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Abstract—This work addresses the problem of efficient on-
line exploration and mapping using multi-robot teams via a
distributed algorithm for planning for multi-robot exploration—
distributed sequential greedy assignment (DSGA)—based on the
sequential greedy assignment (SGA) algorithm. SGA permits
bounds on suboptimality but requires all robots to plan in series.
Rather than plan for robots sequentially as in SGA, DSGA
assigns plans to subsets of robots during a fixed number of
rounds. DSGA retains the same suboptimality bounds as SGA
with the addition of a term describing suboptimality introduced
due to redundant sensor information. We use this result to extend
a single-robot planner based on Monte-Carlo tree search to the
multi-robot domain and evaluate the resulting planner in simu-
lated exploration of a confined and cluttered environment. The
experimental results show that suboptimality due to redundant
sensor information introduced by the distributed planning rounds
remains near zero in practice when using as few as two or three
distributed planning rounds and that DSGA achieves similar
or better objective values and entropy reduction as SGA while
providing a 2–6 times computational speedup for multi-robot
teams ranging from 4 to 32 robots.

I. INTRODUCTION

We consider multi-robot exploration as the problem of ac-
tively mapping environments by planning actions for multiple
agents in order to produce informative sensor measurements.
In this work, we address the problem of planning for explo-
ration with large teams of robots using distributed computation
and emphasize online planning and operation in confined and
cluttered environments.

Informative planning problems of this form are NP-
hard [18]. Rather than attempt to find an optimal solution in
possibly exponential time, we seek approximate solutions with
bounded suboptimality that can be found efficiently in practice.
A commonly used suboptimal planning algorithm is sequential
greedy assignment (SGA) [1, 7, 27]. SGA assigns plans to
robots in sequence using a single-robot planner to maximize
mutual information between a robot’s future observations and
the explored map given knowledge of plans already assigned
to other robots. SGA-based approaches that leverage mutual
information objectives for multi-robot exploration achieve a
two-times suboptimality bound when comparing the approxi-
mate solution found by the greedy algorithm to the true op-
timum [24], and arbitrary planners with known suboptimality
achieve a similar bound [28].

The sequential nature of SGA results in rapidly increas-
ing computation time which precludes online planning for
large numbers of robots. This increased computation time is

Fig. 1: An example exploration experiment. A multi-robot team
explores a three-dimensional environment cluttered with numerous
obstacles (cubes) while using an online distributed planner. Known
empty space is gray, and occupied space is black. Robots are shown
in blue with red trajectories and obtain rainbow-colored point-cloud
observations from their depth-cameras. (top-left) The robots begin
with randomized initial positions near a lower edge of the exploration
environment which is bounded by a cube. (top-right) After entering
the environment robots spread out to cover the bottom of the cubic
environment (bottom-left) and then proceed upward to cover more of
the volume. (bottom-right) Given enough time the robots explore the
entire environment.

especially relevant to exploration problems as new informa-
tion about occupancy significantly affects both feasible and
optimal plans and necessitates reactive planning to achieve
high rates of exploration. We propose a modified version
of SGA, distributed sequential greedy assignment (DSGA),
which consists of a fixed number of sequential planning
rounds. At the beginning of each round, robots plan in parallel
using a single-robot planner. A subset of those plans is chosen
to minimize the difference between the information gain for



the entire subset and the sum of the information gains for
each robot individually which does not consider redundancy
between robots. We obtain a performance bound in terms of
the result found by Singh et al. [28] that explicitly describes
the additional suboptimality as exactly the reduction in the
objective values accrued during the subset selection process.
In doing so, we reduce the planning problem to analyzing and
taking advantage of the coupling between robots’ observations
during the subset selection, to enable faster online computation
in a distributed manner without compromising exploration
performance.

II. RELATED WORK

Early works in robotic exploration often approach the
problem through geometric methods, such as frontier-based
approaches [31]. Recent approximations of mutual information
for ranging sensors [9, 16] has led to the development of
exploration approaches that seek to directly maximize mutual
information [3, 8, 15, 19, 21, 29]. We similarly formulate
exploration as finite-horizon maximization of mutual infor-
mation, and the contribution of this work is to propose and
analyze a new distributed algorithm for multi-robot exploration
problems. The goals of this methodology are similar to those
of Best et al. [3] who use probability collectives in an anytime
planner.

More formally, the mutual information is submodular and
nondecreasing, and the joint-space of multi-robot trajectories
forms a matroid. Recent results on matroid constrained sub-
modular maximization [5, 13] provide randomized polynomial
time algorithms with 1 − 1/e suboptimality guarantees, im-
proving on the previous best known guarantee of 1/2 for
SGA. This bound is tight for polynomial-time algorithms
for subset selection [22, 17] which is a special case of
the matroid-constraint. These approaches are computationally
expensive and do not necessarily generalize well to multi-robot
distributed planning. We therefore focus on SGA for the use
case of online planning given its combination of reasonable
bounds and runtime.

Several recent works consider the problem of developing
parallel algorithms for unconstrained submodular maximiza-
tion [20, 32] in addition to matroid constrained submodular
maximization [2, 32]. However, achieving reasonable bounds
can require additional assumptions on functional and algorith-
mic properties that may prove inappropriate in a distributed
multi-robot context [20]. Mirzasoleiman et al. [20] propose
a parallel algorithm for cardinality constrained submodular
maximization, and similarly, Barbosa et al. [2] extend results
by Calinescu et al. [5] to obtain a parallel algorithm applicable
to matroid-constrained problems. However, these algorithms
are based on data-parallel approaches that distribute planning
for each individual robot across all processors. Instead, we
prefer a robot-centric approach such that individual robots are
ultimately responsible for planning and selecting their own
actions.

III. PRELIMINARIES

Before presenting the details of the formulation and algo-
rithm, we present some brief background details on informa-
tion theory and submodular functions.

A. Information theory

Entropy quantifies the uncertainty in a random variable in
terms of the average number of bits necessary to disambiguate
a random variable X and denoted as

H(X) =
∑
i

−P(X = i) log2 P(X = i), (1)

with the entropy conditional on Y as

H(X|Y ) =
∑
i

∑
j

−P(X = i, Y = j) log2 P(X = i|Y = j).

(2)

The goal of the exploration problem is then to reduce the
entropy of the map, H(M). Mutual information quantifies the
expected reduction of the entropy given an observation Y

I(X;Y ) (3)

=
∑
i

∑
j

−P(X = i, Y = j) log2

P(X = i)P(Y = j)

P(X = i, Y = j)

= H(X)−H(X|Y ).

Cover and Thomas [11] provide more detailed coverage of
information theory and the properties of entropy and mutual
information.

B. Submodularity for sequential greedy assignment

For conditionally independent observations, the mutual in-
formation is a submodular, nondecreasing set-function [17]. As
shown by Nemhauser et al. [23, 24], these properties permit
useful suboptimality bounds for greedy algorithms that we
will leverage to develop an efficient algorithm for multi-robot
active perception.

Define the set function, g : 2Ω → R where 2Ω is the power-
set of the ground-set, Ω. Then g is submodular if, for any
A ⊆ B ⊆ Ω and C ⊆ Ω \B, the following inequality holds

g(A ∪ C)− g(A) ≥ g(B ∪ C)− g(B) (4)

This function is also monotonic if for any A ⊂ Ω and x ∈ Ω\A

g(A ∪ {x}) ≥ g(A) (5)

with g(∅) = 0.

IV. MULTI-ROBOT EXPLORATION FORMULATION

This section describes the problem of distributed multi-
robot exploration. We begin by describing the system and
environment models and then introduce the planning problem
as a finite-horizon optimization.



A. System model

Consider a team of robots, R = {r1, . . . , rnr
}, engaged

in exploration of some environment m. The dynamics and
sensing are described by

xt = f(xt−1, u), (6)
yt = h(xt,m) + ν (7)

where xt represents a robot’s state at time, t, and u ∈ U
is the control input. The observation, yt, is a function of
both the state and the environment and is corrupted by noise,
ν. We use capital letters to refer to random variables and
lower-case for realizations so M and Yt represent random
variables associated with the environment and an observation,
respectively.

B. Occupancy grids

The environment, M , is represented as an occupancy grid
Elfes [12] with an associated mutual information approxima-
tion for ranging sensors [9, 16]. The environment is discretized
into cells, M = {C1, . . . , Cnm}, that are either occupied or
free with some probability. Cells are independent such that the
probability of a realization m is P(M = m) =

∏nm

i=1 P(Ci =
ci). The conditional probability of M given previous states
and observations is then written

P(M = m|x1:T−1, y1:T−1)

=

∏T
t=0 P(yt−1|M = m,xt−1)P(M = m)∑

m′∈M
∏T

t=0 P(yt−1|M = m′, xt−1)P(M = m′)
(8)

As representing an unconstrained joint distribution between
cells is infeasible, the conditional probabilities of the cells
given previous measurements is also treated as being indepen-
dent with probability pi,t such that the conditional probability
is

P(M = m|x1:T−1, y1:T−1) =

nm∏
i=1

pi,t (9)

We denote the collection of probabilities as the belief, bt =⋃nm

i=1 pi,t.

C. Problem description and objective

For one robot and one time-step the optimal control action
in terms of entropy reduction is

u∗1 = arg max
u∈U

I(Yt+1;M |bt). (10)

Consider an l-step lookahead. The problem becomes a
belief-dependent partially-observable Markov decision process
(POMDP) as is discussed in more detail by Lauri and Ritala
[19]. In the general case, this is an optimization over policies

Ql(bt, xt, u) =I(Yt+1;M |bt)
+ EYt+1

[max
u′∈U

Ql−1(bt+1, xt+1, u
′)],

(11)

u∗l = arg max
u∈U

Ql(bt, xt, u). (12)

We instead optimize over a fixed series of actions rather than
over policies which results in a simpler problem. To simplify
notation and possible confusion of the relationship between
observations and controls, let Yi indicate the space of possible
observations available to robot i over the finite horizon induced
by the control inputs and dynamics. The optimal multi-robot,
finite-horizon informative plan is then

Y ∗t+1:t+l,1:nr
= arg max

Y1:l,1:nr∈Y1:nr

I(Y1:l,1:nr
;M |bt) (13)

where the indexing x1:t,1:nr
represents values at times 1

through t and for robots 1 through nr. In the following sec-
tions, we will drop the time and robot index when appropriate.

D. Assumptions

We make the following assumptions regarding the explo-
ration scenario: 1) all agents have the same belief state,
operate synchronously, and communicate via a fully connected
network; 2) the transition function, f is bounded; and 3)
the sensor range is bounded. The first assumption simplifies
analysis in the context of this work. Here we emphasize
scenarios where large numbers of robots operate in close
proximity leading to redundant observations. Extending the
proposed algorithm to incorporate additional considerations
such as communication constraints is left to future work.
The second and third assumptions ensure that the mutual
information between observations made by distant robots is
zero. These assumptions simplify the problem structure and
are the key reason that the proposed efficient algorithm comes
with little to no reduction in solution quality.

V. SINGLE-ROBOT PLANNING

We employ Monte-Carlo tree search [10, 4] for the single
robot planner as previously proposed for active perception and
exploration [19, 3, 25] and in multi-robot active perception [3].

In order to ensure bounded and similarly scaled rewards,
constant terms from (13) are dropped when planning for the
ith robot to obtain

I(Yt+1:t+l;M |Yt+1:t+l,A, bt) (14)

and maximize the mutual information between Yt+1:t+l con-
ditional on observations, Yt+1:t+l,A for the set of robots, A

Denote solutions obtained from the Monte-Carlo tree search
single-robot planner maximizing (14) as

Ŷi = SingleRobot(i, YA) (15)

and assume this planner has suboptimality η ≥ 1 such that

ηI(M ; Ŷi|YA) ≥ max
Y ∈Yi

I(M ;Y |YA) (16)

as by Singh et al. [28].

VI. MULTI-ROBOT PLANNING

The main contribution of this work is in the design and
analysis of a new distributed multi-robot planner that extends
the single-robot planner discussed in Sect. V or any planner
satisfying (16) to multi-robot exploration. In development of a



Algorithm 1 Distributed sequential greedy assignment
(DSGA) from the perspective of robot i

1: nd ← number of planning rounds
2: nr ← number of robots
3: YF ← ∅ . set of fixed trajectories
4: for 1, . . . , nd do
5: Yi|YF

← SingleRobot(i, YF )
6: Ii,0 ← I(M ;Yi|YF

|YF ) . planner reward
7: Ii,F ← Ii,0 . updated reward
8: for k = 1, . . . , dnr

nd
e do

9: j ← arg min
j∈1:nr

Ij,F − Ij,0 . reduction across robots

10: if i = j then
11: Transmit: Yi|YF

12: return Yi|YF

13: else
14: Receive: Yj|YF

15: YF ← YF ∪ Yj|YF

16: Ii,F ← I(M ;Yi|YF
|YF ) . update reward

distributed algorithm, we first present a commonly used algo-
rithm, SGA, which provides suboptimality guarantees [28] but
requires robots to plan sequentially. We then propose a similar
distributed algorithm, DSGA, and analyze its performance in
terms of time and suboptimality.

A. Sequential greedy assignment

Consider an algorithm that plans for each robot in the
team maximizing (14) given all previously assigned plans and
continues in this manner to sequentially assign plans to each
robot. We will refer to this as sequential greedy assignment
(SGA). Singh et al. [28] use the properties of mutual infor-
mation discussed in Sect. III-B to establish that SGA obtains
an objective value within 1 + η of the optimal solution. The
greedy solution using an optimal single-robot planner can be
defined inductively as Y g = Y g

0:nr
using a suboptimal planner

as in (15) to obtain the solution Ŷ g = Ŷ g
0:nr

such that

Ŷ g
0 = ∅
Ŷ g
i = SingleRobot(i, Y g

1:i−1)
(17)

This algorithm satisfies the following suboptimality bound.

Theorem 1 (Suboptimality bound of sequential assignment
[28]). SGA obtains a suboptimality bound of

I(M ;Y ∗) ≤(1 + η)I(M ; Ŷ g) (18)

This multi-robot planner is formulated as an extension of a
generic single-robot planner and depends only on the subopti-
mality of the single-robot planner. As robots plan sequentially,
this leads to large computation times as the number of robots
grows.

B. Distributed sequential greedy assignment

Consider a scenario with spatially distributed robots such
that the mutual information between any observations reach-
able within a finite horizon by any pair of robots is zero. The

union of solutions obtained for individuals independently is
then equivalent to a solution to the combinatorial problem over
all robots, Y ∗. A weaker version of this idea applies such that
if the plans returned for a subset of robots are conditionally
independent, those plans are optimal over that subset of robots
regardless of the inter-robot distances. The distributed planner,
DSGA, is designed according to this principle and allows all
robots to plan at once and then selects a subset of those plans
while minimizing suboptimality.

DSGA is defined in Alg. 1 from the perspective of robot i.
Planning proceeds in a fixed number of rounds, nd (line 4).
Each round begins with a planning phase where each robot
plans for itself given the set of plans that are assigned in
previous rounds (line 5), stores the initial objective value,
Ii,0 (line 6), and copies this to a variable, Ii,F (line 7) that
represents the updated value as more plans are assigned. The
round ends with a selection phase (line 8) during which a
subset of dnr

nd
e plans are assigned to robots. The plans are

assigned greedily to minimize the decrease in the objective
values, Ij,F − Ij,0, and the plan to be assigned is computed
using a reduction across the multi-robot team (line 9). The
chosen robot sends its plan to the other robots (line 11), and
these robots store this plan (line 15) and update their objective
values (line 16).

Denote a planner with nd planning rounds as DSGAnd
.

Let Di be the set of robots whose trajectories are assigned
during the ith distributed planning round and Fi =

⋃i
i=1Di

as the set of all robots with trajectories assigned by that round.
Denote incremental solutions to this new distributed algorithm,
similarly to the previously discussed algorithms, as Ŷ d

Fi
. Then,

let Ŷr|Y d
Fi

represent the approximate solution returned by the
single-robot planner given previously assigned trajectories.
The result of DSGA can then be written as Y d

Di,j
= ŶDi,j |Y d

Fi−1

where Di,j is the jth robot assigned during round i. DSGA
achieves a bound related to Theorem 1 with an additive term
based on the decrease in objective values from initial planning
to assignment that DSGA seeks to minimize (Alg. 1, line 9).

Theorem 2. The excess suboptimality of the distributed algo-
rithm compared to greedy sequential assignment is given by
the sum of mutual information between each selection and all
prior selections during that round1

I(M ;Y ∗) ≤ (1 + η)I(M ;Y d) + ψ (19)

where ψ = η
∑nd

i=1

∑|Di|
j=1 I(Y d

Di,j
;Y d

Di,1:j−1
|Y d

Fi−1
) is this

excess suboptimality. The proof is provided in the appendix.

This is an online bound in the sense that it is parametrized
by the planner solution. However, as will be shown in the
results, ψ tends to be small in practice indicating that DSGA
produces results comparable to SGA. In this sense, small
values of ψ serve to certify the greedy bound of 1 + η

1Although this paper addresses multi-robot exploration, this result applies
generally to informative planning problems and general matroid-constrained
monotone submodular maximization (aside from notation and problem spe-
cialization).



empirically without needing to obtain the objective value
returned by SGA explicitly. This bound can be extended to
provide additional insights into and to produce algorithms that
better take account for problem structure.

Corollary 2.1. Using submodularity, excess suboptimality
may be bounded by a sum over pairwise conditional mutual
information rather than the updated mutual information de-
scribing the performance of subsets at the beginning of the
subset selection phase

I(M ;Y ∗) ≤ (1 + η)I(M ;Y d)

+ η

nd∑
i=1

|Di|∑
j=1

j−1∑
k=1

I(Y d
Di,j

;Y d
Di,k
|Y d

Fi−1
).

(20)

By submodularity, we may also drop all conditioning to obtain
a bound on any given partitioning based on the problem
structure

I(M ;Y ∗) ≤ (1 + η)I(M ;Y d) + η

nd∑
i=1

|Di|∑
j=1

j−1∑
k=1

I(Y d
Di,j

;Y d
Di,k

).

(21)

Equation (21) extends to pairwise bounds over the space of
all plans by upper-bounding the terms of the summation such
as with a bound based on inter-robot distances. This bound
may be used to obtain algorithms with bounded performance
based on the density of the deployment of the multi-robot team
or to inform the subset selection process.

In DSGA, subsets are chosen using a greedy strategy. This
performs well when the problem is balanced among robots
and sufficiently decoupled. For unbalanced problems, a large
number of robots with low objective values can cause relevant
robots to be selected during later rounds, eliminating benefits
of the sequential rounds. The negation of the contribution of
a single round is

I(M ;Y d
Di
|Y d

Fi−1
)−

|Di|∑
j=1

I(M ;Y d
Di,j
|Y d

Fi−1
) (22)

found by application of the chain-rule of mutual information
to (32). Equation (22) is submodular and non-increasing unlike
the nondecreasing objectives considered previously. Existing
bounds for this problem class provide relatively poor [14]
bounds and so we continue with the greedy heuristic.

C. Algorithm runtime analysis

We compare the runtime of DSGA to SGA for variable
numbers of robots. With runtime defined as the time elapsed
from when the first robot begins computation until the last
robot is finished. We assume point-to-point communication
over a fully-connected network requiring a fixed amount of
time per message. Messages have fixed sizes, corresponding to
either a finite-horizon plan or a difference in mutual informa-
tion. Given these assumptions, broadcast and reduction steps
each require O(log nr) time. The Monte-Carlo tree search
planner is run for a fixed number of iterations, and the only

variability in runtime for this step enters through evaluation
of mutual information. Using the approximation developed by
Charrow et al. [9], evaluation of mutual information is linear
in the number of cells of the map being observed. Given the
assumption of bounded sensor range, evaluation of mutual
information scales linearly in the number of robots.

SGA consists of nr planning steps, each with a bounded
number of mutual information evaluations and one broadcast
step. The computation time of sequential greedy assignment
is then

SGA : O(n2
r + nr log nr). (23)

Each round of DSGA begins with a single planning phase,
and with nd of such rounds, the time required for planning
is O(ndnr). The rest of the algorithm consists of subset
selection, broadcast of the chosen plans, and computation of
mutual information. These steps cumulatively run once per
robot for a total cost of

DSGAnd
: O(ndnr + nr log nr + n2

r). (24)

Although the asymptotic runtime of these algorithms is
quadratic, the constant factors vary significantly. For SGA, the
squared term is associated with the single-robot planner which
represents a large number of mutual information evaluations.
In DSGA, the squared term corresponds to a single evaluation
per robot which significantly reduces planning time in practice.

VII. RESULTS AND DISCUSSION

We evaluate the proposed approach using three experiments.
In Sect. VII-B, we use a series of tests with sixteen-robot teams
and up to three planning rounds (nd = 3) and demonstrate that
the excess, ψ, becomes insignificant given only a few planning
rounds and in turn the performance of DSGA matches SGA. In
Sect. VII-C, we test DSGA3 and SGA with increasing numbers
of robots (4, 8, 16, and 32) to show that entropy reduction
performance of DSGA3 consistently tracks SGA and that per-
robot performance degrades gracefully for both algorithms as
the environment becomes crowded with increasing numbers
of robots. Section VII-D evaluates computation times and
demonstrates significant improvements when using DSGA.

A. Implementation details

We evaluate the proposed algorithm in simulation and run
experiments on a laptop equipped with an Intel i7-5600U
CPU (2.6 GHz). Tests evaluating exploration performance are
each run twenty times with randomized initializations. Timing
tests are run separately over single runs with an identical
experimental setup. Robots move through a 3D environment
with planning, mapping, and mutual information computation
in 3D.

The simulated robots emulate kinematic quadrotors moving
in a three-dimensional environment. Robots execute discrete
actions, translations of ±0.3 m in the x–y–z directions and
heading changes of ±0.3 rad. Each robot is equipped with a
simulated time-of-flight camera with a range of 2.4 m similar
to a typical depth camera, 19×12 resolution, and 43.6×34.6◦



TABLE I: Exploration performance per robot-iteration (bits). Average
results for exploration performance are shown over all trials. For the
sake of presentation we assume an optimal single-robot planner so
that η = 1

Alg. nr Reward Excess (ψ) Bound Entropy red.
avg. std. avg. std. avg. std. avg. std.

DSGA1 16 26.6 6.43 6.01 3.60 59.3 15.0 372 124
DSGA2 16 27.6 6.48 1.27 1.06 56.4 13.4 375 144
SGA 4 30.5 12.7 - - 61.0 25.4 359 264
DSGA3 4 30.9 12.5 0.285 1.03 62.1 25.1 368 255
SGA 8 30.2 9.75 - - 60.3 19.5 374 188
DSGA3 8 30.2 9.84 0.211 0.614 60.6 19.7 383 197
SGA 16 28.1 6.97 - - 56.2 13.9 383 147
DSGA3 16 28.1 7.31 0.323 0.421 56.5 14.7 382 148
DSGA3 16 28.1 7.31 0.323 0.421 56.5 14.7 382 148
SGA 32 26.2 7.11 - - 52.3 14.2 328 124
DSGA3 32 27.9 6.76 0.897 0.530 56.7 13.7 330 116

field-of-view oriented with the long axis aligned vertically
for use in sweeping motions. For efficient computation, rays
are down-sampled by two for computation of mutual infor-
mation and we substitute Shannon mutual information (3)
with Cauchy-Schwarz mutual information in the implemen-
tation [9, 6], and rather than the typical uniform prior used
in mapping, we introduce a prior of a 12.5% occupancy
probability during evaluation of mutual information [29].

The planner and other components of the system are
implemented using C++ and ROS [26]. For the distributed
planner, timing results for the single-robot planning phase
are computed by taking the maximum over each round and
for information propagation as the maximum time over each
assignment. In practice, computing the reduction to find the
minimum excess term (Alg. 1, line 9) requires an insignificant
amount of time. So, although we assume a logarithmic-time
parallel reduction in the analysis, we compute this by iteration
over all elements in the implementation.

a) Exploration scenario: We test the exploration
methodology in a confined and cluttered environment with
obstacles (cubes) of various sizes with robot positions ini-
tialized randomly near a lower edge as depicted in Fig. 1.
The environment is bounded by a 6 m× 6 m× 6 m cube. The
robots map this environment using a 3D occupancy grid with
0.1 m resolution. The confines and clutter ensure that robots
remain proximal, leading to significant potential for redundant
observations and suboptimal joint plans.

B. Different numbers of distributed planning rounds

Figure 2 and Table I show results for exploration exper-
iments comparing DSGA1 through DSGA3 to SGA for a
team of 16 robots. The excess (ψ) is largest at the beginning
of each exploration run as all robots are initialized near the
same position. As the robots spread out, all planners approach
approximately steady-state conditions in terms of both excess
suboptimality and objective values before decaying once the
environment is mostly explored. The ψ terms remain relatively
large for DSGA1—which assigns all plans in a single round
and does not consider conditional dependencies—and is, on
average, approximately one-third of the mutual information
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Fig. 2: Exploration results for nr = 16 robots and varying the
number of distributed planning rounds. (a) The mutual information
objective of DSGA closely tracks SGA and improves from DSGA1

(which ignores inter-robot interaction) to DSGA3. (b) Similarly, the
excess submodularity (ψ) terms approach zero for DSGA3 indicating
performance comparable to SGA. (c) The difference between DSGA
and SGA planners in cumulative entropy reduction in the map as
actual entropy reduction differs slightly. Using just nd = 3 planning
rounds, DSGA closely approximates and sometimes exceeds the
performance of SGA which closely reflects the expected results based
on the changes in objective values and excess terms. Transparent
patches show standard-error.

objective. However, the ψ terms decrease monotonically with
increasing numbers of planning rounds and are negligible for
DSGA3. Decreasing values of ψ are then reflected in the
mutual information objective, whereas DSGA2 and DSGA3

closely track SGA while objective values for DSGA1 are
at times decreased (Fig. 2a). Theorem 2 states that if ψ is
small DSGA obtains the same performance bounds as SGA.
Although either algorithm may perform significantly better
than these bounds the matching performance bounds, are ac-
companied by comparable objective values in the experimental
results.

Further, the actual exploration performance in terms of
entropy reduction also improves for DSGA2 and DSGA3 with
similar performance to SGA (Fig. 2c) as expected according
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Fig. 3: Exploration performance with different numbers of robots
for (solid lines) SGA and (dashed lines) DSGA3. Note that DSGA3

closely tracks SGA, and results sometimes appear as one line. DSGA
meets or exceeds the performance of SGA for even relatively large
numbers of robots despite using a constant number of planning
rounds. (a) Results by robot-iteration (i.e. total robot-time). (b)
Results by number of iterations (i.e. real-time). Transparent patches
show standard-error.

to Fig. 2a. DSGA1 still performs well in terms of both
objective values and exploration performance despite the lack
of inter-robot coordination. This motivates further study into
the structure of typical informative planning problems to better
explain the performance of approximate algorithms such as
DSGA and the special case of DSGA1.

C. Different numbers of robots

Figure 3 compares DSGA3 to SGA for various numbers
of robots first by: 1) total number of iterations to quantify
the reduction in total exploration time when using large
teams of robots, and 2) by number of “robot-iterations” to
demonstrate that the average per-robot performance remains
consistent as the number of robots increases. These results
and those for varying the nD are summarized in Table I.
Robots performs consistently through nr = 16 robots with a
slight 10% reduction in entropy-reduction performance due to
crowding with 32 robots (Fig. 3a). This consistent single-robot
performance translates to a significant increase in the rate of
exploration when introducing additional robots (Fig. 3b).

D. Computational performance

Figure 4 shows timing results for configurations discussed in
the prior subsections. SGA scales super-linearly as expected

Alg. nr S.R. Planning Prop. Total
avg. std. avg. std. avg. std.

DSGA1 16 0.166 0.0214 0.176 0.0208 0.343 0.0376
DSGA2 16 0.407 0.0415 0.175 0.0190 0.582 0.0581
SGA 4 0.611 0.0780 0.0197 0.00307 0.631 0.0801
DSGA3 4 0.324 0.0311 0.0195 0.00231 0.343 0.0321
SGA 8 1.32 0.116 0.0406 0.00391 1.36 0.120
DSGA3 8 0.558 0.0626 0.0542 0.00625 0.612 0.0669
SGA 16 3.14 0.312 0.0904 0.00904 3.23 0.320
DSGA3 16 0.645 0.0737 0.162 0.0180 0.807 0.0889
SGA 32 8.00 1.18 0.220 0.0326 8.23 1.21
DSGA3 32 0.872 0.141 0.492 0.0723 1.36 0.202

(a) Table of timing data
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Fig. 4: Computational performance (seconds) in terms of total com-
putation time (time elapsed from when the first robot starts planning
until the last robot stops). (a) Time per iteration spent in the single
robot planner, propagation of the information reward (DSGA only),
and total computation time. (b) Comparison of the timing differences
between SGA and DSGA3.

given the quadratic runtime (23). The average computation
time increases nearly thirteen times from nr = 4 to nr = 32
robots from 0.631 s to 8.23 s. DSGA performs more reasonably
both in number of planning rounds and number of robots.
With sixteen robots, from DSGA1 to DSGA3, the computation
time increases by only a factor of 2.4 despite tripling the
number of planning rounds, in part due to decreased time
propagating mutual information. When varying the number
of robots, the average computation time varies from 0.343 s
to 1.36 s leading to a 2–6 times speedup as to SGA. Time
spent in the single-robot planner scales approximately linearly
with the number of robots as expected and varies by relatively
little from 0.324 s to 0.872 s. As expected, the information
propagation scales quadratically (24) and becomes significant
only with large numbers of robots. DSGA then significantly
reduces the impact of the single-robot planner on computa-
tional performance as the quadratic runtime of the distributed
planner is due to a single evaluation of mutual information per
robot rather than many evaluations computed within the single-
robot planners. This results in computation times appropriate
for online planning that scale well to large numbers of robots.

VIII. CONCLUSIONS AND FUTURE WORK

The proposed distributed algorithm (DSGA) efficiently
approximates sequential greedy assignment (SGA) and is
appropriate for implementation on multi-robot teams using
distributed computation and online planning. We apply this
algorithm to the problem of multi-robot exploration, and
demonstrate consistent entropy reduction performance in sim-



ulation for large numbers of robots exploring and mapping
a complex three-dimensional environment. The results for
DSGA demonstrate the effectiveness of this simple and ef-
ficient extension of SGA to distributed contexts by taking
advantage of parallel computation. We expect that this result
will be instrumental in development of physical multi-robot
systems that take advantage of online distributed computation
for exploration and similar finite horizon informative planning
problems.

Although planning is no longer entirely sequential, the
assignment in the subset selection step is still sequential
resulting in the same asymptotic run time as sequential greedy
assignment. Introducing bounds on the pairwise mutual infor-
mation and assumptions on the multi-robot team’s geometry
can potentially lead to further reduction in the runtime of the
proposed algorithm and extension of the proposed approach
to teams of robots that have incomplete connectivity.

APPENDIX

Proof of Theorem 2: The proof of the suboptimality
bound on DSGA is similar to [30] or [1] and incorporates
suboptimality of the single-robot planner [28]

I(M ;Y ∗)
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(
I(M ;Y d
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Equation (25) follows from monotonicity of mutual infor-
mation and is rearranged to obtain (26). Equation (27) fol-
lows from submodularity. Equation (28) rewrites the previous
expression using conditional mutual information as a sum
over the planning rounds. Equation (29) again follows from
submodularity. Equation (30) follows from substitution of (16).
In Equation (31), we introduce terms that sum to zero, and
in (32) we extract one of these terms using a telescoping sum.
We now have a result that expresses the excess suboptimality
in terms of the decrease in reward from when the planner
is first run to when the plan is assigned. Equation (33)
rearranges the mutual information terms and follows from
writing the mutual informations as differences of entropies.
The last mutual information term is zero due to conditional
independence of observations given the environment leading
to the final result in (34).
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