far away. Additionally, how far to push the object in the push-
grasp action is not addressed. Peshkin and Sanderson [19]]
provided an analysis on the slowest speed of rotation given a
single point push. They [20] used this result to design fences
for parts feeding. Lynch and Mason [11] derived conditions for
stable edge pushing such that the object will remain attached
to the pusher without slipping or breaking contact. All of these
results do not assume knowledge of the pressure distribution
except the location of center of pressure. They can be classified
as worse case guarantees without looking into the details of
sliding motion. Despite being agnostic to pressure distribution,
these methods tend to be overly conservative.

Another line of research is to identify the necessary phys-
ical parameters. Common approaches [10} 25] discretize the
contact patch into grids and optimize for approximate criteria
of force balancing. These methods naturally suffer from the
downside of coarse discrete approximation of distributions
or curse of dimensionality if fine discretization is adopted.
Additionally, the instantaneous center of rotation of the object
can coincide with one of the support points, rendering the
kinematic solution computationally hard due to combinatorial
sliding/sticking mode assignment for each support point.

Goyal et al. [7] noted that all the possible static and sliding
frictional wrenches, regardless of the pressure distribution,
form a convex set whose boundary is called as limit surface.
The limit surface can be constructed from Minkowsky sum of
frictional limit curves at individual support points without a
convenient explicit form. Howe and Cutkosky [8] presented an
experimental method to identify an ellipsoidal approximation
given known pressure. Dogar and Srinivasa [3] used the
ellipsoidal approximation and integrated with motion planners
to plan push-grasp actions for dexterous hands. Closely related
to our work, Lynch et al. [[12] derived the kinematics of single
point pushing with centered and axis aligned ellipsoid approxi-
mation. Zhou et al. [27]] proposed a framework of representing

planar sliding force-motion models using homogeneous even-
degree sos-convex polynomials, which can be identified by
solving a semi-definite programming. The set of applied
friction wrenches is the 1-sublevel set of a convex polynomial
whose gradient directions correspond to incurred sliding body
twist. In this paper, we extend the convex polynomial model to
associate a commanded rigid position-controlled end effector
motion to the instantaneous resultant object motion. We show
that single contact with convex quadratic limit surface model
has a unique analytical linear solution which extends [12]. The
case for a high order convex polynomial model is reduced to
solving a sequence of such subproblems. For multiple contacts
(e.g., pushing with multiple points or grasping) we need to add
linear complementarity constraints [22] at the pusher points,
and the entire problem is a standard linear complementarity
problem (LCP).

III. NOTATIONS AND BACKGROUND

We first introduce the following notations:

o O: the object center of mass used as the origin of the
body frame. We assume vector quantities are with respect
to body frame unless specially noted.

e R: the region between the object and the supporting
surface.

o f(r): the friction force distribution function that maps
a point r in the contact area R to its friction force the
object applies on the supporting surface. For isotropic
point Coulomb friction law, when the velocity at r is
nonzero, fs(r) is in the same direction of the velocity.
Its magnitude equals the pressure force multiplied by
the coefficient of friction between the object and the
supporting surface. When the object is static, fs(r) is
indeterminate and dependent on the externally applied
force by the manipulator.

o V=[V:;Vy;]: the body twist (generalized velocity).

o F=[F;F,;7]: the applied body wrench by the manipula-
tor that quasi-statically balances the friction wrench from
the surface.

e p;: each contact point between the manipulator end ef-
fector and object in the body frame.

« V,,: applied velocities by the manipulator end effector at
each contact point in the body frame.

e ny,;: the inward normal at contact point p; on the object.

e U.: coefficient of friction between the object and the
manipulator end effector.

A. Force-Motion Model

In this section we review the basics of force-motion models
for planar sliding and the mechanics of pushing. We refer
the readers to [6) [15) 27] for more details. Given a body
twist V, the components of the friction wrench F are given
by integrations over R:

FaBl= [tmdr o= [rxt@dn @

We can compute F for each V and form the set of all possible
friction wrenches. Goyal et al. [6] defined the set boundary as



limit surface. It is shown that the friction wrench set is convex
and points on the limit surface correspond to friction wrenches
when the object slides. Additionally, the normal for a point
(wrench) on the limit surface is parallel to the corresponding
twist. Zhou et al showed that level sets of homogeneous
even degree convex polynomials can approximate the limit
surface geometry sufficiently well. Denote by H (F) the convex
polynomial function, the twist V for a given friction wrench
F is parallel to the gradient VH (F):

V=kVH(F)  k>0. )

Additionally the inverse mapping can be efficiently computed.
Given the twist V, optimizing a least-squares objective with
the Gauss-Newton algorithm gives the unique solution that
corresponds to the wrench F.

With a position-controlled manipulator, we are given contact
points p with inward normals n,, pushing velocities v, and
coefficient of friction u. between the pusher and the object.
The task is to resolve the incurred body twist V and con-
sistent contact modes (sticking, slipping, breaking contact) to
maintain wrench balance.

IV. CONTACT MODELLING
A. Single point pusher
Let the COM be the point of origin of the local body
frame a level set representation of limit surface H(F). We
introduce the concept of motion cone first proposed in [13].

LetJ, = (1) (1) _ppj . and denote by F; = JT'f; and F, = JIf,

the left and right é ges of the applied wrench cone with
corresponding resultant twist directions V; = VH(F;) and
V, = VH(F,) respectively. The left edge of the motion cone is
v; =J,V; and the right edge of the motion cone is v, =J,V,.
If the contact point pushing velocity vj is inside the motion
cone, i.e., v, € K(v;,v,), the contact sticks. When v, is outside
the motion cone, sliding occurs. If v, is to the left of v;, then
the pusher slides left with respect to the object. Otherwise if
v, is to the right of v,, then the pusher slides right as shown
in Fig. [2a

The following constraints hold assuming sticking contact:

Vpx Vi —wpy 3)
vy = Vyt+opy “4)
V = k-VH(F), k>0 ®))
T = _Pny + pxFy 6)

In the case of ellipsoidal (convex quadratic) representation,
i.e., H(F) = FTAF where A is a positive definite matrix, the
problem is a full rank linear system with a unique solution.
Lynch et al. [12]] gives an analytical solution when A is diag-
onal. We show that a unique analytical solution exists for any
positive definite symmetric matrix A. Let t = [—p,, py, —1)7,
D=[JIA7't)" and V, = [v],0]", equations 36| can then be
combined as one linear equation:

v=D"lv, (7
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(a) The square has a uniform pressure distribution over
100 support grid points sharing the same coefficient of
friction. The finger’s pushing velocity is to the right of
the motion cone and hence the finger will slide to the
right. The instantaneous clockwise center of rotation is
marked as a circle with a negative sign.

(b) Corresponding convex fourth order polynomial level
set representation identified [27] from two hundred
random wrench twist pairs.

Fig. 2: Mechanics of single point pushing and a fourth order
representation of the limit surface.

Theorem 1: Pushing with single sticking contact and the
convex quadratic representation of limit surface (abbreviated
as P.1) has a unique solution from a linear system.

Proof: 1t is obvious that we only need to prove D is
invertible. 1) The row vectors of J, are linearly independent
and span a plane. 2) J,t = 0 implies t is orthogonal to the
spanned plane. 3) If D is not full rank, then A~'t must lie
in the spanned plane and is therefore orthogonal to t. This
contradicts with the fact that (t,A~'t) > 0 for positive definite
matrix A~! and nonzero vector t. [ ]

Corollary 1: Pushing with single sticking contact and the
general convex polynomial limit surface representation is
reducible to solving a sequence of sub-problems P.1.

For general convex polynomial representation H(F), the
following optimization is equivalent to equation [3}{6}
|17, VH (F) = vp| ®

minimize
F

subject to t'F=0 9



When H(F) is of convex quadratic (ellipsoidal) form, the
analytical minimizer is F = A~'D~'V,,. In the case of high
order convex homogeneous polynomials, we can resort to an
iterative solution where we use the Hessian matrix as a local
ellipsoidal appr0x1mat10n i.e., set A, = V2H(Fy) and compute
Fep1=A 'D- 1V until convergence.

When v, is outside of the motion cone, assuming right
sliding occurs without loss of generality, the wrench applied
by the finger equals F,. The resultant object twist V follows
the same direction as V, with proper magnitude such that the
contact is maintained:

V=sV, (10)
T
s=—p T (11)
np° v,

B. Multi-contacts

Mode enumeration is tedious for multiple contacts. The lin-
ear complementarity formulation for frictional contacts ([22])
provides a convenient representation. Denote by m the total
number of contacts, the quasi-static force-motion equation is
given by:

V = kVH(F), (12)

where the total applied wrench is the sum of normal and
frictional wrenches over all applied contacts:

m
=Y I} (fump, +Dp,f;,). (13)
i=1
Jfn; 1s the normal force magnitude along the normal n;, and
f;, is the vector of tangential friction force magnitudes along
the column vector basis of Dp, = [t,,,—t,]. The velocity at
contact point p; on the object i 1s given by J,, V. The first order
complementarity constraints on the normal force magnitude
and the relative velocity are given by:

0= fu L (

The complementarity constraints for Coulomb friction are
given by:

n (J,V=v,))>0. (14)

0 <f; L (Dy,(JpV=vp)+ek) >0
0< /1,' 1 (uifn,- - eTfti) =0,

5)
(16)

where y; is the coefficient of friction at p; and e = [1;1]. In
the case of ellipsoid (convex quadratic) representation, i.e.,

H(F) = FTAF where A is a positive definite matrix, equations
[[2 to [I6 can be written in matrix form:
0 A=Yk —NT —LT 0] [V 0
al | N 0 0 0[] |a
gl =1 L o o Ellt|T|p @D
y | 0 u —ET 0] |2 0
[a f,
o< |B| L|fi|>0
LY A

where the binary matrix E € R*™ ™ equals ,

e
U= [t,..., [.Lm] , the stacking matrix N € R™3 equals
[n%JJm; .sn? Jp]. the stacking matrix L € R*3 equals
D, Iy DT Jy,), the stacking vector s, € R™ equals
[— n; Vpis- n;mvpm]T and vector s, € R?™ equals
T
[ Dplvpl’ °) me Pm

Note that the positive scalar k will not affect the solution
value of V since f, and f; will scale accordingly. Hence, we
can drop the scalar k and further substitute V=A(NTf, +L"f,)
into equation[I7]and reach the standard linear complementarity
form as follows:

o [NANT NALT 07 [f, Sa
B| = |LANT LALT E| |f |+ [sp|, (18)
Y | u —ET 0| |7 0
[« f,
0< |B| L |f]|>0.
LY A

Similarly, for the case of high order convex homogeneous
polynomials, we can iterate between taking the linear Hessian
approximation and solving the LCP problem in equation [I§]
until convergence.

Lemma 1: The object is quasi-statically jammed or grasped
if the LCP problem (equation yields no solution.
Fig. [3| provides a graphical proof. When equation [I§] yields no
solution, either there is no feasible kinematic motion of the
object without penetration or all the friction loads associated
with the feasible instantaneous twists cannot balance against
any element from the set of possible applied wrenches. In this
case, the object is quasi-statically jammed or grasped between
the fingers. Neither the object nor the end effector can move.

V. STOCHASTICITY

Uncertainty is inherent in frictional interaction. Two major
sources contribute to the uncertainty in planar motion: 1)
indeterminancy of the supporting friction distribution f;(r) due
to changing pressure distribution and coefficients of friction
between the object and support surface; 2) the coefficient of
friction u,. between the object and the robot end effector. We
sample y. uniformly from a given range. To model the effect
of changing support friction distribution, for a even degree-
d strictly convex polynomial (except at the point of origin)

H(F;a)=Y",a ,F”F’de 172 \with m monomial terms [27],
we sample the polynomial coefficient parameters a in from a
distribution that satisfies:

1) Samples from the distribution should result in a even
degree homogeneous convex polynomial to represent the
limit surface.

2) The mean can be set as a prior estimate and the amount
of variance controlled by one parameter.

The Wishart distribution S ~ W(S’ ,ngy) [24] with mean ng Sy
and variance Var(S;;) = ndf(.S?j +8iiS;;) is defined over sym-
metric positive semidefinite random matrices as a general-
ization of the chi-squared distribution to multi-dimensions.



Fig. 3: Using moment labeling ([[16]), the center of rotation
(COR) has positive sign (counter-clockwise) and can only
lie in the band between the two blue contact normal lines.
Further, the COR must lie on segment AB (contact point A
sticks) or segment CD (contact point C sticks) since otherwise
both contacts will slip, but the total wrench from the two left
edges of the friction cones has negative moment which cannot
cause counter-clockwise rotation. Without loss of generality,
we can assume COR (red plus) lies on segment AB, leading
to sticking contact at A and left sliding at C. Following a
similar analysis using the force dual graphical approach ([2]),
each single friction force can be mapped to its instantaneous
resultant signed COR whose convex combination forms the set
of all possible CORs under the composite friction forces. The
COR can either be of positive sign in the upper left hatched
region or negative sign in the lower right hatched region which
contradicts with the proposed AB segment. Hence jamming
occurs and neither the gripper nor the object can move. This
corresponds exactly to the no solution case of equation [I8]

For ellipsoidal (convex quadratic) H(F;A) = ATFA, we can

directly sample A from %W(Am,n) with mean A.; and

~ 2 - R
. Ao 2t Apgy iAot 1 .
variance Var(A;j) = W where A,y is some es-

timated value from data or fitted for a particular pressure
distribution. Sampling from general convex polynomials is
hard. Fortunately, we find that sampling from the sos-convex
[18} [13]] polynomials subset is not. The key is the coefficient
vector a of a sos-convex polynomial H(F;a) has a unique one-
to-one mapping to a positive definite matrix Q so that we can
first sample Q from %”W(Qm, nay) and then map back to da.
Given a sos-convex polynomial representation of H(F;a), the
Hessian matrix VZH (F;a) at F is positive definite, i.e., for any
non-zero vector z € R3, there exists a positive-definite matrix

Q such that
2' V’H(F;a)z = y(F,z)" Qy(F,z) > 0. (19)

In the case of fourth order polynomial we have y(F,z) =
[21Fy,21Fy, 21 ey 22y 20Fy, 20 F, 23 Fx, 23Fy, 23 F)T . Q and a are

. 2We have noted that adding a small constant on the diagonal elements of
Q improves numerical stability.

related through a set of linear equalities: equation (I9) can be
written as a set of K sparse linear constraints on Q and a.

Tr(CQ) =bla, ke{l...K} (20)

where C; and by are the constant sparse element indicator
matrix and vector that only depend on the polynomial degree
d. Hence we can map each sampled O back to 4. The degree
of freedom parameter nyy determines the sampling variance.
The smaller ng4y is, the noisier the system will be.

VI. EXPERIMENTAL EVALUATION
A. Evaluation of Deterministic Pushing Model

We evaluate our deterministic model on the large scale MIT
pushing dataset [26] and a smaller dataset [27] that has discrete
pressure distributions. For the MIT pushing dataset, we use
10mm/s velocity data logs for 10 objectsﬂ on 3 hard surfaces
including delrin, abs and plywood. The force torque signal
is first filtered with a low pass filter and 5 wrench-twist pairs
evenly spaced in time are extracted from each push action json
log file. 10 random train-test splits (20 percent of the logs for
training, 10 percent for validation and the rest for testing)
are conducted for each object-surface scenario. On average,
around 600 wrench-twist pairs are used for identification.

Given two poses ¢ = [x1,y1,61] and g2 = [x2,¥2,6],
we define the deviation metric d(q;,q>) which combines
both the displacement and angular offset as d(qi,q2) =
V(1 —=x2)2+ (1 —y2)? + p - min(|6; — 6,27 — |61 — 65)),
where p is the characteristic length of the object (e.g., radius
of gyration or radius of minimum circumscribed circle). A one
dimensional coarse grid search over the coefficient of friction
Uc between the pusher and object is chosen to minimize aver-
age deviation of the predicted final pose and ground truth final
pose on training data. Table [[] shows the average metric with
a 95% percent confidence interval. Interestingly, we find that
using more training data does not improve the performance
much. This is likely due to the inherent stochasticity (variance)
and changing surface conditions as reported in [26].

The objects in the MIT pushing dataset are closer to uniform
pressure. We also evaluate on a smaller dataset [27] that has
discrete pressure distributions, and in particular three points
support whose pressure can be derived exactly as ground truth.
We use 400 wrench twists sampled from the ideal limit surface
for training. The coefficient of friction between the object
and pusher is determined by a grid search over 40 percent
of the logs to determine. We use the remaining 60 percent to
evaluate simulation accuracy. Note that in both evaluations,
the accuracy of deterministic models are upper bounded by
the system variance.

B. Pushing with stochasticity

The experiment in [26] demonstrates that the same 2000
pushes in a highly controlled setting result in a distribution

3Despite having the same experimental set up and similar geometry and
friction property to the other two triangular shapes, the results for object Tr2
is about 1.5 -2 times worse. Due to time constraint, we have not ruled out
the possibility that the data for object Tr2 is corrupted.



rectl rect2 rect3 tril tri3 ellipl ellip2 ellip3 hex butter
poly4-delrin 8.28+0.29 | 5.37£0.23 | 6.10£0.21 | 9.71£0.33 | 7.54+0.23 | 7.68+0.51 | 8.90+1.40 | 7.35+0.38 | 6.38+0.28 | 4.83£0.27
quad-delrin 8.60£0.35 | 5.92+0.14 | 8.20£0.16 | 9.90£0.41 | 8.18£0.15 | 6.85+0.25 | 6.29+0.24 | 8.08+0.51 | 6.424+0.12 | 5.97+0.23
delrin 35.48 40.53 35.98 36.91 34.66 32.18 38.05 33.37 33.55 34.09
poly4-abs 5.86+0.11 | 7.48+0.80 | 3.59+0.12 | 7.13£0.26 | 5.17£0.38 | 8.45+£1.13 | 9.18+1.26 | 5.93+0.19 | 7.564+0.39 | 3.94+0.11
quad-abs 6.07£0.16 | 6.74£0.27 | 6.19£0.18 | 8.00£0.37 | 7.17£0.37 | 6.66£0.28 | 7.69+0.27 | 5.78+0.21 | 8.194+0.21 | 5.39£0.15
abs 34.14 39.74 33.98 35.43 32.37 32.68 33.53 32.45 33.23 33.53
poly4-plywood | 6.86+0.71 | 6.86+0.13 | 5.93+£0.33 | 4.61+0.13 | 7.21+0.47 | 4.39+0.16 | 4.99+0.31 | 5.724+0.31 | 8.41+0.24 | 4.72+0.17
quad-plywood | 6.20£0.20 | 7.22+0.18 | 6.88+0.18 | 5.96=£0.19 | 9.43+0.56 | 4.42+0.12 | 5.844+0.20 | 6.46+0.26 | 8.85 £0.17 | 6.05£0.22
plywood 31.86 3322 32.94 32.81 33.78 27.24 28.23 33.29 32.77 34.10

TABLE I: Average deviation (in mm) that combines both displacement and angular offset) between the simulated final pose
and actual final pose with 95 percent confidence interval. The 3rd, 6th and 9th rows are the deviation from the ground truth
initial pose and final pose to indicate how much the object is moved due to the push. In most cases, the fourth order convex
(poly4) polynomial has better accuracy. The average normalized percentage error for poly4 is 20.05% and for quadratic is
21.39%. However, the accuracy of a fixed deterministic model is bounded by the inherent variance of the system.

3ptsl 3pts2 3pts3 3pts4
poly4-hardboard | 3.524+0.21 | 2.75+£0.25 | 2.9240.27 | 2.80+0.23
quad-hardboard | 3.824+0.24 | 3.63+£0.27 | 3.35+0.23 | 3.96+0.28
hardboard 16.63 13.86 14.83 15.15
poly4-plywood 3.78+0.11 | 2.804+0.15 | 2.84+0.16 | 3.2640.11
quad-plywood 4.24+0.15 | 3.56+0.17 | 3.2840.08 | 4.12+0.13
plywood 16.56 13.81 15.27 14.20

TABLE 1II: Average deviation (in mm) that combines both
displacement and angular offset) between the simulated final
pose and actual final pose with 95 percent confidence interval
for 3-point support. The wrench-twist pairs used for training
the model are generated from the ideal limit surface. The
average normalized error for poly4 is 20.48% and for quadratic
is 24.97%.

of final poses. We perform simulations using the same object
and pusher geometry and push distance. The 2000 resultant
trajectories and histogram plot of pose changes are shown in
Fig. [ and [5] respectively. We note that although the mean
and variance pose changes are similar to the experiments
with abs material in [26]], the distribution resemble a single
Gaussian distribution which differs from the multiple modes
distribution in Figure 10 of [26]. We conjecture this is due to
a time varying stochastic process where coefficients of friction
between surfaces drift due to wear.

We also evaluate the effects of uncertainty reduction with 2
point fingers under the stochastic contact model. The circular
object has radius of 5.25cm. The two fingers separated by
10cm perform a straight line push of 26.25cm. The desired
goal is to have the object centered with respect to the two
fingers. Fig. [6a) and [6b] compare the resultant trajectories under
different amount of system noise. We find that despite larger
noise in the resultant trajectories, the convergent region of the
stable goal pose differs by less than 5% and the difference is
mostly around the uncertainty boundary. A kernel density plot
of the convergence region is shown in in Fig. |6c| for ngr = 10.
We conclude that multiple active constraints induce a large
region of attraction.

0.05

0.1 -0.05 0 0.05 0.1
X/m

-0.1

(b) Figure 9 of [26], reprinted
with permission.

(a) Simulation results.

Fig. 4: Stochastic modelling of single point pushing with
fourth order sos-convex polynomial representation of the limit
surface using wrench twist pairs generated from 64 grids with
uniform pressure. The degree of freedom in the sampling
distribution equals 20. The contact coefficient of friction
between the pusher and the object is uniformly sampled from
0.15 to 0.35. The trajectories are qualitatively similar to the
experimental results in Figure 9 of [26].
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Fig. 5: Histogram of final poses for the 2000 pushing trajecto-
ries. The object is initially at (0,0,0). Note the curve resembles
a Gaussian distribution.

C. Grasping under uncertainty

We conduct robotic experiments to evaluate our contact
model for grasping. Fig. shows two rectangular objects
with the same geometry but different pressure distributions.
Another experiment is conducted for a butterfly shaped object
shown in Fig. We use the Robotiq hand [21] and represent
it as a planar parallel-jaw gripper with rectanglular fingers as
shown in Fig. and Fig. [8b] Convex quadratic limit surface
parameterizations H(F) are trained from wrench-twist pairs
from a uniform friction distribution along the object bound-
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Fig. 6: Simulation results using the proposed contact model illustrating the process of two point fingers pushing a circle to
reduce uncertainty. A total of 500 initial object center positions are uniformly sampled from a circle of radius 7.88cm.

ary. The sampling degree of freedom ny; equals 250 with
contact friction coefficient y, sampled uniformly from [0.015,
0.02]. The simulated results with the stochastic contact model
match well with the rectangles for both pressure distribution.
However, the model fails to capture the stability of grasps
and the deformation of objects. In the case of a butterfly-
shaped object, many unstable grasps and jamming equilbria
exist, but as the fingers increase the gripping force the object
will “fly” away as the stored elastic energy turns into large
accelerations which violates the quasistatic assumptions of
our model, as revealed in the scattered post-grasp distribution
in Fig. We also compare the cases where dynamics do
not play a major role: Fig. [8g] shows the zoomed in plots to
compare with simulation results in Fig. [8c| We can see that the
model simulation deviates more compared with the case for
rectangular geometry. Comparing the histogram plot in Fig.
[Bd] and Fig. [8h] we can see that the simulation returns more
jamming and grasping final states as illustrated by the spikes
in 0.

VII. CONCLUSIONS AND FUTURE WORK

We extend the convex polynomial force-motion model in
[27] which gives the dual mapping between friction wrench
and twist to the kinematic level where the applied controls are
velocity input (single and multiple) contacts. Additionally, we
derive methods that enable sampling from the family of sos-
convex polynomials to model the inherent uncertainty in fric-
tional mechanics. The stochastic contact models are validated
with large scale robotic pushing and grasping experiments.
We also see the limitation of a first order quasistatic model
in the butterfly shaped object grasping experiment. Much
work remains to be done. On the simulator end: 1) how to
increase the accuracy without losing convergence speed for
high order polynomial based representation of H(F) and 2)
how to handle penetration properly when the integration step
is large. On the application side: 1) how to quickly identify
both the mean and variance of the sampling distribution to
match with experimental data and 2) how to plan a robust
sequence of grasp and push actions for uncertainty reduction
using the stochastic contact model.
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