Creating Foldable Polyhedral Nets
Using Evolution Control

Yue Hao Yun-hyeong Kim
George Mason University Seoul National University

Fairfax, VA Seoul, South Korea
yhao3@gmu.edu yunhyk1202 @ gmail.com

Abstract—Recent innovations enable robots to be manufac-
tured using low-cost planar active material and self-folded into
3D structures. The current practice for designing such structures
often uses two decoupled steps: generating an unfolding (called
net) from a 3D shape, and then finding collision-free folding
motion that brings the net back to the 3D shape. This raises
a foldability problem, namely that there is no guarantee that
continuous motion can be found in the latter step, given a net
generated in the former step. Direct evaluation on the foldability
of a net is nontrivial and can be computationally expensive. This
paper presents a novel learning strategy that generates foldable
nets using an optimized genetic-based unfolder. The proposed
strategy yields a fitness function that combines the geometric
and topological properties of a net to approximate the foldability.
The fitness function is then optimized in an evolution control
framework to generate foldable nets. The experimental results
show that our new unfolder generates valid unfoldings that
are easy to fold. Consequently, our approach opens a door to
automate the design of more complex self-folding machines.

I. INTRODUCTION

The concept of self-folding machines has recently inspired
many innovations [1], [2], [3]. Especially for robots made
from low costs 2D active material that can be folded into
3D shape using light or heat [4]], [S]. However, most of these
robots cannot perform complex folding motions, e.g., can only
uniformly rotate their hinges [6]. Even for self-folding robots
equipped with mechanical hinges [[L], [7]], it is highly desirable
to reduce the complexity of folding motion. These limitations
and constraints raise a problem: given a target 3D shape, how
should one design a 2D pattern that can be rigidly folded into
the desired 3D shape without stretching or self-collision by
following a folding motion that is as simple as possible?

Creating unfolding of a 3D polyhedron by cutting along
its edges, called edge unfolding or polyhedral net [8|] (or
simply net), is known to be computationally intractable [9].
Finding folding motion that brings the unfolded 2D state to the
target 3D state rigidly (i.e., without deforming the polyhedral
facets) along the uncut edges (i.e., the crease lines) is also
computationally intractable, if the shape is non-convex [10].
Because of these tremendous challenges in designing foldable
nets, finding a net and its folding motion are almost always
addressed as two independent steps, with the exception of
convex shapes. However, there are abundant examples showing
that this decoupled approach fails to create foldable nets even
for simple non-convex shapes. As illustrated in Fig. |1} the
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Fig. 1: Foldability of nets of an L mesh with 28 triangles. (a) A
net with deep self-intersections (shown in red) throughout the
path linearly interpolated between start and goal configurations
(linear path). (b) Another net with shallower self-collisions
along the linear path (top). This net can be folded by a motion
planner that uncovers the implicit ordering (bottom); (c) A net
generated using the proposed method is linearly foldable.

foldability of the nets created from a single polyhedron can
vary significantly. Fig. 1| shows three nets generated from an
L-shaped object. From their shapes, It is not obvious which a
net is foldable, at least not until that we see the self-collisions
(shown in red in Fig. [T[(a)&(b)). In fact, these three nets have
different levels of foldability. For example, the net shown in
Fig. [I[c) is foldable by linearly interpolating the initial and
target configurations, while the others are not. We call such
a net: linearly foldable. There are also significant differences
in computation cost for planning folding paths of these nets.
Finding a collision-free folding motion for an arbitrary net in
Fig.[T|b) takes about 30 times longer than that of the optimized
nets in Fig. [T[c).

Challenges and Contributions. Given a polyhedron mesh
with |F| faces, there are 0(2\/‘?|) possible unfoldings [[T1]].
It is simply not feasible to enumerate all of them and evaluate
their foldability. In this paper, we seek to unfold 3D shapes



into polyhedral nets that can be easily folded, such as the net
shown in Fig. [T[c). As to be formally defined in Section [[TI-A]
our approach can create nets that are linearly foldable and
uniformly foldable, if such nets exist.

To our best knowledge, this is the first work that designs
self-folding machines by optimizing the foldability as well
as the quality of foldability of nets. Existing methods either
generate nets without considering foldability [12f], [11], [L3],
[14] or plan motion on given nets ignoring the fact that net
structures have significant impact on foldability [15], [16]],
[L7], [18]. The challenge of considering both net design and
foldability is significant; if we are to draw some analogy
from robot design, both the form and motion of the robot
are unknown to us, only the target structure and constraints
are given.

Inspired by the ideas of fitness approximation and evolution
control [19]], we propose a novel learning strategy (shown in
Fig. 2) to overcome two major obstacles in both net design and
robot design: large number of design parameters and expensive
evaluation function. We will show that foldable net can be gen-
erated without sophisticated hypothesis models for the fitness
function (in Sections [[V]). Our approach is computationally
efficient and requires significantly fewer evaluations in each
iteration. To handle complex 3D structures, we further reduce
the training time via biased sampling and transfer learning (in
Section [V). Our experiments demonstrate that the polyhedral
nets generated using our method are up to 87 times faster for
the planner to fold (in Section [VI). We would also like to refer
the readers to [20] that describes the fabrication aspects and
user studies of the proposed method.

II. BACKGROUND

In this section, we briefly reviews recent developements
in polyhedral unfoldings and folding motion planning. For
the convenience of narration in this paper, we use unfolding
to denote the process of creating a net without considering
motion and use folding exclusively to address the motion
aspect of the problem. When combining both unfolding and
folding, it raises a designing problem: for a given shape, how
one can design a foldable unfolding.

In the existing literature, this designing problem has only
been addressed for convex shapes. Demaine et al. [10] pre-
sented a polynomial time algorithm that can unfold and fold
all convex polyhedra without self-intersection using source
unfolding [21].

A. Unfolding a Polyhedron

Given a polyhedron P, edge unfolding is a function u(P)
that rigidly transforms the faces of P to produce a net N by
cutting along the edges of P. Finding an edge unfolding of
P is equivalent to finding a spanning tree in the dual graph
of P and ensuring that the flattened faces in a spanning tree
do not overlap. An edge unfolding free of overlapping faces
is a net. Finding nets of convex P is much easier than non-
convex polyhedra. Effective heuristic methods [12], [11]] have
been developed to unfold convex polyhedra by designing edge

weights so that the resulting minimum spanning tree is likely
to be a net.

Finding nets of non-convex shapes is significantly more
challenging. Often segmentation is needed to avoid overlap-
ping [[L1]]. To avoid over segmentation, genetic-based optimiza-
tion methods [13], [[14] evolve the unfoldings by mutating the
cut edges until a net with zero overlaps is found. The evolution
is controlled by a fitness function f : N — R that evaluates
an unfolding N. An examples of f(NV) [14] is defined as:

F(N) = —(Nodo + A101) (1

where d( is the number of overlaps in the unfolding N, ¢; is
the number of hyperbolic vertices that cause local overlaps in
N, and )\ and \; are user parameters. Obviously, the value
f(IN) of a valid net N must be 0, however, it is not guaranteed
that N can be folded back to P without self-intersection [22].

B. Folding a Net

Planning folding motion of a given net is nontrivial. Early
research focused mostly on folding origami [15[], [16], [23],
[24] that usually have many faces but low Degrees of Freedom
(DoF) due to the closure constraints. On the other hand,
polyhedral nets have high DoF. The motion of these nets is
typically found by a motion planner that models the net as
a tree-like articulated robot. For example, Song and Amato
[17] proposed a PRM-based planner for nets generated from
non-convex polyhedra. Recently, another motion planner has
been developed by Xi and Lien [18] that focuses on finding
implicit folding order of a net. This approach is proved to be
more effective, especially for non-convex models. However,
depending on the polyhedra nets, the planning may require
long computation time even for simple shapes. For large nets,
it can take hours find a path and ends up with complex motions
that are not desirable for physical realization. Moreover, these
approaches ignore the fact that foldability of an unfolding not
only depends on its motion but also on its structure.

C. Optimal Robot Design and Evolving Robot Morphology

The problem of finding the foldable nets is closely related
to the process of designing a robot. The research of optimal
robot design focuses on automating the design of robot’s
physical morphology to improve certain general performances,
e.g. dexterity, stiffness, accuracy etc., or performance on a
specific application. An early research traces back to Kirdanski
[25], who optimized the link lengths to boost the robot’s
operations near isotropic configurations. The optimization is
limited and the topology is fixed as a two or three DoF serial
manipulator. Later, Stocco et. al. [26] and van Henten et.
al. [27] considered the robot’s structure, demonstrating the
decision of structures may having a larger impact on the
performance than other parameters. These methods rely on
quantifying certain features of robot’s performance, which, in
our case, is extremely difficult to obtain efficiently. Estimating
the overlapping workspace of the manipulators of the folding
nets is not feasible nor necessary. Lund et. al. [28] takes a
different approach towards this problem. In their research,
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Fig. 2: Overview of the proposed learning strategy. In each iteration, multiple genetic-based unfolders running in parallel (shown
in the boxes) generate polyhedral nets using the assigned fitness functions { f }. The best individuals are then evaluated by
the motion planner f*. An external CMA-ES optimizer then updates the fitness functions { f } according to their performance
from f*. This process is repeated until the evaluated folding time converges.

they use genetic algorithms to encode the body parameters of
robot hardware into a morphological space. These parameters,
e.g. robot wheel size, are then evolved through evaluating of
the robot’s performance on a specific task in the simulation.
However, similar to previous work, the parallel/serial structure
or prismatic and rotational joints are still manually chosen,
rather than free parameters.

The idea of evolving virtual creatures, originally attempted
by Sims [29], where the robot morphology is represented
in directed graphs. This method evolves new topologies but
lacks improvements in complexity and does not scale to large
parameter spaces. Some recent researches were able to evolve
more complex robots using compositional pattern-producing
networks [30], [31], [32]. Even with the advanced encoding
methods, evolving folding robots is still computationally infea-
sible with constraint kinematics of folding robots. Our work
seeks to combine the domain knowledge of polyhedral nets to
facilitate the encoding.

III. PRELIMINARIES

This section defines two important building blocks of our
method: (1) foldability and (2) the concept of fitness approx-
imation and evolution control.

A. Foldability of Polyhedral Nets

If a polyhedral net N is modeled as a tree-like articulated
robot, the configuration space (C-space) C of N is the set
of valid configurations ¢ = {6;}, where 6; is the folding
angle of each hinge. The free configuration space (C-free) is a
subset of C where N has no self-intersection. For self-folding
machines made of active materials, the folding motion is more
constrained, as most hinges can only rotate monotonically or
uniformly at the same speed. Due to a lack of coverage in
the existing literature, we provide the following definitions to
better describe the foldability of nets under these constraints.

Note that dynamics are often not considered in the context
of computational folding, and in our discussion, the folding
motion is considered quasi-static.

Ggoal
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Fig. 3: Illustration of 2D C-space for different foldabilities.
(left) the blue path does not satisfy monotonic foldability, as
folding angle #; does not monotonically increase. (right) the
solid blue line shows the linear folding path and dashed red
line shows the uniform folding path.

a) Continuously Foldable: Continuous foldable means a
net IV can be folded back to P without self-collision regardless
the complexity of the folding motion.

b) Monotonically Foldable: The monotonic foldability
is a special case in continuous foldability, where the angular
velocity must remain positive 0; > 0 or negative 0, <0
throughout the folding, as many active material driven hinges
cannot reverse the direction. Shown in Fig. |§| (left), some
hinges need to fold forward and backward to avoid self-
collision for non-monotonically foldable nets.

¢) Linearly Foldable: A net is linearly foldable if there
exists a straight line connecting initial and target states in C-
free. Shown in Fig. [3] (right), linearly foldable net has the
shortest folding path in C-free, and the length of the path is
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Physically, a linearly foldable net can be folded under the
constraint that all hinges rotate at a speed proportional to the
folding angle.

d) Uniformly Foldable: Distinct from linear folding,
uniformly foldable nets can fold under the constraint that their
hinges must rotate at the same speed. Shown in Fig. [3] (right),
6, is a larger folding angle than 6, so 0 is fully folded first
(assume that the robot has a mechanism to stop folding each
hinge at goal angle), then 6; continues to fold.

The linear and uniform foldability are both a special case
of monotonic foldability, as it requires a certain unique path
to be collision-free. The length of uniformly folding path is

n—1
Lu= [0+ 3\ =002 ©
j=1

where 6; < 641 for j = 1,2..n. If all §; are equal, then
L; = L,, and the linear folding path and uniform path is the
same for a given net.

Note that L,, is upper bounded by Y. ; 6;, so V2> %‘ =
1. This suggests that the uniformly folding path is longer than
linear one by a constant, which suggests that the uniform
foldability may be slightly harder to achieve.

To evaluate the foldability of a net, motion planning time
can be a useful metric. Shorter planning time usually indicates
an easier foldable net. Thus, we let f*(N) = Tn /TN 4 be
the foldability metric of a net N, where Ty 11 is the time
needed to check the validity of the path II, and Ty 4 is the
time needed for a planner A to generate a collision-free path
II. If a net N is continuously foldable, 0 < f*(IN) < 1. And,
if N is linear or uniform foldable, f*(NN) is 1. Our objective
is to design an unfolder u(P, f*) that maps a polyhedron P
to a net N with f*(NN) as close to 1 as possible.

B. Fitness Approximation and Evolution Control

A naive unfolder u(P, f*) uses f* as a fitness function
in the genetic-based algorithm. However, evaluating the fold-
ability using motion planning is extremely time consuming;
a single call of motion planner involves a large amount of
sampling and collision checking and can take minutes to hours
to complete. Additionally, as many planners are sampling-
based algorithm, the estimation of motion planning time is
stochastic. In order to obtain a stable estimation of foldability
landscape, one can either sample the fitness function multiple
times, or average over more individuals. Both methods will,
again, dramatically increase the computational cost.

The fitness approximation methods [19] have been widely
applied to similar problems. Specifically, the functional ap-
proximation methods can be used in our problem domain. In
functional approximation, an alternate and explicit expression
is constructed for the fitness function. Take the most popular
polynomial approximation for example, the constructed fitness
function has the following form: f' = wo + >, wiz; +
> i< j Witjrizj, where {z;} is a set of criteria used to approx-
imate f* and they are combined by coefficients W = {w; }.
The coefficients W are then optimized using evolution control
[19] so that |f" — f*| is minimized.

The success of fitness approximation methods stems from
the sparse evaluation of the computationally expensive objec-
tive f*; only once in each iteration of evolution control. The
functional approximation method is essentially a supervised
regression learner embedded in the evolution control frame-
work. However, in polyhedron unfolding, it is difficult to find
a good hypothesis fitness function f’, even using sophisticated
non-linear models, to substitute the folding path planning
time f*. Minimizing |f’ — f*| relies on a large number of
samples through evaluation of f*, which remains extremely
time-consuming to obtain.

Fortunately, because our goal is finding the foldable nets,
obtaining a perfect approximation that minimizes the error of
|f* — f’| is unnecessary. That means, our fitness functions
f' does not approximate the foldability metric f* in a way
like traditional functional approximation does. Instead, f’ is
a policy that controls the evolution by ensuring that f’ and
f* are positively correlated. In other words, we would like to
find f’ such that §f*§f’ is maximized locally. This idea is
essential to the success of our method.

IV. GEOMETRIC AND TOPOLOGICAL FEATURES OF NETS

Our first goal is to map a polyhedral net NV into a fea-
ture space X, in which the foldability can be efficiently
approximated. To construct a good hypothesis fitness function,
we observe that different unfoldings for a polyhedron may
have distinct geometric and topological features. Examples
of these features include the cut length, hull area, and the
number of leaf nodes. A complete list of 12 features studied
can be found in supplementary materials. Due to a trade-
off between the model complexity and training time and the
underlying correlations between these 12 features, only four
key features are chosen for constructing our fitness function
and are normalized within the range [0, 1].

a) Node Degrees: The first property is a
topological feature defined as the ratio between
the number of leaf (degree on) node and the
total number of nodes in a net. Recall that
nets are spanning trees, and each node has
1, 2 or 3 neighbors in triangular meshes. As
we can observe in a net, the number of leaf
nodes equals to the number of branches and
approximates the branch lengths of the net.
The figure on the right shows the nets with large (top) and
small (bottom) number of leaf nodes obtained from the same
polyhedron.

b) Cut Length: Edges of a net are either
cut or crease edges. Given a polyhedron with
|F'| faces and | F| edges, all net of this polyhe-
dron must have o = 2(|E|—|F|+1) cut edges
and |F'| — 1 crease edges. The length of these
o cut edges affects foldability and is usually
minimized [[11], [13]. For example, cutting two
longest edges of a narrow triangle creates a
spike and these spikes are likely to collide.
The cut length is upper bounded and lower




bounded by the total length of o longest edges and o shortest
edges, respectively, thus is normalized by these bounds. The
figure above shows the nets with short (top) and long (bottom)
cut length obtained from the same polyhedron.

c) Border Cuts Length: Cut length does not vary a lot if
the polyhedron is tessellated with (nearly) equilateral triangles
(e.g. a geodesic dome in Fig. f). Thus, we introduce the
concept of border cuts to capture additional features. Definition
of border cuts can be found in Fig. [i] The intuition behind
this is that some cut edges can be easily “zipped” without
collision. On the contrary, pairs of matching border cuts are
often separated far away and harder to be joined back. The
border cut length is normalized by the total cut length.

d) Hull Area: The convex hull bounding the flattened net
provides information about the clearance between branches. If
the hull area is close to the total area of the net surface, this
would indicate that the net is tightly bounded. We use the ratio
of the surface area with respect to the hull area as a normalized
factor in our fitness function.

Fig. 4: Border cut edges. In this net, cut edges along the
thick arrows can be “zipped” without collision. For example,
the edges from o to a can be zipped with those from o to b.
Edges that cannot be zipped are border cuts (in solid black).

V. LEARNING THE FITNESS FUNCTION

In the previous section, we mapped nets into a low di-
mensional feature space X. Although these features may be
insufficient to construct a hypothesis fitness function as a
regression model to approximate the foldability metric f*,
we only need to find a policy f ensuring that f and f*
are positively correlated. Therefore, despite resemblance with
fitness approximation and evolution control, our method is
fundamentally different and is much more efficient.

Based on this observation, we propose two novel hypothesis
functions (Section [V-A) that are iteratively updated by a
learning strategy (Section [V-B).

A. The Fitness Functions

Let us denote our hypothesis fitness as f : X — R. Given
a net N (a polyhedral unfolding without overlapping), our
objective is to optimize f(g(IN)) so that the foldability metric
f*(N) and f(g(N)) are positively correlated. Our model does
not rely on complex hypothesis minimizing | f — f*. We
propose two hypothesis fitness f called the planar fitness and
the paraboloid fitness.

1) The Planar Fitness Function: The planar fitness func-
tion is linear combination of the m normalized features z;,

fla) = wiwi =W, “)
=1

where w; is the unknown weight of i-th feature. The function
also forms a m dimensional hyperplane, where W is the
normal direction. Shown in Fig. if f/ = B4 " wiz; is
used as the fitness function in the genetic-based unfolder. The
unfolder evolves the nets towards the direction that achieves a
higher combined value of the characteristics. Visually, a point
x, which corresponds to certain nets in the feature space, will
slide up against the tilt of the hyperplane.

f >l<opt

l
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Fig. 5: An illustration of the planar fitness function with two
features x1, 2. The green area illustrates all valid unfoldings
in the feature space (defined in Section . (a) The trapezoid
is a perspective view of the fitness plane. (b) [ is the projected
tangent line and red dots are the optimized nets.

Our learning objective is to find such hyperplane that
helps the genetic-based unfolder push the individuals towards
the point of the optimal foldability. We can think of this
as an inverse linear programming problem, which is given
a set of constraints on z;, find an optimal linear function
f = 3", wiz; that has the maximum value only on a
known optimal point. Shown in Fig. [5bl the line [ is a vertical
projection of the hyperplane tangent to the boundary of the
feature space. The target point f,,, corresponds to the nets
with the optimal foldability in the feature space. The optimal
hyperplane cannot be solved by inverse linear programming
algorithms as our constraints for x; is the anomalous boundary
of the feature space, rather than a set of linear inequalities.
Also, the foldability metric landscape f* can be estimated, but
the optimal point f;, is unknown. We designed a learning
strategy that learns the optimal solution through a sampling
approach which will be discussed in detail in Section

The planar fitness function works for many simple shapes,
however, it requires that (1) the nets with optimal foldability
Jopt lie on the boundary of the feature space, and (2) the
boundary of the feature space is convex. In our experiment,
we found the first assumption is often satisfied, as our features
incorporate the characteristics related to the foldability. This
means the optimal foldability often lies on the pareto front of

the multiple characteristics. The second assumption, however,



is often invalid. In many cases, the feature space is not even
a connected component. For complex non-convex polyhedron,
valid unfoldings are already difficult to find and the feature
space is likely to contain many small islands. In these situa-
tions, f becomes harder to converge. The paraboloid fitness
function is introduced next to address these issues.

2) The Paraboloid Fitness Function: The paraboloid fit-
ness function overcomes the drawbacks of the planar fitness
function by adding a higher-degree curve on the fitness land-
scape and has the following formula:

— w;)” (&)

The right side of the
function is an m dimen-
sional inverted paraboloid
centered at W illustrated
in Fig. [6] the genetic-based
unfolder trim the individual
nets in the feature space x;,
and optimize them towards
the point W, with respect
to our fitness function f .
The learning is a process
of finding the W,,, that
as close as possible to the
optimal point on the ac-
tual foldability landscape.
Because the paraboloid fit-
ness function has only one
unique optimal point, the
individuals will not converge to some sub-optimal points, even
if the optimal point is not on the convex part of the boundary
or even within the boundary.

A limitation of the paraboloid fitness function is that the
initial weights W;,,;; may cause the optimization to stuck in a
local optimal, or even worse, will not generate valid unfoldings
because W;,,;; is far out of the boundary of the feature space.
In practice, we can apply planar fitness function first to probe a
possible fX ., then obtain an initial guess of paraboloid fitness

opt>
function through induction.

Fig. 6: An illustration of a
paraboloid fitness function f
f* is the landscape of the fold-
ability metric.

B. Updating Fitness Function

Recall that the fitness function f needs to be updated after
each iteration. In this section, we describe a learning strategy
that, in a sense, mimics the reinforcement learning process.
In this learning strategy, we model the genetic-based unfolder
u(P, f ) as an agent that produces polyhedral nets of a given
polyhedron P. The behavior of our agent is controlled by a
policy f, and the goal of the agent is to produce nets N with
the highest reward, i.e. the optimal foldability f*(N).

As shown in Fig. |2 the policy f is updated by, evaluating f*
on the single best individual produced by the unfolder u (P, f ).
Due to the non-convexity of f*, we use the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm [33]] as
an external optimizer to update the policy. CMA-ES is a

Bunny-128

Fig. 7: Linearly foldable nets created by the proposed method.

stochastic algorithm that uses a population-based approach
similar to the genetic algorithm. For each iteration, CMA-
ES tracks the mean and covariance of the samples (i.e. W's),
and the mean is shifted from its previous position towards the
samples with better performance. The new covariance matrix
is also adapted to the trajectory of the mean over the past few
iterations. The new distribution is then re-sampled for the next
iteration. The intuition is that, in every iteration, the CMA-ES
will generate a set of fitness functions { fl} to be employed by
the genetic-based unfolders, then each unfolder will produce
the best individual net N; using f;. The evaluation f*(N;) of
the best net NV; serves as an estimation of the performance of
fi to be considered by CMA-ES for the next iteration.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the foldability of our opti-
mized polyhedral nets in terms of path planning time (Sec-
tions [VI-A). We will discuss a biased sampling technique that
improves the efficiency of our training in Sections [VI-B]and a
transfer learning strategy to handle complex models in Section
[VIZC] In Section [VIED] we demonstrate that we can use our
framework to find nets with user-defined motion constraints.

All experimental results reported are set up as follows. To
learn the fitness function, we run 40 genetic-based unfolders
and the maximum training iteration is 50. The population size
within the genetic-based unfolder is 400, and the maximum
number of generations is 200 for polyhedra with less than 50
faces and 300 for over 50 faces. In each iteration, 40 best
individuals are produced, and we use motion planner to eval-
uate each net 10 times and report the average. Parallelization
is used in most stages. All data are collected from a C++
implementation on a workstation with two 2.3GHz Intel CPUs.

A. Optimized Polyhedral Nets

We first show that the optimized unfolder generates more
foldable polyhedral nets than arbitrary nets produced by an
existing unfolder discussed in Section We evaluate the



foldability using the Average Path Planning Time APPT. The
metric is defined as follow:
e For a polyhedron, we unfold it into 40 nets using the
unfolder to be tested;
o For each net, we plan the folding path 10 times using a
given motion planner;
o APPT is the average planning time for the 400 paths.
The 3D models in Figs. and are used in our
experiment. Among these models, only the star is not linearly
foldable. Our algorithm uncovers the linearly foldable nets if
such nets exist. Table [I] clearly shows that the optimized nets
have much smaller APPTs, thus are easier to fold.

Fig. 8: The models used in our experiments: L-28, Star-24,
Moneybox-48, Bunny-64 and Fish-96.

TABLE I: Comparison of APPT of Arbitrarily Generated Nets
and Nets Generated Using Optimized Unfolder

TABLE II: Comparison of APPT for Arbitrarily Generated

Nets and Training Time (TT) for the first 20 Iterations.

APPT (s)
Model DoF Arbitrary | Optimized Speedup
L-28 27 0.892 0.021 42.5x
Star-24 23 17.587 1.195 14.7x
Moneybox-48 47 59.546 1.211 48.2x
Bunny-64 63 100.223 1.152 87.0x
Fish-96 95 82.418 2.923 28.1x

B. Biased Sampling Technique for Motion Planning

From our experiments, the training time is bottlenecked
by the motion planner. To reduce the computation cost for
motion planning, we employed a biased sampling technique
that increases the sampling rate near the target region. Various
biased-sampling techniques [34], [35]], [36]] have been proved
to be effective in many applications. The key idea is to
manipulate the probabilistic distribution of random sampling
to increase sample rates near the obstacle dense regions.

Our biased sampling technique is based on an observation
which we call the Target Region Prior: self-collisions are more
likely to happen when the configuration is near the target
region than that near the initial state. As around the initial state,
the net is almost flat and has large clearance between branches;
While near the target, the configuration space is crowded with
obstacles. More importantly, even some self-collisions occur
near the initial state, it is easy to find an alternative path
that circumvents the obstacles due to the large majority of
the region is collision-free. However, the configuration space
near the target is almost full of obstacles and narrow passages,
and it often requires certain critical samples to be connected.

In our experiment, we found that the Target Region Prior
applies to all polyhedra tested. Our biased sampling algorithm
outperforms the planner without bias [18] for arbitrarily gen-
erated nets is shown in Table[[Il Table [ also shows the benefit

APPT (5) TT (min.)
Model w/o Biased | w/ Biased | w/o Biased | w/ Biased
L-28 0.892 0.424 19 19
Star-24 17.587 1.145 44 19
Moneybox-48 59.546 6.036 84 46
Bunny-64 100.223 31.125 106 47
Fish-96 82.418 29.826 138 95
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Fig. 9: Learning Curve: relative path planning time (actual
time normalized by dividing the shortest time) is used here.
Each data point is the median planning time of the 40 best
individuals in the iteration, not using APPT here to avoid
impact by large penalties for failed foldings.

of biased sampling in reducing the training time. If the motion
planner failed to fold a net within the timeout limit, the folding
is aborted and a large penalty is given to the evaluation. As
the learning progresses, the median planning time decreases
(shown in Fig. [0) and the training speeds up in each iteration.
For polyhedral nets with large DoF, the median planning time
is still high in the first few iterations, which raises the need
for the transfer learning strategy.

C. Transfer Learning

As shown in the previous experiments, the APPT increases
significantly for models with many faces and highly non-
convex geometries. We use a transfer learning [37]] technique,
illustrated in Fig. [I0] to handle complex models. We reduce
the complexity of the model by remeshing it with fewer
faces. The simplified mesh, though may lose details, retain
most geometric characteristics. We can easily obtain a fitness
function fsmp from the simplified model using the proposed
learning strategy. Then fsimp serves as a shortcut for the
training on the complex model. Table [III| compares the APPT
of folding the nets of various complex models using transfer
learning.

Fig. [/| shows the linearly foldable nets for select complex
models obtained using transferred learning strategy. Find-
ing a linear folding path for these nets is almost instanta-
neous, while an arbitrarily generated net may need half an
hour of path planning time. Video showing folding motion



TABLE III: Comparison of APPT of Complex Nets Generated
Using Fitness fimt: Initial Fitness (for Arbitrary Nets); fsimp:
the Fitness of Simplified Models; f(,pt: a Further Optimized
Version of fsimp

Model DoF of APPT (5)
fsimp finit fsimp fopt
Moneybox-128 47 350.1 525 | 15.1
Bunny-128 63 344.5 46.6 | 12.2
Fish-150 95 397.9 60.6 | 18.4
Bunny-64 Bunny-128
Initial 1 " Used as l
Ghuess Optimize } Initial Guess Y Optimize
finit > fsimp > fsimp > fopt
lUnfoId 1Unfo|d 1Unfo|d

) ©

Fig. 10: An optimal fitness fopt for Bunny-128 is obtained
from fsimp trained on Bunny-64. If we unfold Bunny-128 via
fsimp we can obtain net (b) which shares common topological
and geometrical features with net (a) and has foldability
already far better than arbitrary nets. The fitness fsimp is
subsequently used as initial fitness for the learning of fopt.

for various nets is available on http://masc.cs.gmu.edu/wiki/
LinearlyFoldableNets|

D. Foldable Nets with User-Defined Motion Constraints

In this experiment, we show that the proposed learning
strategy is flexible and can be easily adapted to generate nets
with additional user-defined motion constraints. In Fig. [IT}
the user specifies a motion constraint that requires an ancestor
crease (i.e., creases closer to the root face) start to fold only
after all its descendant nodes being fully folded. We simply
replace the evaluator f* in our framework with a new motion
planner that checks if the nets satisfy the constraint.

VII. CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we addressed the problem of creating foldable
polyhedral nets. We combine the topological and geometric
features into a fitness function and use it to approximate
the computationally expensive foldability metric. A learning
strategy is proposed to optimize the fitness function in an
efficient manner. This synthesis of the domain knowledge
with learning technique relieves us from the problem of the
complex hypothesis model design and acquisition of large

Fig. 11: A foldable net of Bunny-64 satisfying the motion
constraints that all the descendant creases must be folded prior
to the ancestor creases. Left: the net and its dual graph (shown
in red) created by our method with this new constraint. The
root face is designated as the topological center of the dual
graph. Right: the folding sequence of the net.

sample data that the traditional evolution control method faces.
The proposed learning strategy can be easily adapted to find
polyhedral nets with other features or constraints.

Another noticeable achievement is that we are able to find
the linearly and uniformly foldable nets for highly non-convex
polyhedra, making it possible to design and manufacture
high DoF self-folding robots constrained actuators. As our
framework is based on an evolutional algorithm, despite the
ability to distribute the computation using parallelization,
the amount of total computation is still too large for the
personal computing environment. For nets with hundreds and
thousands of faces, the foldability without segmentation is not
yet discussed. One of the reasons is that we only use four
characteristics to define the feature space, but, for high DoF
nets, nets with distinct foldability may be mapped to similar
spots in the feature space, which makes optimization difficult.
For future work, new features will be investigated, and new
learning techniques can be employed to replace our current
mapping mechanism.
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