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Abstract—We present a methodology for fast prototyping
of morphologies and controllers for robot locomotion. Going
beyond simulation-based approaches, we argue that the form
and function of a robot, as well as their interplay with real-
world environmental conditions are critical. Hence, fast de-
sign and learning cycles are necessary to adapt robot shape
and behavior to their environment. To this end, we present
a combination of laminate robot manufacturing and sample-
efficient reinforcement learning. We leverage this methodology
to conduct an extensive robot learning experiment. Inspired
by locomotion in sea turtles, we design a low-cost crawling
robot with variable, interchangeable fins. Learning is performed
using both bio-inspired and original fin designs in an artificial
indoor environment as well as a natural environment in the
Arizona desert. The findings of this study show that static
policies developed in the laboratory do not translate to effective
locomotion strategies in natural environments. In contrast to
that, sample-efficient reinforcement learning can help to rapidly
accommodate changes in the environment or the robot.

I. INTRODUCTION

Robots are often tasked with operating in challenging en-

vironments that are difficult to model accurately. Search-and-

rescue or space exploration tasks, for example, require robots

to navigate through loose, granular media of varying density

and unknown composition, such as sandy desert environments.

A common approach is to use simulations in order to de-

velop ideal locomotion strategies before deployment. Such an

approach, however, requires prior knowledge about ground

composition which may not be available or may fluctuate

significantly. In addition, the sheer complexity of such ter-

rain necessitates the use of approximations when simulating

interactions between the robot and its environment. However,

inaccuracies inherent to approximations can lead to substantial

discrepancies between simulated and real-world performance.

These limitations are especially troublesome as robot design

is also guided by simulations in order to overcome time con-

straints and material deterioration associated with traditional

physical testing.

In this work we argue that the design of effective locomotion

strategies is dependent on the interplay between (a) the shape

of the robot, (b) the behavioral and adaptive capabilities of

the robot, and (c) the characteristics of the environment. In

particular, adverse and dynamic terrains require a design pro-

Fig. 1: A robot made from a multi-layer composite learns how

to move across sand in the Arizona desert.

cess in which both form and function of a robot can be rapidly

adapted to numerous environmental constraints. To this end,

we introduce a novel methodology employing a combination

of fast prototyping and manufacturing with sample-efficient

reinforcement, thereby enabling practical, physical testing-

based design.

First, we describe a manufacturing process in which foldable

robotic devices (Fig. 1) are constructed out of a single planar

shape consisting of multiple laminated layers of material. The

overall production time of a robot using this manufacturing

method is in the range of a few hours, i.e., from the first laser-

cut to the deployment. As a result, changes to the robot shape

can be performed by quickly iterating over several low-cost

design cycles.

In addition to rapid design refinement and iteration, the

synthesis of effective robot control policies is also of vital

importance. Variations in terrain, the assembly process, motor

properties, and other factors can heavily influence the optimal

locomotion policy. Manual coding and adaptation of control

policies is, therefore, a laborious and time-intensive process

which may have to be repeated whenever the robot or terrain

properties change, especially drift in actuation or changes in

media granularity. Reinforcement learning (RL) methods [21]

are a potential solution to this problem. Using a trial-and-error

process, RL methods explore the policy space in search of



solutions that maximize the expected reward, e.g., the distance

traveled while executing the policy. However, RL algorithms

typically require thousands or hundreds of thousands of trials

before they converge on a suitable policy [17]. Performing

large numbers of experiments on a physical robot causes

wear-and-tear on hardware, leads to drift in sensing and

actuation, and may require extensive human involvement. This

severely limits the number of learning experiments that can be

performed within a reasonable amount of time.

A key element of our approach is a sample-efficient RL [11]

method which is used for swift learning and adaptation

whenever the changes occur to the robot or the environment.

By leveraging the low-dimensional nature and periodicity of

locomotion gaits, we can rapidly synthesize effective control

policies that are best adapted to the current terrain. We show

that using this method, the learning process quickly converges

towards appropriate policy parameters. This translates to learn-

ing times of about 2-3 hours on the physical robot.

We leverage this methodology to conduct an extensive robot

learning experiment. Inspired by locomotion in sea turtles, we

design a low-cost crawler robot with variable, interchangeable

fins. Learning is performed with different bio-inspired and

original fin designs in both an indoor, artificial environment,

as well as a natural environment in the Arizona desert. The

findings of this experiment indicate that artificial environments

consisting of poppy seeds, plastic granulates or other popular

loose media substitutes may be a poor replacement for true

environmental conditions. Hence, even policies that are not

learned in simulation, but rather on granulate substitutes in

the lab may not translate to reasonable locomotion skills in the

real-world. In addition, our findings show that reinforcement

learning is a crucial component in adapting and coping with

variability in the environment, the robot, and the manufactur-

ing process.

We thus demonstrate that the combination of a rapid proto-

typing process for robot design (form) and the fast learning of

robot policies (function) enables environment-adaptive robot

locomotion.

II. RELATED WORK

Prior studies have indicated that locomotion in granulate

media is dependent upon successful compaction of the sub-

strate, without causing fluidization [9, 15, 14]. Unfortunately,

the dynamic response of granulate media during locomotion

is difficult to predictively simulate or replicate [9, 15, 1]. In

desert environments, this difficulty is compounded by the het-

erogeneous composition of the loose, sandy topsoil, making it

nearly impossible to predict the effectiveness of any locomotor

strategy a priori [9, 1]. In practice, the performance of robotic

systems in heterogeneous granulate media, particularly in xeric

habitats, must be evaluated post-hoc and iteratively improved

(see for example [15]) through successive design refinements

and adaptive learning of locomotion.

Finned animals, and sea turtles in particular, have achieved

highly stable and efficient locomotion through heterogeneous

granulate substrata [14, 9, 15]. Of the many animals capable

of effective locomotion in sand, we drew most heavily upon

the sea turtle due to the simplicity and stability of its motion

[25]. Unlike sand-swimming animals, like sand lizards [13],

finned animals (such as sea turtles) require fewer degrees of

freedom and actuated joints to achieve forward motion.

A robotic analogue to sea turtles, FlipperBot (FBot), was

designed to provide a two-limbed approximation of sea turtle

locomotion in an ongoing effort to characterize the motion of

finned animals through sand [15]. Unlike other robotic devices

inspired by turtles, FBot was designed for locomotion in

granulate media and not for swimming [10, 26]. FBot features

two degrees of freedom for each limb; however, the fins were

configured such that they could be either fixed (relative to the

arm) or free to rotate. The combined quasi-static motion of

the limbs was similar to a “breast stroke”, dragging the body

through the sand [15].

In general, the “bio-inspired robotics” approach [2] has

proven fruitful for designing laboratory robots with new ca-

pabilities (new gaits, morphologies, control schemes), includ-

ing rapid running [3, 18], slithering [22], flying [12], and

“swimming” in sand [13]. In addition, using the biologically

inspired robots as “physical models” of the organisms has

revealed scientific insights into the principles that govern

movement in biological systems, as well as new insights into

low-dimensional dynamical systems (see for example [7] and

references therein). Our work differs fundamentally from these

works, not only in execution, but also in principle: we aim to

generate optimal motion through bio-mimicry and learning,

rather than learning how optima are generated in a biological

system.

III. METHODOLOGY

In this section, we describe our methodology for fast robot

prototyping and learning. We discuss a sample-efficient rein-

forcement learning method that enables fast learning of new

locomotion skills. In combination with a laminate robot man-

ufacturing process, our method allows for rapid iterations over

both form and function of a robot. The main rationale behind

this approach is that environmental conditions are often hard

to reproduce outside of the natural application domain. Hence,

the development cycle should be informed by experiences

in the real application domain, e.g., on challenging terrain

such as desert environments. Our approach facilitates this

process and significantly reduces the underlying development

time. Consequently, we will describe the methodology for

prototyping form and function in more detail.

A. FORM: Laminate Robot Manufacturing

Laminate manufacturing can be used in order to con-

struct affordable, light-weight robots. Laminate fabrication

processes (known as SCM [24], PC-MEMS [20], popup-book

MEMS [23], lamina-emergent mechanisms [6], etc.) permit

rapid construction from planar sheets of material which are

iteratively cut, aligned, stacked, and laminated to form a

composite material.



(a) (b) (c)

Fig. 2: Manufacturing of laminate robotic mechanisms: (a) The robot components are engraved using a laser cutter on planar

sheets and later laminated. (b) The components are folded into a robotic structure. The motors, the control board, and the

battery are added manually. (c) The full fabrication process.

Fig. 3: The laminates involved are constructed as a sandwich

of five layers: poster-board, adhesive, polyester, adhesive, and

poster-board.

The laminate mechanisms discussed in this paper were

printed in five layers. As shown in Figure 3, two rigid layers of

1mm-thick poster-board are sandwiched around two adhesive

layers of Drytac MHA heat-activated acrylic adhesive, which

is itself sandwiched around a single layer of 50 µm-thick

polyester film from McMaster-Carr. Flat sheets of each mate-

rial are cut out on a laser cutter, then stacked and aligned using

a jig with holes pre-cut in the first pass of the laser cut. Once

aligned, these layers are fused together using a heated press in

order to create a single laminate. The adhesive cures at around

85-104 degrees Celsius, and comes with a paper backing

which allows it to be cut, aligned with the poster-board, and

laminated. The paper backing is then removed, and the two

adhesive-mounted poster-board layers are aligned with the

center layer of polyester and laminated again. This laminate

is returned to the laser, where a second release cut permits the

device to be separated from surrounding scrap material and

erected into a final three-dimensional configuration.

Laminate mechanisms resulting from this process are ca-

pable of a high degree of precision through bending of

flexure-based hinges created through the selective removal of

rigid material along desired bend axes. With fewer rolling

contacts(bearings) than would typically be found in traditional

robots, laminate mechanisms are ideal in sandy environments,

where sand infiltration can shorten service life. Connections

between layers can be established through adhesive layers,

in addition to plastic rivets which permit quick attachment

between laminates. Mounting holes permit attaching a va-

riety of off-the-shelf components including motors, micro-

controllers, and sensors. Rapid attachment/detachment is a

highly desired feature for this platform, as different flipper

designs can be tested using the same base platform. In all,

this fabrication method permits rapid iteration during the

design phase, and rapid re-configuration for testing a variety

of designs across a wide range of force and length scales, due

to its compatibility with a wide range of materials. Fig. 2(a)

depicts the basic planar sheets after cutting. Fig. 2(b) shows

the individual components of the robot after they are detached

from the sheets and folded into a structure. Fig. 2(c) is the full

fabrication process. The whole manufacturing process of one

robot takes up to 50 minutes while the 3D-printing process

of four horns, which serve as connections between the motors

and the paper, takes 58 minutes.

B. FUNCTION: Sample-Efficient Reinforcement Learning

In this section we discuss a sample-efficient RL method

that converges on optimal locomotion policies within a small

number of robot trials. Our approach leverages two key

insights about human and animal locomotion. In particular,

locomotion is (a) inherently low-dimensional and based on a

small number of motor synergies [8], as well as (b) highly

periodic in nature.

To implement these insights within a reinforcement learning

framework, we build upon the Group Factor Policy Search

(GrouPS) algorithm introduced by Luck et al. [11]. GrouPS

jointly searches for a low-dimensional control policy as well

as a projection matrix W for embedding the results into a

high-dimensional control space. It was previously shown [11]

that the algorithm is able to uncover optimal policies after a

few iterations with only hundreds of samples. Group Factor

Policy Search models the joint actions as a
(m)
t = (W(m)

Z+
M

(m) +E
(m))φ(s, t) for each time step t of a trajectory and

each m-th group of actions. The matrix W represents the

transformation matrix from the low dimensional to the high

dimensional space (exploitation) and M the parameters of the

current mean policy. The entries of the matrices Z and E

are Gaussian distributed with zij ∼ N(0, 1) for the latent

values and eij ∼ N(0, τ−1
m ) for the isotropic exploration.

The function φ(s, t) consists of basis functions φi(s, t) and

depends in our experiments only of the time step t and not of

the full state s. In contrast to the work in [11], however, we

incorporate periodicity constraints into the search process by

focusing on periodic feature functions. We use periodic basis



functions over 20 time steps for the control signal, see Fig. 4.

Given a point in time t we compute each control dimension

ai by

ai =
∑

j

(w̃ij +mij + eij) sin

(

t

T
720◦ +

j − 1

J
360◦

)

(1)

with w̃ij =
∑

k wikzkj and J being the number of basis

functions in φ(s, t).
GrouPS also takes prior information about potential group-

ings of joints into account when searching for an optimal

transformation matrix W. For our robotic device we used

two groups: the first group consists of the two fin-joints and

the second group of the two base-joints. Thus, we exploit the

symmetry of the design. The number of dimensions of the

manifold was set to three and the rank parameter, controlling

the sparsity and structure of W, to one. The outline of

the algorithm can be found in Algorithm 1. Incorporating

dimensionality reduction, periodicity, and information about

the group structure yields a highly sample-efficient algorithm.

Input: Reward function R (·) and initializations of

parameters. Choose number of latent

dimension n and rank r. Set hyper-parameter

and define groupings of actions.

while reward not converged do

for h=1:H do # Sample H rollouts

for t=1:T do
at = WZφ+Mφ+Eφ

with Z ∼ N (0, I) and E ∼ N (0, τ̃ ),
where τ̃

(m) = τ̃−1
m I

Execute action at

Observe and store reward R (τ)

Initialization of q-distribution

while not converged do

Update q (M), q (W), q
(

Z̃

)

, q (α) and q (τ̃ )

M = Eq(M) [M]
W = Eq(W) [W]
α = Eq(α) [α]
τ̃ = Eq(τ̃ ) [τ̃ ]

Result: Linear weights M for the feature vector φ,

representing the final policy. The columns of

W represent the factors of the latent space.

Algorithm 1: Outline of the Group Factor Policy

Search (GrouPS) algorithm as presented in [11].

IV. A FOLDABLE ROBOTIC SEA TURTLE

With the general methodology established, this section

introduces the design of the robotic device used in this

research. As discussed in Sec. II, our design takes inspiration

from sea turtles. By necessity, the design also conforms to

(a) Basis functions φ(t)1:5. (b) Basis functions φ(t)6:10.

Fig. 4: The sinusoidal basis functions φ(t) used for learning

in this paper. Each basis function is based on a sine curve

and shifted in time. The final policy is based on a linear

combination of these functions.

(a) (b)

Fig. 5: The initial “flat body” design of the robot. The front of

the robot buried into the sand during motion. The body was

later curved

the constraints of the laminate fabrication techniques being

employed – primarily that it is composed of a single planar

layer. The salient aspects of Chelonioid morphology integrated

into our design are described below.

A. Biological Inspiration

The design of our laminate device was primarily inspired

by the anatomy and locomotion of sea turtles. We chose to

focus on the terrestrial locomotion of adult sea turtles, rather

than juveniles or hatchlings, emphasizing the greater load-

bearing capacity and stability of their anatomy and behavior.

There are seven recognized species in Cheloniodea in six

genera [19]. In spite of considerable inter-specific differences

in morphology, all sea turtles use the same set of anatomical

features to generate motion. Specifically, adult sea turtles

support themselves on the radial edge of the forelimbs to (1)

elevate the body (thus reducing or eliminating drag) and (2)

generate forward motion [25]. This unique behavior allows

these large and exceedingly heavy animals (up to 915 kg in

Dermochelys coriacea (Vandelli, 1761)1) to move in a stable

and effective manner through granular media [5].

B. Robot Design

Focusing on the turtle’s forelimb for generating locomotion,

the robot form and structure was determined within an iterative

1Pursuant to the International Code of Zoological Nomenclature, the first
mention of any specific epithet will include the full genus and species names
as a binomen (two part name) followed by the author and date of publication
of the name. This is not an in-line reference; it is a part of the name itself
and refers to a particular species-concept as indicated in the description of
the species by that author.



(a) (b) (c) (d)

Fig. 6: Sequence of actions the robotic arm executes in each learning cycle: (a) First the robot under test is located in the

testbed, grasped and then (b) subsequently moved into a resting position. The robotic arm proceeds to (c) smooth the testbed

with a tool. Finally, the robot under test is (d) put into its initial position and the next trajectory is executed.

design cycle. In all designs, the body was suitably broad

to prevent sinking during forward motion, and remained in

contact with the ground at rest. This provides stability while

removing the need for the limbs to bear the weight of the

body at all times. A major benefit of this configuration is

that only the two forelimbs are needed to generate forward

thrust. Transmission of load occurs primarily under tension

(as in muscles), to accommodate the laminate material and to

provide dampening to reduce joint wear. The limbs have 2

rotational degrees of freedom, such that the fins move down

and back into the substrate, while the body moves up and

forward. This two degree of freedom arm was sufficient to

replicate the circular motion of the fins (and particularly of

the radial edge) observed in sea turtles (see [25]).

Initial experiments attempted on early prototypes revealed

a critical design flaw: the anterior end was prone to “plowing”

into the substrate (see Fig. 5). This limitation was solved by

mimicking two features of turtle anatomy. First, the apical

portion of the design is shaped to elevate the body above sand,

with an upturned apex, similar to upturned intergular and gular

scales of the anterior sea turtle plastron (see [19]). Second, the

back end of the body was tapered to reduce drag (as compared

to a rectangular end of equal length).

In the final design cycle, we also sought to mimic and

explore the morphology of the fins. Extant sea turtle species

exhibit a variety of fin shapes and include irregularities seen

on the outer edges, such as scales and claws. These features

are known to be used for terrestrial locomotion by articulating

with the surface directly (rather than being buried in the

substrate) [14, 4]. In order to understand how fin shape affects

locomotion performance, we designed four pairs of fins: two

generated from outlines of sea turtle fins which include all

irregularities (Caretta caretta (Linnaeus, 1758) and Natator

depressus (Garman, 1880), from [19]), and two based on

artificial shapes with no irregularities, as shown in Fig. 7. All

of these were attached to the main body at a position equivalent

to the anatomical location of the humeroradial joint (part of

the elbow in the fin), and scaled to the width of the body.

The arms of the robot were designed such that the fins can

be interchanged at will, allowing for easy comparison of fin

performance.

A B C D

Fig. 7: The four different design of fins used for the presented

robotic device. Designs A and C are accurate reproductions

of the actual shape of sea turtle fins, namely Caretta caretta

(A) and Natator depressus (C). Designs B and D are simple

rectangular and ellipsoid shapes.

V. EXPERIMENTS

In this section, we focus on evaluating the locomotion

performance of the prototypes generated with our laminate

fabrication process. In particular, the robustness to variations

stemming from the terrain and manufacturing process, and the

sensitivity to changes in the physical fin shape.

More formally, there are three hypotheses that we experi-

mentally evaluate:

H1 Group Factor Policy Search is able to find an improved

locomotion policy – with respect to distance traveled forward

– in a limited number of trials, despite the presence of

variations in the rapidly prototyped robotic device and the

environment.

H2 The shape of the fin influences the performance of the

locomotion policy.

H3 The locomotion policies learned in the natural

environment out-perform those learned in the artificial

environment, when executed in the natural environment.

These hypotheses are tested through the following experi-

ments.

A. Evaluation of Fin Designs

This experiment is designed to evaluate the effectiveness

of locomotion policies generated for the four types of fins

described in Sec. IV. Five independent learning sessions were

conducted for each fin, consisting of 10 policy search iterations



(a) Comparison between fin A and fin B. (b) Comparison between fin C and fin D. (c) Comparison between all fins.

Fig. 8: Comparison between the learning for different fin designs. Each experiment was performed five times and mean/standard

deviations were computed. The learning process was performed on poppy seeds.

each for a total of 1050 policy executions per fin. The

experiment was performed in an indoor, artificial environment

utilizing poppy seeds (similar to [16]) as a granulate material

substitute for sand – they are less abrasive and increase

the longevity of prototypes. Human involvement, and thus

randomness, was minimized during the learning process by

employing an articulated robotic arm (UR5). This arm was

responsible for placing the robot under test in the artificial

environment prior to each policy execution, then subsequently

removing it and resetting the environment with a leveling tool.

This sequence of actions is depicted in Fig. 6.

The policy search reward was automatically computed by

measuring the distance (in pixel values) that a target affixed to

the robot traveled with a standard 2D high-definition webcam.

This was computed from still frames captured before and after

policy execution. After learning, the mean iteration policies

were manually executed and measured in order to produce

metric distance rewards for comparison.

B. Policy Learning in a Desert Environment

The second experiment was designed to test how well

policies transfer between environments, and whether policies

learned in-situ are more effective than policies learned in

other environments. Over the course of two days, the policies

generated for each fin in the artificial environment from the

first experiment were executed in a desert environment in the

Tonto National Forest of Arizona in order to measure their

distance rewards. We opted to create a flattened test bed as

shown in Fig. 9, rather than using untouched ground, in order

to reduce locomotion bias due to inclines, rocks, and plants.

Furthermore, two additional learning sessions were con-

ducted for fins A and C in the same test bed in order

to provide a point of comparison. To maintain consistency

with the first experiment, learning was performed with 10

Policy Search iterations and reward values were measured via

camera. Manually measured distance values for each mean

iteration policy were obtained after learning. A video of the

learning process and supplementary material can be found on

http://www.c-turtle.org.

Fig. 9: The testbed in the Arizona desert used for evaluating

and learning policies in a real environment. The surface of the

testbed is flattened in order to increase comparability between

the values measured for each policy.

VI. RESULTS

The rewards achieved by policies learned on poppy seeds are

presented in Figure 8 with their mean and standard deviation

over the conducted experiments. Figure 8 (a) compares the bio-

logically inspired fin A (C. caretta) and the simple rectangular

shape. The second biologically inspired fin C (N. depressus)

and the artificial oval fin can be found in Figure 8 (b), both

with a similar performance. The mean values of the learned

policies are given in Figure 8 (c). The reward in these plots is

given as pixel distances, as recorded by the camera, covered

by the robot with its movement, which means that fin A (C.

caretta) outperforms all other fin designs. On the opposite,

the rectangular shaped fin shows the worst performance. This

can also be seen in Figure 10 which compares the mean and

standard deviation of achieved rewards in the last iteration of

the learning process between the four different fin designs.

Two different fin designs, A (C. caretta) and C (N. de-

pressus), were selected for the comparison between policies

learned on poppy seeds and policies learned in a natural

environment. Figure 11 (a) and (b) show the covered distances

in centimeters for policies learned and executed on poppy

seeds as well as executed in the desert for each iteration.

The third policy for each fin was learned and evaluated in

the desert. It can be seen that the policy learned in the natural

environment outperforms the policies learned on the substitute

in the laboratory environment.

http://www.c-turtle.org


Fig. 10: The mean and standard deviation of policies for each

fin design in the last iteration of the learning process. The

rewards represent the distance the robot moved forward.

A series of images from the executions of the policies are

shown in Figure 12. The pictures show the final position

after execution of policies learned in iteration one, four, six,

eight and ten. The images in Figure 12 (b) and (c) show the

difference in covered length between policies learned on poppy

seeds and the policies learned in the natural environment.

VII. DISCUSSION

The results shown in Fig. 8 and Fig. 11 indicate that for

every fin that underwent learning, in both artificial and natural

environments, the final locomotion policy shows some degree

of improvement with regard to distance traveled by the robot

after only 10 iterations. This supports hypothesis H1 which

postulated that Group Factor Policy Search would find an

improved locomotion policy in a limited number of trials,

despite variations in the environment and fin shape.

However, the results also indicate that some fins clearly

performed better than others. For example, fin B only achieved

a mean pixel reward of 35.2 in the artificial environment, while

fin A saw a mean pixel reward of 141.8, as shown in Fig. 8a.

This supports H2, which hypothesized that the physical shape

of the fin affects locomotion performance.

It is interesting to note that the biologically inspired fins (A

and C) out-performed the artificial fins (B and D) on average.

At least part of this may be due to the intersection of the fin

and the ground when they make contact at an angle, as is the

case in our robotic design. The biological fins have a curved

design which increases the surface area that is in contact with

granulate media when compared to the artificial fins while the

overall surface areas of artificial fins and biologically inspired

fins are comparable to each other. Furthermore, fin B exhibited

significant deformation when in contact with the ground which

likely reduced its effectiveness in producing forward motion.

The results shown in Fig. 11 support hypothesis H3, in

that policies learned in the natural environment outperform

the policies that were learned in the artificial environment. We

reason that part of this discrepancy is due to the composition of

the granulate material. The poppy seeds used in the artificial

environment have an average density of 0.54 g/ml with a –

qualitatively speaking – homogeneous seed size, while the

sand grains in the desert have an average density of 1.46

(a) Comparison between policies learned for fin design C. The al-
gorithm was initialized with the same random number generator for
learning.

(b) Comparison between policies learned for fin design A. The al-
gorithm was initialized with the same random number generator for
learning. Due to a technical issue only pixel distances were recorded
for learning in the desert. For comparability those pixel distances were
transformed into centimeters but are attached with a variance of about
3.5cm.

Fig. 11: Comparison between polices learned on poppy seeds

and executed on poppy seeds (LPS), learned on poppy seeds

and executed in a desert environment, and policies learned and

executed in a desert environment.

g/ml and a heterogeneous grain size. These results indicate

that artificial environments consisting of popular granulate

substitutes, such as poppy seeds, may not yield performance

comparable to the real-world environments that they are

mimicking. Thus, it is not only simulations that can yield

performance discrepancies, but also physical environments.

Additionally, we observed that the composition of the

natural environment itself fluctuated over time. For instance,

we measured a difference in the moisture content of the sand

of nearly 82% between the two days in which we performed

experiments: 1.59% and 0.87% by weight. These factors may

serve to make the target environment difficult to emulate,

and suggest that not only are discrepancies possible between

simulated environments, artificial environments, and actual

environments, but also between the same actual environment

over time. We suspect that lifelong learning might be a

possible solution to this problem.

Yet another interesting observation can be made from the

gaits shown in Fig. 13. The cycle produced by the fin during

a more effective policy extends deeper and further than that



(a) Executions of policies learned on poppy seeds. The start position of the robot was on the wall of the testbed on the left side.

(b) Executions of policies learned on poppy seeds and executed in a real desert environment. The white line shows the start position of the
robot.

(c) Executions of policies learned in a desert environment. The white line shows the start position of the robot.

Fig. 12: Executions of learned policies on poppy seeds and in a real desert environment. Row (a) shows the execution of the

policies learned on poppy seeds which are also executed in a real desert environment in (b). Finally, (c) shows the policies

learned and executed in the desert. For both learning experiments the same initial values and random number generators were

used. The images show the executions of trajectories after 1, 4, 6, 8 and 10 iterations.

Fig. 13: Top: the gait produced by the right fin after iteration

10 with fin A. Bottom: the gait produced by the right fin of

the robot after iteration 3.

produced during a less effective policy. Intuitively, we can

reason that this more effective policy pushes against a larger

volume of sand, generating more force for forward motion.

VIII. CONCLUSION

In this paper, we presented a methodology for rapid proto-

typing of robotic structures for terrestrial locomotion. A com-

bination of laminate robot manufacturing and sample-efficient

reinforcement learning enables re-configuration and adaptation

of both form and function to best fit environmental constraints.

In turn, this approach decreases the amount of time for the

development-production-learning-deployment cycle. With the

presented techniques, it is possible to construct a robot out of

raw material and learn a controller for locomotion in under a

day. We designed a bio-inspired robotic device using the new

methodology and, consequently, conducted an extensive robot

learning study which involved several thousand executions.

The experiment was performed with different sets of fins, both

inside the lab, as well as in the desert of Arizona. Our results

indicate the approach is well-suited for fast adaptation to new

ground.

The results also show that granulates which are commonly

used as a replacement for sand in robotics laboratories may not

be an effective replacement. More specifically, the efficiency

of robot control policies learned on such granulates in the lab-

oratory were not as effective when deployed outside. A variety

of factors such as variability in actuation, energy supply, the

manufacturing process, or the terrain may contribute to this

phenomenon. Consequently, learning and adaptation is of cru-

cial importance. The discussed sample-efficient reinforcement

learning algorithm enabled robots to quickly adapt an existing

policy or learn a new one. Learning time was typically in the

range of 2 − 3 hours. The results also show that biological

inspiration in the fin design can lead to significant advantages

in the resulting policies, even when learning was employed.

For future work we aim to investigate life-long learning

approaches that do not separate between a training and a

deployment phase. Using an accelerometer, the robot could

continuously calculate rewards and update the control policy.
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