Mode Switch Assistance to
Maximize Human Intent Disambiguation

Deepak E. Gopinath*f, Brenna D. Argall*f15
*Department of Mechanical Engineering, Northwestern University, Evanston, IL
TRehabilitation Institute of Chicago, Chicago, IL
iDepartment of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL
§Depar’tment of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL
deepakgopinath@u.northwestern.edu

brenna.argall@northwestern.edu

Abstract—In this paper, we develop an algorithm for intent
inference via goal disambiguation with a shared-control assistive
robotic arm. Assistive systems are often required to infer human
intent and this often is a bottleneck for providing assistance
quickly and accurately. We introduce the notion of inverse
legibility in which the human-generated actions are legible enough
for the robot to infer the human intent confidently and accurately.
The proposed disambiguation paradigm seeks to elicit legible
control commands from the human by selecting control modes,
for the robotic arm, in which human-directed motion will maxi-
mally disambiguate between multiple goals. We present simulation
results which look into the robustness of our algorithm and the
impact of the choice of confidence functions on the performance
of the system. Our simulations results suggest that the choice
of confidence function is a critical factor in determining the
disambiguation algorithm’s capability to capture human intent.
We also present a pilot study that explores the efficacy of the
algorithm on real hardware with promising preliminary results.

I. INTRODUCTION

Assistive and rehabilitation devices such as powered
wheelchairs, robotic arms and myoelectric prostheses play an
important role in the lives of people with motor impairments.
These devices help to increase the human’s ability to per-
form activities of daily life and reduce their dependence on
caretakers, and are crucial to revolutionizing the way people
with motor impairments interact with society. As the field of
assistive robotics progresses rapidly, the devices themselves
become more capable and dextrous—and as a result also more
complex, higher dimensional and harder to control.

To operate an assistive device, typically the human directly
controls the device motion via a control interface. However,
the more severe a person’s motor impairment, the more limited
are the control interfaces available for them to use. These
interfaces (for example, a switch-based head array or Sip-N-
Puff) are lower in dimensionality and bandwidth, and generally
are able to operate on only a subset of the device control
space at a given time. Therefore, we have a difficult situation,
in which sophisticated assistive devices that require complex
control strategies are paired with users with diminished ability
to control them.

Due to the mismatch between the dimensionality of the
control interface and controllable degrees-of-freedom (DoF)
of the robotic device, control interfaces typically operate in

modes which correspond to different partitions of the control
space. By necessity, the more limited the control interface is,
the greater number of modes there are. In order to have full
control of the robot the user will have to switch between the
different partitions and this is known as mode switching or
modal control |19, 23]].

It has been established that mode switching is expensive and
as a result task performance is degraded [14]. Furthermore,
it adds to the cognitive and physical burden of the human
as each of these mode switches requires the user to shift
their attention from the task to performing the mode switch.
The introduction of shared autonomy to these systems helps
to alleviate and address some of these issues by letting the
system take partial responsibility of the task execution, thereby
reducing the human effort in achieving a goal.

Any assistive autonomy system typically needs an idea
of what it is the human is trying to do—either by explicit
indication from the user of the task or goal [6]], or by infer-
ring the human’s intent from their control signals or sensor
data [22| 25]. The question of intent inference thus is key. In
this paper, we develop an assistance paradigm that helps with
intent inference, by selecting the control mode in which robot
motion will maximally disambiguate human intent. The faster
the autonomy is able to disambiguate intent, the earlier the
robot is able to provide autonomy assistance—leading ideally
to fewer mode switches and less burdensome executions.

Within the field of Human-Robot Interaction (HRI) a legible
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Fig. 1. Tllustration of goal disambiguation along various control dimensions.
Any motion of the end effector (green) along the y-axis will not help the
system to disambiguate the two goals (A and B). However, motion along the
x-axis provides cues as to which goal.



motion is one which helps the observer (usually the human)
decipher the intent behind the robot’s action more quickly and
confidently [11]. It can be the case that certain actions by
the human might carry more information about the human’s
intent—which can then help the robot to draw useful and
correct inferences more easily. Therefore, in this paper we
propose a paradigm of inverse legibility in which the roles are
switched and the human-generated actions help the robot to
infer human intent confidently and accurately.

Consider the example illustrated in Figure [I] A human
control command issued along the x dimension is more intent
expressive and helps the robot to provide appropriate assis-
tance more quickly and confidently. With the disambiguation
assistance scheme developed in this work, we hope to elicit
more legible human control commands by placing the user
control in those modes that maximally disambiguate between
the various goals in the scene.

In Section [lIl we present an overview of relevant research
in the area of shared-control in assistance systems focusing
on mode switching, legibility and synergies in HRI. Section
describes the mathematical formalism for the algorithm
and the metric used for goal disambiguation, and Section
describes the details of our implementation. The simulation
results are presented in Section [V] and the pilot study in
Section Conclusions are provided in Section

II. RELATED WORK

This section provides a brief overview of related research
in the areas of intent inference, robot assistance for modal
control, legibility and cooperation in HRI.

Shared-control assistance paradigms help to offload cogni-
tive and physical burden [24] without requiring the user to
relinquish complete control, and are usually preferred over
fully autonomous assistive robotic systems for reasons of both
robustness and user satisfaction. Often, shared-control systems
require an estimate of the human’s intent—their intended task,
goal or motion, for example. Methods for intent inference have
been extensively studied by roboticists and cognitive scientists
alike and can be broadly classified into two categories: model-
based and heuristic-based [4]. In model-based approaches the
agent is typically modeled as a Partially Observable Markov
Decision Process (POMDP) that acts according to a policy
that maps states to actions. In such settings, intent inference
reduces to solving the inverse problem of computing the poste-
rior distribution over mental states conditioned on observed ac-
tions (Bayesian Inference) [2, 3]]. Heuristic-based approaches
instead seek to find direct mappings between some signals—
such as low-level motion cues [3] or biological signals [7]—
and the underlying human intention. Our approach builds on a
heuristic-based intent inference framework. More specifically,
we use a confidence function as a measure of the robot’s
estimate that a particular goal is indeed the user’s intended
goal. Confidence functions often depend on the human control
command, autonomous policy, robot pose or goal locations,
and often are used to dictate how much control lies with the
robot versus with the human in the shared-control system.

The cognitive burden of shifting focus (task switching) from
the task at hand to switching between control modes can result
in a significant decrease in task performance regardless of the
control modality [[18]. Users in many cases find modal control
and mode switching to be slow, difficult or burdensome [14].
Even a simple time-optimal automatic mode switching system
can significantly improve user satisfaction while maintaining
quality task performance [14]. However, it also is not always
the case that users are trying to optimize for time or effort
during task execution [13]. Our present system therefore
does not make a priori assumptions regarding the optimizing
principles at work when a user operates a robot.

The legibility and predictability of robot motion to the hu-
man is investigated [11]], and different methods for generating
legible robot motion are proposed [15)]. We apply this concept
of legibility however to the human control commands, such
that the intent expressed in the human command is clear to the
robot. We term this inverse legibility. Our assistance scheme is
intended to bring out a more legible intent-expressive control
command from the human, by placing the user control in that
mode which can provide maximal goal disambiguation and
improved legibility.

Eliciting legible commands from the user can also be
thought of as an information acquisition problem. Information
acquisition in robotic systems have been widely studied,
primarily in the context of generating optimal control for
mobile robot sensing systems. A typical approach is to model
the problem as an optimal control problem with an associated
reward structure that reflects some measure of information
gain [1]. The problem of information gathering, for example,
can be formulated as maximizing the ergodicity of a robot’s
trajectory with respect to an underlying information density
map [16} [17] by evaluating the expected value of the Fisher
information—the amount of information a single measurement
reveals at a location.

Also related to our work is the idea of mutual cooperation
between humans and robots, and the underlying synergies that
are crucial for successful human-robot interaction. In order to
overcome the communication bottleneck that exists between
robots and people during human-robot interactions, different
types of user interfaces have been developed that account for
constrained capabilities of the robot [12]. A framework for
“people helping robots helping people” has humans provide
semantic information and judgments about the environment
to the robot, which then utilizes them to improve its own
capabilities [21]]. A symbiotic human robot interaction scheme
aims to overcome perceptual and cognitive limitations that
robots might encounter while still allowing the robots to help
humans [20]. From the robot’s perspective the key concept
behind our algorithm is the idea of “Help Me, Help You”—
that is, if the human can “help” the robot by providing more
legible control commands, then the robot in turn can assist the
human more quickly and effectively.
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Fig. 2. Illustration of change in confidence with movement along a single

control dimension. A very different distribution of confidences results from
positive motion (beige) versus negative motion (blue). Snapshots after moving
by amount Az highlighted by rectangles.

III. ALGORITHM DESIGN

This section describes our algorithm that computes the
control mode that is able to maximally disambiguate between
human goals, thereby eliciting the most legible control com-
mand from the human. Section [[II=A] outlines the mathematical
notation used in the paper and Section describes the for-
mulation and computation of the metric used to disambiguate
human intent.

A. Notation

Let G be the set of all candidate user goals with n, =
|G| and let ¢° refer to the i*" goal where i € [1,2,...,n,].
A goal represents the intent of the human, and might be a
task or location in the world, for example. The set of goals
corresponds to an associated set of confidences denoted as C,
where ¢! refers to the individual confidence associated with
goal g'—that is, the robot’s confidence that g’ represents the
human’s intent. Let /C be the control space in which the robot
operates and k’ refer to an individual control dimension where
i €[1,2,...,ng]. The cardinality of K depends on the robotic
platform; for example, for a smart wheelchair n;, = 2 whereas
for a six degrees-of-freedom robotic arm ny = 6.

For control purposes, the set IC is partitioned into subsets
known as modes. Let M refer to the set of all modes that
the control space K is partitioned into with n,,, = |M|. The
number of modes n,, is specific to the control interface and
mapping to K. Furthermore, let m’ refer to the i** mode where
1€[1,2,...,nm]

Another quantity of interest is the spatial gradient of indi-
vidual goal confidences for motions along the various control
dimensions. More specifically, the gradient is denoted by 8‘11,
where ¢ € C and xj, is the component of robot’s position
along control dimension k. Furthermore, since the confidence
function in general can assume drastically different values
upon moving in positive and negative directions within a

given control dimension, the positive and negative gradients
are explicitly denoted as Bicf and aa;ck - respectively. The
formalism developed in Section [[II-B|is agnostic to the partic-
ular form of confidence function. Additionally, an analytical
closed-form expression for the gradient might not always be
available, as confidence functions need not be continuous and
differentiable. Even when available, such an expression might
be expensive to compute. In such cases, the gradient can be
numerically approximated, which we derive in Section [[II-B4

We define a disambiguation metric Dy, € R for each control
dimension k£ € KC, which is a function of ¢ and 6‘12 . Analogous
to the gradients, we explicitly define disambiguation metrics
for both positive and negative motion directions as D; and
D, , respectively. We further define a disambiguation metric
D,,, € R for each control mode m € M. The disambiguation
metric D,, is a measure of how legible the user commands
would be if the user were to control the robot in mode m. The
higher the value, the easier it will be for the system to infer
the human’s intent[]

B. Disambiguation Metric

The disambiguation metric Dj, encodes different aspects of
how the goal confidences change upon moving along control
dimension k. Figure |2|is an illustrative example which shows
how goal confidences can vary as a function of position along
a control dimension.

A proper design of Dj should take into account both
immediate as well as long term benefits of moving in k.
In order to compute the goal confidences after a small user-
initiated robot motion we sample the confidence function in
the neighborhood = + Ax of the current pose x of the robot,
where Az is a small change along the control dimension.

An additional consideration is that a confidence function
might depend on the user control command (uy). For such
functions, during the sampling procedure the value of wy, is
set as %: that is, the velocity that would result in movement
from = to x + Ax in one execution timestep At.

We identify four important components to inform the design
of Dy and D,,. Each of the following computations operates
on a projection of the sampled motion along control dimension
k.

1) Maximum of confidences: The maximum of the goal
confidences is a good measure of the system’s overall certainty
in accurately estimating human intent. A higher maximum
implies that the robot has an even better idea of what the
human is trying to do. The max 'y is computed as

Iy, = max c}
1<i<ng °°

2) Difference between largest confidences: Since it is pos-
sible to have multipleE] highly confident goals, accurate disam-
biguation also benefits from a large separation between the first

'Going forward, subscript & will be dropped from x;, for notational brevity.
2Note that confidences are not normalized, since we do care about more
than just their relative magnitudes (bullet 1).



and second most confident goals. This difference is denoted
by Q. and is computed as

Qi = max(Cx) — max(Cy, \ max(Cg))

where Cj is the set of projections of all goals confidences
along a control dimension k.

3) Separation in confidences: If the difference between the
largest confidences fails to disambiguate, then the separation,
Ay, in the remaining goal confidences of a control dimension
will further aid the disambiguation. At any point in space Ay
can be computed as the sum of pairwise distances between the
ng confidences. Thus,

g Mg

Ay = ZZIC& - ng‘

p=1g=p

where J, indicates x + Ax or z — Az depending on the
direction of perturbation and || denotes the absolute value.
4) Gradients: The propensity for change and information

gain upon the continuation of motion along control dimension
k is encoded in the gradients %. The greater the difference
between the individual confidence gradients, the greater will
these confidences deviate from each other over time. Instead
of using closed-form analytical gradients, we approximate the
gradients numerically. Therefore,

dc

o~
where ¢, denotes the confidence at location z. In order to
quantify the “spread” of gradients we define a quantity T
which is computed as

—Cy

x
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Putting it all together: T, Qk, Ar and T are then
combined to compute Dy, as

Di=w- Tk Q- Ag)+

short-term

(I—w)- Ty D

long-term

where w balances the contributions of the short-term and
long-term components. (In our implementation, w = 0.5.)
Equation [I] actually is computed twice, once in each of the
positive (6,, = x+ Ax) and negative directions (§, = = — Ax),
and the results are then summed. The computation of Dy, is
performed for each £ € K. The disambiguation metric D,,
for control mode m is calculated as

D,, = Z Dy, (2)
k

where k € m iterates through the set of control dimensions
on which m is able to operate. Lastly, the control mode with
highest disambiguation capability m* is given by

m* = argmax D,
m

and the control dimension with highest disambiguation capa-
bility £* is given by

k* = argmax Dy,

Disambiguation mode m* is the mode that the algorithm
chooses for the human to better estimate their intent. Any
control command issued by the user in m* is likely to be
more legible due to maximal goal confidence disambiguation.

IV. IMPLEMENTATION

This section describes the details of our implementation.
Section [[V-Al discusses various confidence functions used to
infer user intent, followed by the details of the underlying
shared-control system in Section

A. Confidence Function

The algorithm proposed in this paper requires that the
confidence measure varies as a function of x, so that % is
well-defined and exists. The choice of confidence function is
up to the system designer and numerous options exist.

We implement two confidence functions in this work. A
simple proximity-based confidence function used extensively
in the literature [8, 9, [10]] is

& — |

Cl: c(x,zg4) =max(0,1— )

where x is the current position of the robot, x4 is the location
of goal g, r is the radius of a sphere beyond which the
confidence is always 0 and ||-|| is the Euclidean norm. We
refer to this confidence function as C1.

A weakness of confidence measure C1 is that it considers
only current position and ignores any cues regarding human
intent present in the control command itself. A confidence
function that instead incorporates the human’s control com-
mand will contain more information content. One such func-
tion aims to capture the “directedness” of the human control
command towards a goal position

C2: c(x,xg,up) =up - (ry — )

where uy, is the human control command. We refer to this
confidence function as C2.

B. Control Sharing Paradigm

In our implementation, the pro- 1o
posed disambiguation assistance
paradigm augments a blending-
based shared-control system, in
which the final control command
issued to the robot is a blended
sum of the human control com-
mand and an autonomous robot
policy. The control signal from
the robot autonomy is generated by a function f.(-) € F.,

o 0.3 0.7 Confidence

Fig. 3. A prototypical arbitra-
tion function.

u, — fr(x)

where F, is the set of all control behaviors corresponding to
different tasks. Specifically, let u,. 4 be the autonomous control



Best Control Dimension k™: X
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Best Control Dimension k: Y
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Fig. 4. Control dimensions best able to disambiguate intent. Using confidence functions C1 (top row) and C2 (bottom row). Left column: £* is X. Middle
Column: k£* is Y. Right Column: k* is Z. Magenta spheres indicate the goal locations (intent).

policy associated with goal g. The final control command wu,
issued to the robot then is given as

U=a- Uy +(1—a) u

where g* is the most confident goal. The blending factor « is
a function of the system’s confidence (Figure [3).

The robot control command u,. 4 is generated using a simple
potential field based dynamical system which is defined in all
parts of the state space. In our implementation, each goal is
a position in space (x4). Every goal g is associated with a
potential field P, which treats g as an attractor and all the
other goals in the scene as repellers. For potential field P,,
the attractor velocity is given by

Lattract — Lg — L

where x is the location of g. The repeller velocity is given

by
:bTepel = Z

2
(e — i)

xr— XI;

where @ indicates the velocity of the robot in the world
frame and 7 controls the magnitude of the repeller velocity.
Therefore,

Ur,g = Lattract + Lrepel

Additionally, P, operates in the full six dimensional Carte-
sian space and treats position and orientation as independent
potential fields.

V. SIMULATION ANALYSIS

In this section we qualitatively look at whether our disam-
biguation algorithm selects modes that are useful for intent
disambiguation for a given goal configuration. We also eval-
uate the impact of certain simplification assumptions in our
algorithm and of the choice of confidence functions within a
simulated environment.

A. Choice of Confidence Function

In order to qualitatively assess the soundness of our algo-
rithm, we perform simulations in which £* is computed at
2000 uniformly sampled points in the workspace of a robotic
arm (a simulated version of the robotic arm described in
Section , approximated as a 1.2 x 0.6 x 0.7m3 volume
in front of the robot. Confidence functions C1 (r = 0.3m) and
C2 are evaluated using a goal configuration shown in Figure 6]
(middle column). Since the target orientations are the same
for all goals, disambiguation only happens in the translational
dimensions and therefore is reduced to a 3-D problem.

Figure [ shows the results of the simulation. For the goal
distribution used in the simulation, the goal positions are
spread out maximally along the = and z axes. Intuitively,
the system will be able to more quickly infer the human’s
intent if the human control command is either along the x
or the z axes. Table || further reports the number of times
the algorithm picked each of the three control dimensions, for
each confidence function.

These results shed light on the efficacy of a confidence
function in properly capturing human intent. The choice of
confidence functions can greatly affect the computation of k*
and m*, and so the power of our disambiguating algorithm is



Best control dimension distribution
Confidence Function X Y Z NULL
C1 579 615 | 446 360
C2 1711 93 196 0
TABLE I

BEST CONTROL DIMENSION DISTRIBUTION FOR TWO DIFFERENT
CONFIDENCE FUNCTIONS.

intimately linked to the inference power of different choices
of confidence function.

Under confidence function C1 the information is equally
spread throughout all control dimensions (Table [l), because
C1 contains less information content with respect to the
user’s selected motion and therefore also their intended goal.
Furthermore, C1 has “null” spaces where all confidences are
identically equal to zero—and therefore neither disambigua-
tion nor intent inference are possible.

By contrast, using C2, x is identified as the preferred
dimension in 1711 out of 2000 samples, and z in 196 of the
remaining 289 samples, which indicates that the confidence
function along with our algorithm is able to select the dis-
ambiguating dimensions over 95% of the time. The algorithm
picked y only when the robot is directly in front of a goal.

B. Characterization of Simplifying Assumption

In our algorithm, the computation of D,,, (Equation [2)) only
considers motion projected along perpendicular vectors: the
axes of each dimension k¢ of mode m. However, the user can
generate a control command in any arbitrary direction within
the control mode, and so the robot can move along any vector
spanned by the control dimensions in m. In order to assess
the impact of this simplification, we perform simulations in
which m* is computed for 500 uniformly spaced locations
in the robot workspace. At each of those points, 100 random
control commands feasible in m* are generated and applied to
perturb the robot. Finally, at each of these perturbed positions
the best control mode is once again computed.

If the best mode in the perturbed position is indeed mode
m™, then the simplification does not adversely affect the iden-
tification of the disambiguating mode. Table [l summarizes the
number of times a match occurs for different configurations of
the workspace (with ny = 3,4 and 5). While the simplification
does hold for 85-90% of off-axis motions, we also do observe
a trend where performance drops as the number of goals
increases. Intuitively this makes sense because disambiguation
between goals will become harder with a larger number of
goals in the scene.

C. Discussion

Our simulation results indicate a strong correlation between
the intent inference power of a given confidence function and

ng 3 4 5
Accuracy% | 89.24 | 87.09 | 86.11
TABLE II

DISAMBIGUATION ACCURACY FOR OFF-AXIS MOTIONS

the disambiguation power of our algorithm. It is unsurprising
that confidence functions which are information-poor approx-
imations of human intent also perform less robustly when
disambiguating between those approximations. Moreover, the
algorithm could be used to pre-compute the most informative
modes ahead of time, which then might be called on-demand
during the task execution—which could prove helpful for
complex tasks and/or limited interfaces that require more
information from the human for disambiguation.

VI. PILOT STUDY

We next explore the use and utility of our disambiguation
approach in a pilot study. Four subjects participated in the pilot
study (3 male, 1 female), and all were lab members.

A. Hardware

The experiments were performed using the MICO robotic
arm (Kinova Robotics, Canada), which is a 6-DoF robotic
arm specifically designed for assistive purposes. The software
system was implemented using the Robot Operating System
(ROS) and data analysis was performed using MATLABE]

Control Mappings

Mode | Head Array | Joystick
1 Vg Vg, Vy
2 Vy Vg, Vz
3 Vy Wz, Wy
4 Wz We
d Wy —
6 Wz —

Fig. 5. A 2-axis joystick (left) and switch-based head array (center) and their
operational paradigms (right). v and w indicate the translational and rotational
velocities of the end-effector, respectively.

The human control command wu;, was captured using two
different control interfaces: a 2-axis joystick and a 1-D head
array, shown in Figure [5} For both interfaces, the control
interface signals were mapped to Cartesian velocities of the
end-effector of the robot. Additionally, the interfaces were
used to perform mode switches and to request mode switch
assistance.

In detail, the joystick generated continuous signals and was
capable of controlling a maximum of two control dimensions
at a time. Different control modes could be accessed using the
buttons on the interface. The head array generated 1-D discrete
control signals, and consisted of three switches operated by the
head and embedded within the back and sides of the headrest.
When used for controlling a robotic arm, the switch at the
back was used to cycle between the control modes, and the
switches on the left and right sides controlled the motion of

3 Additionally, for the 6-D robot arm implementation, the computation of
C2 is split into translational and rotational components. (In Section m only

translational components were considered.) Here confidence function C2 is

rot
computed as (@, wp, Ur g) = wiro"S . (L, — )T 4 ulot u(r,g )

where trans refers to the translational and rot the rotational parts of the full
control space.



Fig. 6. Pilot study tasks. Left to right: Training, Testing (Easy), Testing (Hard).

the end-effector in positive and negative directions along the
control dimension of the selected control mode.

In using two interfaces, our aim was to observe whether dif-
ferences in interface dimensionality and continuity correlated
with any differences in task performance or mode switching
behavior.

B. Assistance Paradigms

Three kinds of mode switching paradigms were evalu-
ated. Note that the blending assistance (as described in Sec-
tion [V-B) was always running for all three paradigms. Since
under the blending paradigm the amount of assistance directly
depended on the level of confidence, this meant that if the
intent inference improved as a result of disambiguation, more
assistance would be provided by the robot.

Manual: The trial started in a randomized initial mode and
during task execution the user manually performed all subse-
quent mode switches.

Disambiguation: The disambiguation system was activated
right at the beginning of a trial. The algorithm identified
the “best mode” m* and started the trial in mode m*. All
subsequent mode switches were performed manually by the
user. Furthermore, the user was required to first move in the
selected mode before manually switching the mode.
On-Demand: The user could request mode switch assistance
at any time during the task execution. This paradigm was
exploratory and sought to find underlying patterns in assistance
request behavior.

C. Tasks, Metrics and Protocol

Tasks: Training and Testing tasks were developed for the pilot
study (Figure [6). Training: The user operated the robotic arm
to perform simple reaching motions to three different goal
locations. The primary purpose was for the user to become
accustomed to the operation of the interfaces, the blending-
based assistance and the experiment protocol. Testing: The
user operated the robotic arm under two scenarios of varying
difficulty. Easy: Four objects, all with the same grasp orienta-
tions. Hard: Five objects, all with different grasp orientations.
Metrics: Task completion time is the amount of time a user
spent in accomplishing a task. Mode switches refers to the

number of times the user switched between various modes
while performing the task.

Protocol: A within-subjects study was conducted using a full
factorial design in which the manipulated variables were the
tasks, control interfaces and assistance paradigms. Each task
consisted of two phases.

In Phase I, each user performed the task using both in-
terfaces under the Manual and Disambiguation paradigms.
The trials were balanced and the control interfaces and the
paradigms were randomized to eliminate ordering effects.
Participants were not aware of whether the starting mode was
randomized or m* (that is, of whether the paradigm for that
trial was Manual or Disambiguation). The starting positions
of the robot also were randomized to avoid bias. Three trials
were collected for each permutation of manipulated variables.
In Phase II, the user performed the same task using both
interfaces and the On-Demand paradigm, and two trials were
collected for each task-interface combination.

D. Pilot Study Results

An improvement in task performance in terms of a decrease
in the number of mode switches was observed across both
interfaces. Statistical significance in Figure [7] was determined
by a two-sided Wilcoxon Rank-Sum Test, where (*) indicates
p < 0.05 and (***) indicates p < 0.001.

Mode Switches: Figure[]) (top row) reveals a general trend of a
decrease in the number of mode switches when disambiguation
assistance was employed. This indicates that upon starting in
a mode identified by the algorithm, the number of subsequent
mode switches performed by the user was reduced.

Somewhat surprisingly, this difference was significant only
when using the joystick. The head array moreover required
more mode switches to complete the task. We also observe
a much larger spread across trials and users when using the
head array.

Task Completion Time: In Figure [/| (bottom row), a statisti-
cally significant decrease in task completion times between the
Manual and Disambiguation paradigms was observed when
using the joystick. The task completion times were comparable
between the two paradigms when using the head array.
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plots show the median and the quartiles.

This difference between interfaces in task success might be
explained by the fact that a single mode switch assistance at
the beginning of the trial probably did not have a measurable
impact in reducing the subsequent number of mode switches
needed when using the head array—which required many
more mode switches to achieve the task (Figure [/} top row).
Such a conclusion would have a utility implication for our
algorithm: that as the number of required mode switches in-
creases, so too must the number of disambiguation operations,
if disambiguation assistance is useful.

On-Demand: The number of disambiguation requests under
the On-Demand paradigm are reported in Table Although
the subjects demonstrated a wide range of disambiguation
request behaviors, we are able to observe a general trend of an
increase in disambiguation requests with an increase in task
difficulty. This shows that users were keen to explore the On-
Demand option when the tasks became more difficult.

E. Future Work

Post-experiment feedback from the users also revealed that
the subjects found the disambiguation assistance to be counter-
intuitive at times in the On-Demand paradigm. This might be
attributable to two main limitations of the current algorithm.

First, when the user requests assistance (in the On-Demand
paradigm) at any point in time and space, the algorithm
discards all information contained in the history of user
commands from the start of the trial until that point. That is,
the disambiguation algorithm lacks memory and reasons about
the user’s intent solely based on information that is available

Joystick Head Array
Subject  Easy Hard Easy Hard
1 1 0 5 6
2 1 1 3 6
3 2 2 4 5
4 2 5 17 7
TABLE III

NUMBER OF DISAMBIGUATION REQUESTS

locally. However, it might be useful to bias the computation of
the disambiguating control mode by incorporating information
from the past history of the robot trajectory and control
commands, by having a non-uniform prior over the intended
goals. This would also likely improve the robustness and
efficacy of the algorithm, and result in higher user acceptance.

Second, the algorithm only tries to maximize the utility
value for the robot. However, it also is important to take
into account the user’s preference and ability to operate in
the mode selected by the algorithm. Concepts from decision
theory might be used to enhance the current framework.

Our pilot study revealed some promising trends and there-
fore a more extensive user study with motor-impaired subjects
will be conducted in the future, to evaluate the utility of
the disambiguation assistance system and further explore and
understand the disambiguation request patterns of users.

VII. CONCLUSIONS

In this paper, we have presented an algorithm for intent
disambiguation assistance with a shared-control robotic arm.
We also introduced the notion of inverse legibility, in which
the human-generated actions are legible enough for the robot
to infer the human intent confidently and accurately. The goal
of the algorithm developed in this paper is to seek legible
control commands from the human by placing control in those
modes able to maximally disambiguate between various goals.
Preliminary pilot study results suggested that the proposed
disambiguation paradigm to be promising. Our simulation
work evaluated the impact of the simplifying assumptions and
of different confidence functions on intent disambiguation. In
our future work, as informed by the pilot study, we plan
to enhance the algorithm and extend the framework into an
automated mode switch assistance system.
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