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Abstract—Human visual scene understanding is so remarkable
that we are able to recognize a revisited place when entering
it from the opposite direction it was first visited, even in the
presence of extreme variations in appearance. This capability is
especially apparent during driving: a human driver can recognize
where they are when traveling in the reverse direction along
a route for the first time, without having to turn back and
look. The difficulty of this problem exceeds any addressed in
past appearance- and viewpoint-invariant visual place recognition
(VPR) research, in part because large parts of the scene are not
commonly observable from opposite directions. Consequently, as
shown in this paper, the precision-recall performance of current
state-of-the-art viewpoint- and appearance-invariant VPR tech-
niques is orders of magnitude below what would be usable in a
closed-loop system. Current engineered solutions predominantly
rely on panoramic camera or LIDAR sensing setups; an emi-
nently suitable engineering solution but one that is clearly very
different to how humans navigate, which also has implications
for how naturally humans could interact and communicate with
the navigation system. In this paper we develop a suite of novel
semantic- and appearance-based techniques to enable for the
first time high performance place recognition in this challenging
scenario. We first propose a novel Local Semantic Tensor (LoST)
descriptor of images using the convolutional feature maps from
a state-of-the-art dense semantic segmentation network. Then,
to verify the spatial semantic arrangement of the top matching
candidates, we develop a novel approach for mining semantically-
salient keypoint correspondences. On publicly available bench-
mark datasets that involve both 180 degree viewpoint change
and extreme appearance change, we show how meaningful recall
at 100% precision can be achieved using our proposed system
where existing systems often fail to ever reach 100% precision.
We also present analysis delving into the performance differences
between a current and the proposed system, and characterize
unique properties of the opposite direction localization problem
including the metric matching offset. The source code is available
online at https://github.com/oravus/lostX.

I. INTRODUCTION

Semantic scene understanding, though theorized decades
ago [4, 33], has only recently become a success with the advent
of deep learning methods [20]. The use of visual semantics
not only enables meaningful interaction with practical appli-
cations, but also aids in solving more complex problems that
require human-like interpretation of the environment. One such
problem pertains to visual place recognition under viewpoint
variations as extreme as front- and rear-view image matching.
This problem, encountered regularly by humans when driving,
is particularly challenging because only a subset of the scene is
commonly observable from both directions, and becomes even

Fig. 1. Recognizing a place that is revisited from the opposite direction,
especially when environmental conditions are not the same, is a challenging
problem. The top rows illustrate the amount of visual overlap available for
matching images in such scenarios. The bottom row shows semantic keypoint
correspondences (of the same color) using the proposed LoST-X framework
(The query image is flipped for spatial layout verification).

more challenging when the appearance of the environment
varies due to day-night cycles, weather or seasonal conditions.

Current state-of-the-art visual place recognition methods
employ deep-learnt techniques [30, 1] to primarily solve
challenges related to variations in appearance; the extent of
viewpoint-invariance is often limited to variations in lateral
displacement, orientation, and scale relative to the reference
6-DoF camera pose in the real world. The multi-view matching
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problem is generally approached with sensors-based engineer-
ing solutions using panoramic cameras [2] and LIDARs [42].
Dealing with 180 degree viewpoint change using only a limited
field-of-view camera under extreme appearance variation is an
unsolved problem. We show here that current state-of-the-art
systems, even with multi-frame filtering, achieve performance
levels far below the usable values for a practical application.
To address this challenge, we propose a place recognition
system that utilizes semantic scene information to deal with
the viewpoint and appearance variations, and demonstrate its
ability to achieve meaningful recall at 100% precision. Our
approach is also motivated by the potential for a semantically-
enabled system to be more useful for human communication
and interaction with robots and vehicles.

In particular, we make the following core contributions:
• A novel visual place recognition pipeline combining

semantic- and appearance-based global descriptors with
spatially-consistent local keypoint correspondences.

• A novel image descriptor, referred to as LoST, generated
from the semantic labels and convolutional feature maps
of the input image.

• A novel method to mine and filter semantically-salient
keypoint correspondences from the matching pair of
images.

• The first demonstration of a single camera, limited field
of view system that is able to achieve meaningful recall at
100% precision despite the combination of both opposing
viewpoints and large appearance change.

The paper proceeds as follows: Section II reviews the
literature for related work and provides a background for
the problem; Section III describes the proposed pipeline;
Section IV describes the experimental setup; Section V shows
the results with comparisons to state-of-the-art methods and
Section VI provides conclusions from the findings of our study
and areas of future work.

II. LITERATURE REVIEW

In the last decade, visual place recognition research has
progressed through Bag of Visual Words (BoVW) based
methods like FAB-MAP [7] and global image descriptor based
sequence searching [26, 29] to deep-learnt robust place repre-
sentations [1, 5]. The deep-learnt networks have been used in
several ways for visual place recognition, ranging from Con-
vNet Landmarks [37], deconvolution network [27], direct off-
the-shelf convolutional feature descriptions [36], deep feature
pooling methods based on sum [3], cross-convolution [22],
VLAD [43] to end-to-end training using NetVLAD [1]. The
authors in [31] learn attention-based keypoints and descriptors
for large-scale image retrieval based on landmarks.

The deep-learnt representations of places often use a global
image descriptor for robust matching but do not retain the
spatial layout of the images which is crucial to deal with per-
ceptual aliasing. Towards this end, the authors in [5] mine dis-
tinctive landmarks from within the images but require a visual
vocabulary to encode landmark regions. [39] uses region-wise
approximate integral max-pooling to retrieve best matches,

however object localization requires a correspondence search
procedure. [40] finds dense visual correspondences using a
spatial feature pyramid and [19] learns local self-similarity
(LSS) for the same purpose, but both focus primarily on
objects and not places. [9] uses spatial softmax to learn high-
activation spatial features for visuomotor learning. The authors
in [34, 14] train a CNN for determining correspondences
between images by geometric matching. The authors in [15]
use a Hypercolumns-based pixel-wise representation for fine-
grained localization of keypoints and object parts. However,
most of these methods do not leverage the semantic corre-
spondence information pre-coded in the convolutional neural
networks.

The rapid advancement in the field of dense pixel-wise
semantic segmentation of images [23, 21] using deep convo-
lutional neural networks has paved the way for leveraging se-
mantic scene information in other domains of computer vision
research, like fine-grain object segmentation [15], SLAM [8],
mapping [38] etc. Similarly, it has a key role to play in visual
place recognition and localization, especially for matching
images with viewpoint-variation as extreme as front-view vs
rear-view.

The use of semantics for visual place recognition has
received limited attention. The authors in [30] use semantic
masking of appearance-invariant classes like buildings and
develop an aggregated convolutional feature descriptor, but
this requires environment-sepcific training. [11] uses seman-
tic place categorization to improve place recognition for
seamlessly navigating through diverse environment types, but
only uses environment-related visual semantics. The authors
in [17] use geometric-pairs of semantic landmarks suited
for roadways to deal with environmental variations. While
most of these methods use semantic information only for
dealing with appearance variations, authors in [13] proposed
a multi-view place localization system, termed as X-view, that
deals with extreme viewpoint variations, however, the method
relies solely on the semantic labels without leveraging the
appearance cues.

The research presented in this paper is motivated by the
belief that achieving human-like place recognition across
opposing viewpoints and extreme appearance change requires
a deeper semantic representation of the environment. In this
work we set out to achieve this by introducing visual semantics
into the place recognition pipeline for semantically describing
places both at image- and pixel-level, as described in the
following section.

III. PROPOSED APPROACH

The proposed method builds upon the traditional hierarchi-
cal procedure [7, 28] of finding top candidates with a global
database-wide search and then verifying the spatial layout of
the candidate pairs to select the best match. Additionally, we
introduce the visual semantic information at both stages; both
in generating semantically-aggregated descriptions of a place
and mining semantically-consistent keypoint correspondences;



Fig. 2. Proposed Approach

and in turning a dense pixel-wise semantic segmentation
network into a visual place recognition pipeline.

A. Local Semantic Tensor

The representation of images using different methods of
convolutional feature pooling has been widely addressed in
literature [22]. In most of these scenarios, the semantic regions
within the images are not explicitly targeted, rather differ-
ent regions are extracted from higher-order layers of CNN
that tend to capture visual semantics implicitly. During the
matching stage, it adds the overhead of environment-specific
training [30], cross-matching [39] or vocabulary learning [5].
Here, we develop a method to semantically pool features using
the semantic label scores and the convolutional feature maps
of a dense semantic segmentation network.

For this task, we use a state-of-the-art semantic segmen-
tation network RefineNet [21] trained on the Cityscapes
Dataset [6]. The convolutional feature maps are extracted from
the conv5 layer of the network. These feature maps form a
tensor of size W ×H×D, where W , H and D are the width,
height and depth of the feature maps. In this case, the W and
H are 1/32th of the input image, D is 2048. Similarly, the
semantic label scores so obtained have W and H as 1/4th of
the input image1 and D is 20 which corresponds to the number
of semantic categories in the Cityscapes Dataset.

Keeping in mind the noise associated with the dense se-
mantic labels and the success of image description methods
like VLAD (Vector of Locally Aggregated Descriptors) [18],
we define a semantic descriptor L for an image, referred to as

1The semantic score tensor is resized to conv5’s resolution when used in
conjunction with its feature maps.

Local Semantic Tensor (LoST), using the convolutional feature
maps and semantic label probability as shown in Figure 2 (a)-
(c)

Ls =

N∑
i

mis|µs − xi| (1)

µs =

∑N
i {xi | li = s}∑N
i {i | li = s}

(2)

li = argmax
s

mis (3)

where li is the semantic label of a D-dimensional descriptor xi
at location i within the feature map as shown in Figure 2 (a).
µs is the mean descriptor with respect to the semantic category
s. While the mean is computed using the most likely labels
for the pixels, the image descriptor Ls is computed using the
probability mis of a pixel location i to belong to a semantic
class s. The mis is computed by `1-normalization of the
label scores tensor across the dimension D. Each semantic
descriptor Ls is essentially an aggregation of the residual
description from that particular semantic class s and the noisy
contributions from the remaining classes, weighted by their
semantic label probability scores. The final image descriptor
L is a concatenation of `2-normalized Ls using only three
semantic classes, that is, road, building and vegetation. Each
image descriptor for both reference and query database under-
goes normalization as described here [12] before descriptor
matching. For the reference database, as available beforehand,
we modify the Equation 2 to replace the mean computed from
a single image by the mean computed over a sliding window
of 15 frames centered at the given reference image.



Candidate Search: A query image descriptor is matched
with all the images in the database using the cosine distance.
The top 10 candidates with the lowest distance to the query
are passed to the next step as described below for determining
the final match.

B. Correspondence Extraction

The traditional image matching methods based on local
point features [7] first extract salient keypoints and then use a
robust descriptor [24] to match images using RANSAC [10].
On the other hand, the deep-learnt image representations used
for place recognition are generally global image descriptors [1]
that have implicit information about the local visual landmarks
within the image. However, this local saliency information can
be extracted from the network in different ways by leveraging
the high activation regions within the convolutional feature
maps. These regions are often used for constructing a more
robust representation [5, 39].

We propose another perspective to these maximally-
activated locations, referred to as keypoints in our case,
extracted from each of the feature maps of higher-order convo-
lutional layers of the network. It is well-understood now that
higher-order layers of the convolutional neural networks cap-
ture visual semantics, and that different convolutional filters
for one such layer (say conv5) will repeatedly detect the same
semantic concepts from perceptually similar images [46, 44].
Therefore, it can be safely assumed that there exists a corre-
spondence between the convolutional feature maps of two such
images and also that these correspondences can be mapped to
high-activation keypoint locations in the feature maps. This
is shown in Figure 2 (e)-(f). For a given matching pair of
images, we can extract a total of D (depth/number of feature
maps) keypoint correspondences from a higher-order layer of
the network.

For an identical or closely matching pair of images, these
correspondences would probably be near to perfect, but for
a practical scenario there would be many false correspon-
dences due to the following reasons: 1) the convolutional
filters inherently trained to detect a particular concept/feature
which is not present in the given image may fire at random
locations, for example, a traffic-light sensitive filter applied to
an indoor image, 2) multiple instances of a concept within
a single image, for example, windows or trees, may cross-
correspond, 3) the dynamic objects like cars, pedestrians etc.
appear at random locations in the image and can cause false
correspondence.

It is worth noting that the actual number of correspondences
D can be significantly larger than the resolution (W ×H) of
the feature maps of that layer. This is true in general for many
network architectures as well as the one considered in our
work. For example, conv5 of AlexNet [20] has 384 feature
maps as compared to its resolution of 7 × 7 and ResNet -
101 [16] based RefineNet in our case has these values 2048
and 31× 20 respectively. Figure 2 (f) shows a frequency map
of high activation regions within the image as counted across
all the feature maps. It can be observed that a relatively small

number of keypoint locations tend to trigger activations in a
large number of feature maps.

C. Spatial Layout Verification

The global spatial layout verification of the candidate pairs
of images is achieved through weighted keypoint matching.
This necessitates limiting the total number of correspondences
as well as avoiding false correspondences, which is achieved
using a prior filtering based on semantic label consistency as
described below:

1) Semantic Label Consistency: The correspondence for-
mulation as described in the previous section is applicable
to any pre-trained convolutional neural network architecture.
Additionally, as in our case, the semantic segmentation net-
work provides pixel-wise semantic labels. We use these labels
(after resizing them to the resolution of conv5 layer 31× 20)
to obtain a semantic label for each of the keypoint locations
within the feature maps. Finally, for each corresponding pair
of keypoints the semantic labels are verified and those with
similar labels are retained. This step filters out more than
half of the correspondences, especially those related to ran-
dom activations caused by convolutional filters that detect
concepts/features not available in a particular scene.

The semantically-consistent correspondences are further
filtered by a neighborhood density test such that within a
3 × 3 neighborhood of a keypoint only one correspondence
is retained. This filtering helps in removing redundant cor-
respondences that belong to the same semantic class within
a very small region, for example, multiple keypoints on a
glass pane of an office building. The cross-correspondence
due to multiple instances of a semantic class can not be
filtered by this method and a worst case scenario may occur
when cross-correspondences survive, filtering out the true
correspondences. Therefore, pairwise descriptor matching of
such correspondences is required to differentiate between them
on the basis of their appearance, as described in the next
section.

2) Weighted Keypoint Matching: The remaining false cor-
respondences are dealt with by using a pairwise descriptor
matching of each correspondence that enables differentiation
between the fine-grained appearance of the keypoints. There-
fore, for the remaining corresponding keypoints, say M , D-
dimensional descriptors xk and xk′ at the given corresponding
keypoint locations k and k′ are extracted from the conv5 layer
of the network as shown in Figure 2 (g)-(h). Further, the x-
coordinate locations pk and pk′ (flipped from left to right for
rear-view images) associated with each of the corresponding
keypoints are obtained. These keypoint locations are then
matched by calculating the weighted Euclidean distance:

rc =

√√√√ M∑
k,k′

wkk′(pk − pk′)2 (4)

where wkk′ is the cosine similarity between the corresponding
descriptors xk and xk′ normalized across all pairs M . rc is



(a) Oxford Robotcar (b) Synthia
Fig. 3. (a) Aerial View of the trajectory for the Oxford Robotcar dataset.
(b) Approximate route for the Synthia dataset. Source: Google Maps

Fig. 4. Average cosine distance between a pair of front-view and rear-view
images plotted against the average distance between them. This curve shows
that on an average there is approximately 40 meters of visual offset between
a matching pair of front- and rear-view images.

the matching score for a shortlisted candidate c; the candidate
with the lowest score is considered the final match.

D. Image Sequence Matching

In place recognition research for mobile robots or vehicles,
it is a common practice to leverage the temporal sequence
information [7, 29] inherent in the problem. Given the diffi-
culty (as we show in Section V B) of the problem addressed
here: a limited amount of visual overlap (that itself can have
significant appearance variation) that is available for matching
two images with opposite viewpoints, as shown in Figure 1,
we also leverage temporal sequence information here. We use
a slight variant of the publicly available OpenSeqSLAM [26]
with an induced ability to accumulate sequence scores for
only the top matching candidates generated using the LoST-
X framework (apart from the traditional global search for
descriptor-only methods). Consequently the sequence-based
method is not a claimed contribution of this work but rather
a standard practice enhancement, and as the results show,
sequence-enhancing the current state-of-the-art systems alone
is not sufficient to achieve practical recall performance at
100% precision. Other sequence-based methods [32, 29, 41]
could also be used.

IV. EXPERIMENTAL SETUP

A. Datasets

We used two different publicly available benchmark datasets
that comprise image data for both varying viewpoints (that
is, front- and rear-view) as well as varying environmental
conditions (that is, time of day, season etc.), as described
below:

1) Oxford Robotcar: The Oxford Robotcar Dataset [25]
comprises various traverses of Oxford city from different times
of day, seasons and weather conditions. We use three different
traverses from the Oxford Robotcar dataset referred to as
Overcast Autumn, Night Autumn and Overcast Summer 2. We
use the rear-view imagery from the Overcast Autumn Traverse
to match it with the front-view imagery from all the three
traverses. We use the initial 2 km of the original traverse for
all the experiments. GPS data is used to sample the images
at a constant distance of approximately 2 meters that leads to
around 600-900 image frames in all the traverses. Figure 3(a)
shows an aerial view of the trajectory for the traverses used
in our experiments.

2) Synthia Dataset: The Synthia Dataset [35] is a collection
of various sequences of images from a virtual world with vary-
ing environmental conditions as well as environment types.
We used the front- and rear-view images from the Dawn and
Fall traverses of Sequence-02 (New York-like city). Each of
these traverses is approximately 1.5 km in length with 941
and 742 frames in the Dawn and Fall sequences, respectively.
Figure 3(b) provides an approximate route of the traverses.

B. Ground Truth

The calculation of ground truth for front- vs rear-view
matching is non-trivial. Unlike the front-view only scenario
where every image in one traverse can be closely associated
to its counterpart in the second traverse through the same GPS
co-ordinates, ground truth for front-rear matching cannot be
generated directly using the GPS co-ordinates. In this case,
the ground truth for a matching pair of images depends on the
persistence of salient visual landmarks in the field of view.
For example, a building on the left with a span of 20 meters
will generate the best matching score when front- and rear-
view images are 20 meters apart, that is, the cameras are
placed at opposite ends of the building. This distance, referred
to as visual offset from here, depends on the type of visual
landmarks, their size and position as well as the camera’s field-
of-view.

Figure 4 shows the average cosine distance between a
given pair of front- and rear-view images plotted against the
average physical distance between them (calculated through
GPS information from Oxford dataset). It can be noted that
minima of this curve lies near to 40 meters which means
that a localization error of 10 meters as per the traditional
front-front place recognition is theoretically equivalent to 50
meters of localization error for front-rear matching. However,
the 40 meters value is possibly inflated because the curve
in Figure 4 was generated by assuming that the matching
algorithm (LoST-X) perfectly captures the variations in image
matching as the distance from the true match varies and
secondly that for each image there exists a correct match
(which is not true when vehicle takes a turn). In practice, we
found 30 meters to be the average visual offset as observed

2Originally 2014-12-09-13-21-02, 2014-12-10-18-10-50, 2015-05-19-14-
06-38 respectively in[25]



Fig. 5. Matching sequence of images using the proposed system on
Oxford Robotcar dataset. The rear-view images are from the Overcast Autumn
traverse (top) and front-view images are from the Night Autumn traverse
(bottom).

visually and confirmed through GPS information for a handful
of image pairs.

C. Evaluation Criteria

We primarily used Precision-Recall curves for performance
evaluation. The matching score values (Equation 4) were
directly used as a threshold to generate P-R curves. The
localization radius to classify a match as a true positive was
set to be 80 meters. However, as described in the previous
section, there exists a visual offset of 30-40 meters between
the GPS co-ordinates of a matching pair of images (Figure 4).
This implies that setting 80 meters of localization radius is
equivalent to 40-50 meters of localization accuracy. For the
multi-frame matching scenario, the sequence length used was
set to be 100 meters.

For our later analysis of single-image matching, we use
a stricter value of 40 meters of localization radius which is
equivalent to 0-10 meters of localization accuracy. Further-
more, the max-F1 scores are used to characterize performance
with respect to the localization radius. It can be noted that
Figure 4 shows an average result and not all the images will
match with its counterpart at a distance of 30-40 meters. It is
quite possible to find a match which is as close as 5-10 meters,
depending on salient landmarks found in the scene that aid in
matching.

D. Comparative Study

We compare our proposed approach with state-of-the-art
place recognition method NetVLAD [1]. We refer to the
proposed framework as LoST-X that uses both the LoST
descriptor and the keypoint correspondence. The descriptor-
only approach is referred to as LoST (that is, without the
keypoint correspondence and spatial layout verification) in
the presented results. All the results on different traverses of
both the datasets are generated for front-view vs rear-view
matching.

V. RESULTS

Figures 5 and 6 show the qualitative results using the
proposed method. The quantitative results are described in
subsequent sections for the proposed pipeline followed by
the performance characterization using single-frame based
matching.

Fig. 6. Matching sequence of images using the proposed system on Synthia
Dataset. The rear-view images are from the Dawn traverse (top) and the front-
view images are from the Fall traverse (bottom). The images presented here
are brightened by 50% for visualization purposes.

A. Whole System

Figure 7 and Figure 8 show results for the Oxford and
Synthia datasets for sequence-based multi-frame matching. It
can be observed that the state-of-the-art method does not
attain practically usable results even when using sequence-
based information, while the proposed system is able to recall
a significant fraction of matches without any false positives
(e.g. recall at 100% precision).

For the Oxford Robotcar dataset in Figure 7, the proposed
system LoST-X consistently shows more than double recall at
100% precision as compared to the other methods. In the most
challenging scenario of matching places under simultaneous
variation of viewpoint and appearance, the proposed system
continues to perform well, while the baseline never attains
100% precision at any recall level.

Similarly, for the Synthia dataset in Figure 8, LoST-X
performs significantly better than the baseline methods, es-
pecially in Figure 8 (c) where apart from opposite viewpoints
reference and query traverse also exhibit appearance variations
due to different times of day and season as also shown
in Figure 6. While LoST-X consistently performs the best,
both the descriptor-only methods are inconsistent in their
relative performance. This is likely attributable to perceptual
aliasing caused by repeated similar patterns of roads and trees
within the traverse and can be avoided by spatial arrangement
verification. Furthermore, as shown in Figure 3 (b), there are
multiple turns and frequent stops during the traverse. The
former is quite challenging because during turns both the
front- and rear-view cameras view significant portions of the
environment that are not observable by the other camera.

B. Single-Frame Matching

We established the key results in the previous section using
the proposed system and also observed that state-of-the-art
method, even with sequence-based information, does not attain
practically usable results. Here, we develop further insights
and analyze the performance characteristics for single-frame
based matching.

Figure 9 shows P-R curves and Max-F1 Scores with respect
to the localization radius, for comparisons between front- and
rear-view images of different traverses of Oxford Dataset.
The proposed approach LoST-X consistently performs the
best by a significant margin. As compared to the multi-frame
matching, the performance trends remain similar with respect



(a) Overcast Autumn only (b) Overcast Autumn vs Overcast Summer (c) Overcast Autumn vs Night Autumn

Fig. 7. Oxford Robotcar Dataset: P-R curves for sequence-based multi-frame matching of front- and rear-view imagery from different traverses. The proposed
method consistently performs better in all the cases exhibiting more than double the recall at 100% precision, especially in the third column with the most
challenging scenario of extreme variations in both viewpoint and appearance when other methods never attain 100% precision.

(a) Dawn Front-Rear (b) Fall Front-Rear (c) Dawn Front vs Fall Rear

Fig. 8. Synthia Dataset: P-R curves for sequence-based multi-frame matching of front- and rear-view imagery from different traverses. The proposed system
LoST-X performs significantly better than the baseline method.

to the P-R curves. The Max-F1 scores show significantly better
performance for lower localization radius and for the extreme
scenario of simultaneous viewpoint and appearance variations
(Figure 9 (c)) the Max-F1 score is almost double that of the
state-of-the-art method at a 30 meter localization radius.

Figure 10 shows performance comparisons for the Synthia
Dataset. The Max-F1 scores show that keypoint correspon-
dences significantly improve the performance on top of the
descriptor-only matching. The vehicle in this dataset moves
through different lanes in a city having similar visual land-
marks and some of the intersections are crossed multiple times
with varying viewpoint. Therefore spatial arrangement infor-
mation significantly helps in dealing with perceptual aliasing
so caused. The P-R curves for single-frame matching have
similar trends as compared to multi-frame matching, showing
that the proposed method (LoST-X) performs consistently
better than others.

C. Computation Time

The computation time for the major components of the
proposed framework is shown in Table I calculated using 2.5
GHz Intel Xeon Processor E5-2680 for the front-rear place
matching of Overcast Autumn traverse, having 952 images in
the reference database3. It can be observed that the seman-
tic segmentation network RefineNet [21] is computationally

3The computation time reported here excludes approximately 30 ms of time
consumed per image in reading descriptor data from files.

TABLE I
COMPUTATION TIME PER QUERY IMAGE FOR DIFFERENT COMPONENTS OF

THE PROPOSED APPROACH.

Component of Proposed Approach Time (sec)
Dense Semantic Segmentation using RefineNet [21] 18.8
LoST Descriptor Extraction (Section III-A) 0.038
Keypoint Correspondence for Top-10 candidates
(Section III-B and III-C)

0.280

intensive, however, it is not a necessary prerequisite; dense
pixel-wise labels can also be extracted from other state-of-the-
art methods that run in real-time [45] as the proposed approach
only requires low-resolution semantic labeling.

VI. CONCLUSION

Recognizing a place visually from opposing viewpoints,
where only limited parts of the scene are commonly observable
from both directions and under extreme appearance change
is a very difficult problem. In this research, we presented
a place recognition method (LoST-X) that, inspired by the
human ability to solve this problem, leverages visual semantic
information to effectively describe and match places. We
showed through results on two different publicly available
datasets that our proposed system can attain a practically
usable and significantly higher recall rate at 100% precision
than the current state-of-the-art system. We also performed
further analysis of performance with respect to single-frame
based matching and showed that the proposed system consis-
tently performs better than the state-of-the-art in terms of both



(a) Overcast Autumn only (b) Overcast Autumn vs Overcast Summer (c) Overcast Autumn vs Night Autumn

Fig. 9. P-R curves (Top) and Max-F1 Scores (Bottom) for single-frame matching between Front- vs Rear-View of different traverses of Oxford Robotcar
Dataset. The proposed method consistently performs the best in all cases. In the third column with the most challenging scenario with extreme variations in
both viewpoint and appearance, the proposed method has more than double the values of Max-F1 Score for low localization radius.

(a) Dawn Front vs Dawn Rear (b) Fall Front vs Fall Rear (c) Dawn Front vs Fall Rear

Fig. 10. P-R curves (Top) and Max-F1 Scores (Bottom) for single-frame matching between Front- vs Rear-View of different traverses of Synthia Dataset.
The spatial consistency check provides a significant gain in performance here by reducing the number of false positives generated due to perceptually similar
scenes.

precision-recall and max-F1 score characteristics. We believe
that this is the first time that visual place recognition from
opposing viewpoints and with extreme appearance change has
been demonstrated without resorting to panoramic sensors or
active turn back and look vision techniques.

The use of visual semantics is also appealing in that
it may be more readily adaptable to practical applications
such as human-robot or human-autonomous vehicle interaction
and communication. Critical to this development will be the
development of methods that can harness visual semantic
information and combine the strengths of both appearance-
and geometry-based methods. In this vein, we plan to extend
our current work by utilizing semantic blob-level information
to match and track individual semantic objects/patches in the
environment in order to produce a better scene interpreta-
tion. With the availability of sufficient semantically-labeled

place recognition data, it may be possible to train an end-
to-end system that learns semantic and structural saliency
for viewpoint- and appearance-invariant place recognition, by
learning to select robust semantic classes with respect to
the operating environment and salient keypoints for spatial
layout consistency. In doing so, we will also gain further
insights into the trade offs between a highly engineered, multi-
sensory navigation framework such as those prevalent on
current autonomous vehicles and primarily vision-driven, more
analogous to human navigation approaches.
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[18] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and
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