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Abstract—Estimating positions of world points from features
observed in images is a key problem in 3D reconstruction, image
mosaicking, simultaneous localization and mapping and structure
from motion. We consider a special instance in which there is a
dominant ground plane G viewed from a parallel viewing plane
S above it. Such instances commonly arise, for example, in aerial
photography.

Consider a world point g € G and its worst case reconstruction
uncertainty (g, S) obtained by merging all possible views of g
chosen from S. We first show that one can pick two views s, and
sq such that the uncertainty (g, {sp, sq}) obtained using only
these two views is almost as good as (i.e, within a small constant
factor of) (g, S). Next, we extend the result to the entire ground
plane G and show that one can pick a small subset of S’ C S
(which grows only linearly with the area of G) and still obtain
a constant factor approximation, for every point g € G, to the
minimum worst case estimate obtained by merging all views in
S. Finally, we present a multi-resolution view selection method
which extends our techniques to non-planar scenes. We show that
the method can produce rich and accurate dense reconstructions
with a small number of views.

Our results provide a view selection mechanism with provable
performance guarantees which can drastically increase the speed
of scene reconstruction algorithms. In addition to theoretical
results, we demonstrate their effectiveness in an application
where aerial imagery is used for monitoring farms and orchards.

I. INTRODUCTION

Consider a scenario where a plane flying at a fixed altitude is
capturing images of a ground plane below so as to reconstruct
the scene (Figure [T). Over the course of its flight, the plane
may capture thousands of images which can easily overwhelm
image reconstruction algorithms. Our goal in this paper is
to answer the question of whether we can select a small
number of images and focus only on them without reducing
the reconstruction quality.

We first study a basic version where we focus on a single
world point. The goal is to select a small number of images
from which the 3D position of the world point can be
accurately estimated (Problem [T). We then present a general
version where the goal is to minimize the error for the entire
scene (Problem [2) from a small set of images. Note that in the
latter case, the same set of images must be used for every scene
point. We also extended our approach to a multi-resolution
view selection scheme to accommodate non-planar scenes.

(c) (d)

Fig. 1: Comparison of dense reconstruction of the orchard
from images taken at 10 meters altitude. (a) Dense recon-
struction using 893 images (b) Closeup view of the detailed
reconstruction of the tree rows (c) Dense reconstruction using
266 images extracted using our multi-resolution view selection
method (d) Closeup view of the same tree row.

In order to formalize these two problems, we first need
to formalize the error model and the uncertainty objective.
Let g be a world point and / be an image taken from a
camera at position s and orientation 6. Let p be the observed
projection of g onto I and p* be the unobserved true projection
represented as vectors originating from the camera center s.
We will employ a bounded uncertainty model where we will
assume that the angle between p and p* is bounded by a known
(or desired) quantity «v. Therefore, the 3D location of the world
point ¢ is contained inside a cone C' apexed at s and with
symmetry axis along p and cone angle 2c. See Figure [3]

Merging measurements: In order to estimate the true loca-
tion of a world point from multiple measurements, we simply
intersect the corresponding cones. The diameter of the inter-
section is used as an uncertainty measure. We chose diameter
over the volume so as to avoid degenerate cases where the
intersection has almost zero volume but large diameter which
could still generate large triangulation error.

Uncertainty as worst-case reconstruction error: Rather than
associating a single cone for a specific measurement, our
formulation considers a possibly infinite set of viable cones
for a given true camera pose and world point pair. To do this,
we consider all possible perturbations of relevant quantities



Fig. 2: View selection at Multiple resolution to cover the
mesh region, where the color is the height and the white
region is the covered region at each level: (a) View selection
at three resolution levels shown in blue, black and red. (b)
View selection at the Coarsest Level (¢) View selection at the
Middle Level (d) View selection at the Finest Level. Note that
the coarser views cover partial planar region while the finer
selection populates the more complex regions

(projection, location or pose). When merging measurements,
we consider the worst-case scenario which maximizes the
reconstruction uncertainty. This formulation gives us a deter-
ministic worst-case error model. It also allows us to factor
out unknown or uncontrollable quantities such as camera
orientation.

II. CONTRIBUTIONS AND RELATED WORK

The importance of view selection for scene reconstruction
is well established. One of the first view selection schemes for
multi-view stereo is presented in [6]]. The work of Maver and
Bajcsy [18]] and Kutulakos and Dyer [15] use contour infor-
mation to choose viewing locations. A 2003 paper by Scott et
al. [22] surveys view selection methods. Recently, Furukawa et
al. [7]] proposed a view selection scheme to enable large scale
3D reconstruction. Their method relies on clustering images
based on overlap. The resulting optimization problem is solved
iteratively. The method of Hornung et al. [10] incrementally
selects images and uses a proxy to ensure coverage. Mauro
et al. resort to linear programming to solve the view selection
problem [17]. Sub-modular optimization [14] has also been
considered to jointly optimize the coverage and accuracy.
However, it requires repeated visits of the same region. Both
[14] and [9] use surface meshes as geometrical reference
to reason about optimal view selection. View selection has
also been involved in image based modeling [25], object
retrieval [8] and target localization [11].

In the general reconstruction domain, key-frame methods
[L3] [19]] [S] implement heuristics such as visible map features,
distance between key-frames to decide if the current frame
should be used for mapping. The main idea is to reduce the
number of frames for bundle adjustment so as to make the
system work in real-time. Mur-Artal et al. [19] introduced the
“essential-graph” which builds a spanning tree from the image
graph to achieve real-time performance. Snavely et al. [23]]

proposed a method called “skeleton set” that selects a subset of
frames from the image graph to achieve similar reconstruction
accuracy. However, they do not consider the geometry of the
mapped environments. In Kaucic et al. [12], the environment
is assumed to be planar and the factorization method [24] is
used to speed up bundle adjustment.

In the present work, we consider a specific geometric
version of the problem: cameras on a viewing plane observing
a planar world scene. We present a novel uncertainty model
which allows us to characterize worst-case reconstruction error
in a way that is independent of particular measurements. What
differentiates our work from the previous body of work is
that we present a view selection mechanism with theoretical
performance guarantees. Specifically, our contributions are
the following.

1) We show that one can select two good views and obtain
a reconstruction which is almost as good as merging all
possible views from the entire viewing plane.

2) We also show that a coarse camera grid (of resolution
proportional to the scene depth) can provide a good
reconstruction of the entire world plane.

3) We present a multi-resolution view selection method
which can be used for more general environments that
are not strictly planar.

Our work is also related to error analysis in stereo [21 [3]].
There are also many different uncertainty models. Bayram
et al. [2] models the bearing measurement’s uncertainty as a
function of linearized intersection area. Davison [4] approxi-
mates the uncertainty as a Gaussian distribution. We contribute
to this line of work by analyzing the reconstruction error for
two (best) cameras with respect to the reconstruction error
achievable by using all possible cameras for the particular
geometry we consider.

III. PROBLEM DEFINITION

In this section, we introduce the general sensor selection
problem. Consider the world point ¢ € G and a camera
(5,0) where s € R3 is the projection center and 6 € SO(3)
is the orientation. Suppose we have a set of measurements
{p1,...,pr} where each p; is expressed as a unit vector point-
ing towards the observed pixel and anchored at the correspond-
ing camera center. We need a function f(pi1,p2,....,Pk) = ¢
that maps measurements to g, the estimate of g. This way, we
can define the estimation error to be ||g — §|| by choosing an
error measure || - ||.

(5p.6p) (5q:69)

Fig. 3: Right circular cone for camera (s, ) viewing target g

In this paper, we will consider the following “bounded
uncertainty” characterization of the error: Consider the true



measurement p* = Proj((s,0), g) given by the projection of
g onto camera (s,f) which is also represented as a vector
from s pointing toward g. We make the assumption that the
angle between the measurement p and the true projection p*
is bounded by a fixed threshold «. For a given measurement
p, the rays corresponding to all possible p* formulate to a
cone denoted as Coneq((s,6),p) as shown in Fig 3] which is
a function of both the camera parameters s and 6 as well
as the measurement p. For the rest of the paper, we will
assume a fixed o and drop the subscript. By intersecting the
cones from multiple measurements p; from views (s;,6;),
we can get an estimate of the true target location. The
uncertainty is given by the diameter of the intersection given
by || N Cone((si, i), pi)ll-

For sensor selection purposes, rather than a single cone,
it is beneficial to associate a set of cones for each measure-
ment. This will allow us to replace the randomness in the
measurement process with a deterministic worst-case analysis.
To do this, for a given true target location g and a camera
pose (s,0), we generate p* = Proj((s,0),g). Then for every
possible measurement p within angle « of p*, we define
Cone((s,0), p) and include it with the set S(g, s, ) associated
with this world point/camera pair. Note that each cone in
the set includes the true location g. We can further eliminate
the dependency on camera orientation by taking the union of
these sets for each allowable orientation. That is, we define
S(g,8) = Uy S(g,s,0) with the additional requirement that
g € Cone((s,0),p) for each cone included in the union.

We can now define the worst case uncertainty for a given
set S = {s1, $2,..., S} of camera centers and a ground point
g as:

e(9,S)

In other words, for each camera location s;, a cone is chosen
such that the chosen cones jointly maximize the intersection
diameter. The advantage of this formulation is that since
the computation of €(g,S) implicitly generates all possible
measurements for a given camera location and world point,
it generates a worst case uncertainty independent of specific
measurements and camera rotations. We are now ready to
define the first problem.

Problem 1: For a given world point g, the set of all possible
viewpoints S, a projection error bound «, and an error
tolerance parameter p € R, choose a minimum cardinality
subset S’ C S, such that

e(g,8") < pe(g.S)

= max [| N Cone;||
Cone1€5(g,s1),...,Coner€S(g,sk)

In Problem [T| the goal is to choose a small subset of camera
locations whose worst case uncertainty when reconstructing
a given point g is at most with a factor p of the worst-case
uncertainty of the entire viewing set. Problem [2| generalizes it
to multiple points.

Problem 2: For a set of points G C ¢, the set of all
possible viewpoints S, a projection error bound «, and an error

tolerance parameter ¢ € R, choose a minimum cardinality
subset S’ C S, such that

!
<
ggdetwﬁgd%&

In this paper, we study a specific geometric instance of these
problems where G and S are two parallel planes with distance
h apart. For a given g € G, we will define £, (g) = (g, S).

IV. SENSOR SELECTION FOR A SINGLE POINT

In this section, we study Problem 1 where the goal is to
choose cameras to reconstruct a single point. We will start
with the two dimensional (2D) case where the ground and
viewing planes reduce to lines, and the uncertainty cones
become wedges.

Our key result in this section is that for any point g, one
can choose two cameras whose worst case uncertainty €5 (g) is
almost as good as e4,(g) , which is the worst case uncertainty
obtained by merging the views from all cameras. The key
ideas in obtaining this result are: (1) if we choose two cameras
at locations p and ¢ who view g symmetrically at 90 degrees
(i.e. Zpgq = 7/2), the diagonals of the worst-case uncertainty
polygon (the intersection of the two wedges) are roughly of
equal length. (2) Any other camera added to the sensor set
can be rotated to contain the horizontal diagonal. Therefore,
it does not reduce the uncertainty drastically.

A. The Solution of Problem 1 in 2D

Let A = argmax(e.(g)) be the set of wedges which yield
the minimum worst case uncertainty. For every point ¢ on the
viewing plane, there is a wedge in A which (i) is apexed at
¢, (ii) has wedge angle « and (iii) contains g. By definition of
€00(g), the wedges are rotated so as to maximize the diagonal
of the intersection.

Theorem 4.1: Consider a target g on line G and viewing
set S composed of all camera locations on S parallel to G.
There exist two cameras s, and s, which guarantee that

14 2«
< 1
£2 S 1—40[600 ()

where €., = £(g,.5) is the minimum worst case uncertainty
of the entire viewing set, and €2 is the worst case uncertainty
of {sp,s,} and 0 < av < 1/4 is the error threshold measured
in rad.

s

(a) (b)

Fig. 4: (a) Notation for the two camera selection s, and s,
(b) If the cone created by sj, that does not contain diag;, we
get a contradiction (proof of Lemma



We will prove the theorem directly by providing the two
cameras, computing their worst-case uncertainty €2 and com-
paring it with the minimum possible worst-case uncertainty.
First, we present the notation and the setup used in the
computations. We set a coordinate system whose origin is
at the target g. The z-axis is on G and the z-axis points
“up” toward the viewing plane. The locations of the two
cameras are chosen as: s, = [—t/2, h] and s, = [t/2, h] where
t = % and the cone orientations 6,6, respectively
(Figl4|(a)). We use the angle 0 between the bisector of a wedge
with respect to .S for orientation. Of the two half-planes whose
intersection yields the wedge, the inner half plane is the one
that is closer to S — i.e. the angle measured is smaller while
the other half-plane is the outer half-plane also shown in Fig ]
(a). Note that 6,0, € [7/4 — 2c, w/4].

Their worst case uncertainty is given by

€2 = 1013%)§|‘00n6((5p70p)7g) N Cone((sq,04), 9)| 2)
Consider the two wedges which give the worst case uncertainty
(i.e. arg max of €2). Let 4 be their intersection with vertices
{v1,v2,v3,v4} and edges {e1,e2, e3,e4} (Fig [ (a)). The
lengths of the edges are denoted as r; = ||e;|| and the length
of the diagonals are denoted by diags = ||v1v3]|,diags =
|[v24] .

We now compute these quantities.

1) Computing 5: In order to maximize over the orienta-
tion, we first establish the closed form solution for the edges
and diagonals as functions of h,t,0, 4,and a.

Using the law of cosines, diag; can be calculated as

diag? = r? + 13 — 2ry179 cos(6, + 0,) 3)
Similarly, the diag> can be calculated as
diags =¥ + 13 — 2rirycos(m — 0, — 0, +2a) (4

The detailed derivation is shown in Appendix ﬂ

We now consider the vertical diagonal whose length diag;
is given in Equation [3| It is maximized when 6, = 6, = /4.
Fig [5| shows diag: as a function of the two wedge angles 6,
and 6, and for o < 0.1 rad. When 6, = 6, = 7 /4, the vertex
v1 = g, which means that the inner half-planes of Cone, and
Cone, intersect at g.

ding, angih vs camesn asiutiian
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Fig. 5: diag, length as a function of 6, and 0,
We can therefore set 6, = 0, = 7/4 and write the equation
of diag; as a function of o and h: Using the law of sines

IThe derivation of Eq [3|and Eq[4|are shown in Appendix

on the triangle A(sgviv3) and 775, = h/sin(n/4 — ), we
obtain:

diagr V154
sin(2a)  sin(f — 6 — )
_ 2h sin(2a)
d =——"=
=T sin(2«)

This establishes the maximum length of the diagonal
diagy = % in the worst case configuration of 6, =
0, =7/4.

We now compare €2(Sp, Sq) = max ||Qpq|| with eo.

Lemma 4.2: Consider the two cameras sy, s, in the optimal
configuration described above and let diag; be the intersection
of their worst-case uncertainty polygon @),,. Any cone starting
from location s, € A — {sp, s}, can be rotated to an angle
0. such that both g and diag; are contained in its uncertainty
wedge Cone((sk,0k),9).

Now that we established that two cameras suffice, we
compute the uncertainty value:

Lemma 4.3: Given the two cameras s, 54, the intersection
polygon @Q,,, the maximum length of the diagonal diag, =
% whenf, =0, =7 /4, and the worst case uncertainty
£2 = max || Qpql |

14+ 2a 2hsin(2a)
< . 5
2>V1 4o 1—sin(2a) ®)
Now we can conclude by presenting the proof of Theo-

rem 4.1
Proof: Combining Lemma [4.2] and Lemma [4.3] we can

conclude that diagy < e, < diags. Therefore, eo < 1:213 .

€oo ]
In this section, we showed that there exist two cameras s,
and s, with orientation 6, = 6, = 7/4 such that their worst

case uncertainty o < }fi‘; - €co. We will call the pair of

cameras sy, 54 as the optimal pair for the rest of the paper and
this configuration as the optimal configuration of {s,, s;}.

B. The Solution of Problem 1 in 3D

The results of the previous section readily extend to €., in
3-D.

Theorem 4.4: Given a target g € G and a set of cameras s €
S, where the distance between G and S is ~ and the number
of cameras in S is unbounded, we claim that the optimal pair

s, and s, gives
1+ 2«
< CEoo 6
€25\ 1T, ¢ (6)

where the minimum worst case uncertainty in 3-D is e, =
¢(g,S) and worst case uncertainty from two cameras s, and
54 18 €.

To prove the theorem, all we have to do is to observe that the
diagonal of a perpendicular cross section of the cone bounds
the uncertainty in 3D as well. See Fig [f] Therefore, we can

apply Theorem [&.1]




Fig. 6: Uncertainty in 3D given by two intersecting cones

V. SENSOR SELECTION FOR THE ENTIRE SCENE

In the previous section, we established that for a world point

g, the optimal pair of cameras can produce a reconstruction

\/ 22 6f the optimal re-

with approximation ratio less than /55

construction (Theorem . Howeyver, if we use the dedicated
pair directly for every scene point, we may end up choosing
two cameras for each scene point, which in turn might result

in a large number of cameras.

764 5

(a) (b)

Fig. 7: (a) The square sensor grid in 3D (b) Square sensor grid
in 2D with ground point variation.

In this section, we show that a coarse grid of cameras
provide a good reconstruction for every scene point. Recall
that G is the ground plane, S is the view plane, G is parallel
to S and the distance between them is h. Let S be a square grid
imposed on S with resolution &4 (Fig [7| (a)). The same grid
G is also imposed on the ground plane G. To demonstrate the
main strategy at a high-level, consider a ground point g € G,
such that the optimal pair of cameras lies in camera grid S.
We will show that the optimal pair of cameras can still provide
“good” reconstruction for all points in a region R(g) around
g.

Using the result we will show in Theorem [5.3]that a constant
number of cameras for a ground plane can be used to achieve
a small approximation ratio.

A. Problem 2 in 2D

For cameras in the grid s € S and target g € G, we define
the grid uncertainty Z(g) using only the best two cameras in
grid S as the following
min_e(g, {si,5;})

Si,85

g(g9) =

As mentioned earlier, we will choose the grid resolution to be
04 = h for the following analysis.

Now, we define the geometry for Lemmas
and Let g € G be a grid location with height h to the
viewing plane S. Now, we choose the optimal pair of cameras
for the target g as {s,,s,} € S as shown in Fig[7| (b). Let
be a line passing through g with [ L G and = = I[N Cone(s),

where x is the intersection line segments between [ and the
Cone generated by sensor s and target g.

In order to bound the uncertainty of any target Vg € G
using the camera grid S, we need to explore the uncertainty
of the targets in grid cells (Fig[/| (b)). Therefore, we fix a grid
point and define a range of targets R(g) = [g—0a/2, g+ a/2]
such that R(g) is generated by moving g € G along the z-axis
of the grid. We now show that the worst case uncertainty is
achieved at the end points of this interval (i.e. the midpoint of
two grid locations) bound by maz(||z,||, ||z4]]), where ||z||
represents the length of line segment of x. We define diag; =
@c and diag, = bd in Fig @

Lemma 5.1: When 6, + 6, > % + «a, diagy > diags.

Lemma 5.2: 0,+0, is maximized when the inner half-plane
of both cones intersect g* = g + §4/2.

It is clear that either ||z,|| or ||24|| is always larger or equal
to diag;, which can be used to generate the worst case bound.

Theorem 5.3: For all targets g € G and sensor grid S with
resolution §; = h, the worst case grid uncertainty £(g) using
only two cameras from S is bounded as follows

2(g) < 17224

The detailed proofs can be found in AppendixE]

B. Relaxing planar scene and viewing plane assumptions

So far, our analyses of the uncertainty bound are based
on the parallel plane assumptions. Such assumptions are
reasonable for some applications such as high altitude aerial
imagery.

In this section, we relax these assumptions so that the
theorem can be applied to more general environments. Define
horizontal and vertical variation as A,h, Aph, where 0 <
Av, A < 1. We will analyze the change in (g) when adding
variation in both horizontal and vertical directions. The new
camera location § is generated by perturbing s by A,h, Aph
amount in vertical and horizontal directions. We analyze both
effects from vertical and horizontal variations in AppendixE]
and get the following results.

Theorem 5.4: For all targets g € G and sensor grid S with
resolution §; = h and variation \,, Ap, the worst case grid
uncertainty (g) using only two cameras from S is bounded
as follows
14+ Xy
1— A, Foo

2(g) < 1.72

Proof: The result can be derived by combining
Lemma Lemma E] and Theorem [ ]
We can see that small deviation from the camera position
or the ground plane does not introduce significant uncertainty.

2The detailed proof for Lemma Lemma and Theorem can be
found in Appendix C,D, and E

3The details can be found in Appendix F and G

4Refer to Appendix F and G



C. Problem 2 in 3D

In 3D, we use the same grid resolution d; = h which is
half of the distance between the optimal pair of cameras. The
main result is

Theorem 5.5: For all targets g € G and sensor grid S with
resolution §; = h and variation \,, Ap, the worst case grid
uncertainty (g) using only two cameras from S is bounded

as follows
14+ X\,

2(g) < 2.4 .
2(g) 71 — )\he

The proof is similar to the 2D case. It is extended to include
perturbations in both z and y directions as shown in Figure [§]
which slightly increases the bounds. The proof can be found
in Appendix E]

-
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Fig. 8: Camera grid in 3D: ¢ is perturbed to g* to achieve
worst case uncertainty.

Theorem [5.5] allows us to bound the geometric error even in
the presence of variations in both viewing and scene planes.
However, it does not address visibility: variations in the scene
can cause occlusions which can block camera views. In the
next section, we address this issue.

VI. MULTI-RESOLUTION VIEW SELECTION

In this section, we explore how to extend our previous cam-
era view grid approach to non-planar regions such as orchards
and forests. The parallel plane assumption can produce good
results with high altitude, but will be insufficient to model non-
planar regions. For this purpose, we propose a multi-resolution
approach, which generates multiple camera view grids in a
coarse to fine manner, to reconstruct more general regions.

The input to our method is a surface mesh generated using
sparse points clouds from a SLAM method such as ORB-
SLAM [19]. It then outputs a subset of the views such that
each face of the mesh can be well-covered, that is, covered
by at least 3 cameras separated by the current grid resolution.
To ensure coverage quality, we double the grid resolution at
each iteration so that the minimum distance between cameras
is bounded. We present the details in Section [VI-B

As the scene becomes more complex, the multi-resolution
approach is able to adapt the terrain. For a given grid reso-
lution, we iterate through all triangles and if they are well-
covered by the current subset of views, those views will be
added to the solution. However, the potential views that can see
the triangle are limited due to occlusion and matching quality.
Therefore, we introduce a visibility cone for each triangle in
Section to limit the search space.

5The proof of Theorem is similar to the proof for Lemma which
is shown in Appendix A.
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Fig. 9: The visibility cone generated from visible cameras

Fig. 10: Multi-resolution view selection for each triangular
mesh, where the camera views (only in one level) intersect
with the visibility cone are added to the solution.

Similar to [14] and [9], we also generate scene meshes to
reason about the geometry. The main difference of our work
is that first, we do not require a secondary visit to the scene.
The existing trajectory of views can be sufficient enough to
cover the environment in most cases. Second, we generalize
the visibility for each triangle mesh such that well-covered
views can be predicted instead of the histogram method [9]
that is strongly case sensitive.

A. Visibility Cone

A camera is defined to be visible to a triangle mesh when
it contains 2D feature of a point around the mesh. A viewing
vector for a triangle is defined as the vector pointing from the
center of the triangle to the corresponding camera as shown in
Figure 0] The mesh vector is then the average of all viewing
vectors for that triangle mesh. We also define the visibility
angle of each triangle as the average angle between all viewing
vectors. We can therefore predict the visibility of a triangle
using both the visibility angle and the mesh vector. Essentially,
we generate a visibility cone, where the direction of the cone is
the mesh vector and the aperture is the visibility angle. We do
not consider the effects of viewing angles since all the views
are assumed to be facing downwards, which can be easily
maintained with a gimbal stabilizer. Unlike the approaches
from [9] that extract the histogram for each mesh triangle,
we bound the region of possible visible camera views using
the mesh visibility.

B. Coarse to Fine View Selection

After identifying the visibility cone for each triangle, we
utilize our previous proposal of the camera grid in a coarse to
fine manner.

For a given grid resolution, we iterate through all faces
of the mesh and check their visibility cones against current
subset of views. For each face, if the visibility cone contains
at least 3 camera views from the current subset of views,
then those views will be added to the solution as shown in
Figure [I0} Those faces covered by 3 or more cameras will not



Algorithm 1 View Selection. Let M = {mq,mao,...} be all
triangle meshes and J = {s1, s, ...} be all camera poses from
the trajectory. Let m(m;,J) be the function that output all
cameras in J that are within the visibility cone of m;.

Require: set initial grid resolution R, set solution sol = ||
while when M is not empty do
Pick camera grid Sg C J with spacing R
for all m; € M do
S = Sg()sol
if |7(m;, S)| > 3 then
sol = m(m;, S) [ sol
remove m; from M
end if
end for
R=R/2;
end while
Output final selected views sol

Histogram of Ratios of (2,-)/(2,_-2)

Fig. 11: (a) Distribution of “ggz gl (b) Histogram of the error:

|g — g| with the following noise parameters Inp| < 10,|n;] <
0.1h, |ng| < 1°

be considered in the next iteration. To ensure the quality of the
selected views, we impose that for each face, there are at least
3 views visible to the mesh so that feature matching error can
be reduced. Since we also increase the grid resolution by two
fold for each iteration, the chosen views for a specific mesh
guarantee a minimum spacing. Giving the grid spacing R at the
first iteration, after k iterations, the minimum spacing between
all views will be Q%R instead of arbitrarily small spacing that
reduces reconstruction quality.

VII. EVALUATION

In this section, we present simulation results used for
validating the uncertainty model and results followed by a
real-world reconstruction performance using the coarse to fine
view selection method.

A. Simulations

We used the following parameters of a GOPRO HERO 3 for
simulations. Resolution: 1920 x 1080, Field of view: 120° x
70°. The calibration error in pixels was [0.2061,0.2183]. For
all simulations we used an iMac with 3.3GHz quad-core Intel
Core i5 and 16GB of RAM.

Model justification: We consider the following sources of
uncertainty: finite resolution, calibration errors, camera center
location, and camera orientation.

The first two sources are less than one pixel. To investigate
the role of camera orientation, we perturbed camera location

§ = s + ng, where s is the true location and n, is a uniform
noise, and camera pose 0 = 0+ ng where 0 is the true
orientation and ng is a uniform noise. Figure [TT] (b) reports the
result of triangulation error from two cameras in an optimal
position. The height of the viewing plane was set to 10m. The
noise was set to |n,| < 10, |ns| < 0.1h, and |ng| < 1°. Each
simulation was repeated 10° times where the target location §
was computed by triangulation and the error |§—g| is reported.
Various noise levels are shown in the captions. If we choose a
bound of 10 pixels for the measurement error, it corresponds to
a < 0.1 rad. The solid red line shows the predicted worst case
error using our model. In general, reprojection error will be
less than 10 pixels, otherwise it will be discarded as outliers.
The state-of-the-art SLAM [26] algorithm’s performance can
go up to 0.0014 deg/m therefore, we set the camera position
error to be less than 10% of the height while bounding the
orientation error to be less than 1°. The histogram shows that
the distance to the true target location is bounded by the worst
case uncertainty which is indicated as the vertical red line. It
means that our uncertainty cone model can be relatively robust
to system noise.

Next, we studied the effect of using two best cameras
vs. all cameras. We estimated the target pose using least
squares from all cameras and reported the ratio: % is
plotted in Fig [IT] (a). Here, §5 is the estimated target location
using the optimal pair while g, uses all the cameras. The
simulation was repeated 10* times. The ratio in Fig (@
is less than 3.5, which means that using the optimal pair of
cameras to triangulate the target is at most 3.5 times worse
than triangulation using all cameras. This is because that
the triangulation error using two or all camera views can be
considered as a random process. Using only two camera views
does not restrict the target as rigorous as using all views,
therefore, imposing at most 3.5 ratio of target position error.

B. Real Experiment

We collected two data sets using a GOPRO HERO 3 with
a UAV flying over the same region with different height.
The altitude ranges from 10 meters to 30 meters whereas the
covered areas range between planar to more general orchard
scenes. The orchard contains trees that are around 3 meters tall
and ground elevation difference around 1 meter. We recorded
around 5 minutes of videos, which is roughly 10000 frames. In
order to speed up the reconstruction, we extracted every 30"
frame of the videos for mosaicking, which results in around
400 frames. We used the commercial AgiSoft software [1] for
Structure from Motion for dense reconstruction to investigate
the effect of view selection on reconstruction quality and
reprojection error.

1) Mosaic Quality: We used the original selected frames
for reconstruction and mosaicking [16]. Then, we used grid
resolution of §; = h as shown in Figure [12] to select a subset
of the frames for reconstruction and mosaicking. This means
that if the drone is 10 meters above the ground plane, we select
camera frames every 10 meters, which significantly reduces
the number of cameras required. The total time required to



TABLE I: The comparison of average reprojection error and reconstruction time for the two experiments

Original Frames | Avg Reprj Err SFM time (min) Camera Grid Frames | Avg Reprj Err SFM time (min)
Orchard: 30 meters Flight 416 0.842 313.6 76 0.934 4.1
Orchard: 10 meters Flight 375 0.724 374.7 84 0.842 4.4

Original Frames | Avg Reprj Err | Dense Recon (min) Multi-Resol Method | Avg Reprj Err | Dense Recon (min)
Orchard: 30 meters Flight 875 0.863 1463 209 0.931 115
Orchard: 10 meters Flight 893 0.944 1522 266 1.243 167

Mosaic
(~300 frames)

Mosaic
(~50 frames)

Selected Frames(green)
from Camera Grid

Fig. 12: Select a subset of the original frames using the camera
grid: reduces frames from ~300 to ~50 with comparable
mosaic quality.

reconstruct the same region decreased significantly while the
reprojection error of each reconstruction remains low as shown
in Table [I For qualitative evaluation, we stitched the images
together using the output poses from SFM and orthorectified
the views to compare the quality of the final mosaic. The
resulting views are comparable, indicating that the proposed
view selection mechanism does indeed perform comparable
with respect to the original input set as shown in Figures [12]

2) Dense Reconstruction Quality: We also examined the
performance of the multi-resolution camera grid approach at
the orchard data sets. For dense reconstruction, such data
sets should be considered as a general scene and they cannot
be treated as planar region, otherwise, features with differ-
ent height values cannot be covered. We first used ORB-
SLAM [19] to extract camera poses and a sparse point cloud.
Since the point cloud may contain many inconsistent points,
a filter is applied to remove noisy points too far from the
surroundings. Then a mesh was built upon those points with
maximum of 10,000 faces. We extracted the visibility cones
of the mesh with the given trajectory and sampled a coarse-to-
fine camera view grid in the same trajectory. The footage with
the original data sets lasts around 5 minutes and contains more
than 9000 images. Using the key frame selection method from
ORB-SLAM, more than 3000 images were selected for re-
construction. It is infeasible due to computational limitations.
Therefore, we selected every 10t" frame with a total of around
900 frames. As shown in Figure[2] the view selection algorithm
selected relatively sparser views in flat regions comparing to
the densely packed views in more complex regions. The view
selection algorithm will terminate when at least 95% of the
surface is covered. Therefore, there are still f few faces in
the mesh which are not visible to the view subsets in the last
iteration. The initial grid spacing is set to the height between
the camera view plane and the dominant ground plane: §; = h.
The reconstruction time and reprojection error comparison
is shown in Table [} It is clear that the computational time

decreased by more than a magnitude and while the reprojection
error does not increase too much. Essentially, our multi-
resolution approach takes the scene geometry into consider-
ation and removes redundant views that do not contribute
much to the results. Visually, we can see that the dense
reconstruction qualities are comparable shown in both Figurel|T]
and in Appendix. The results show that the reconstruction
quality in both case are almost identical. There is also an
interesting observation: it is not necessarily beneficial to have
as many as views possible for dense reconstruction. As shown
in Figure [[3] (a) in Appendix, more views actually smooth out
the distinct geometry of the trees, leaving edges blending into
each other. At a lower altitude, as shown in Figurem the dense
reconstruction results are almost indistinguishable.

VIII. CONCLUSION

In this paper, we studied view selection for a specific but
common setting where a ground plane is viewed from above
from a parallel viewing plane. We showed that for a given
world point, two views can be chosen so as to guarantee a
reconstruction quality which is almost as good as one that can
be obtained by using all possible views. Next, by fixing these
two views and studying perturbations of the world point, we
showed that one can put a coarse grid on the viewing plane
and ensure good reconstructions everywhere. Even though
the reconstruction quality can be improved by increasing the
grid resolution, we showed that a grid resolution proportional
to the scene depth suffices to guarantee a constant factor
deviation from the optimal reconstruction. We then showed
how to extend the bound in the presence of perturbations of
the viewing or scene planes. However, as the scene geometry
gets more sophisticated, occlusions must be addressed. For
this purpose, we presented a multi-resolution view selection
mechanism. We also presented an application of these results
to image mosaicking and scene reconstruction from (low
altitude) aerial imagery.

Our results provide a foundation for multiple avenues of
future research. An immediate extension is that rather than
selecting views apriori and in one shot, the view selection
can be informed by the reconstruction process as commonly
done in existing literature [20]. Our multi-resolution view
selection method provides the starting point for a batch scheme
where a coarse grid is used for reconstruction under the planar
scene assumption and further refined based on the intermediate
reconstruction.

ACKNOWLEDGEMENT

We would like to acknowledge the supports by a MN State
LCCMR grant and NSF Awards 1525045 and 1617718.



(1]
(2]

3

—_

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Agisoft. Agisoft. http://www.agisoft.com/,

H. Bayram, J. V. Hook, and V. Isler. Gathering bearing
data for target localization. IEEE Robotics and Automa-
tion Letters, 1(1):369-374, Jan 2016. ISSN 2377-3766.
doi: 10.1109/LRA.2016.2521387.

LoongFah Cheong, Cornelia Fermiiller, and Yiannis
Aloimonos. Effects of errors in the viewing geometry
on shape estimation. Computer Vision and Image Un-
derstanding, 71(3):356-372, 1998.

Andrew J Davison. Real-time simultaneous localisation
and mapping with a single camera. In Proceedings of
the Ninth IEEE International Conference on Computer
Vision-Volume 2, page 1403. IEEE Computer Society,
2003.

Jakob Engel, Thomas Schops, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In Euro-
pean Conference on Computer Vision, pages 834—849.
Springer, 2014.

H Farid, S Lee, and R Bajcsy. View selection strategies
for multi-view, wide-base stereo. Technical report, Tech-
nical Report MS-CIS-94-18, University of Pennsylvania,
1994.

Yasutaka Furukawa, Brian Curless, Steven M Seitz, and
Richard Szeliski. Towards internet-scale multi-view
stereo. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 1434-1441.
IEEE, 2010.

Yue Gao, Meng Wang, Zheng-Jun Zha, Qi Tian, Qiong-
hai Dai, and Naiyao Zhang. Less is more: efficient
3-d object retrieval with query view selection. IEEE
Transactions on Multimedia, 13(5):1007-1018, 2011.
Christof Hoppe, Andreas Wendel, Stefanie Zollmann,
Katrin Pirker, Arnold Irschara, Horst Bischof, and Stefan
Kluckner. Photogrammetric camera network design for
micro aerial vehicles. In Computer vision winter work-
shop (CVWW), volume 8, pages 1-3, 2012.

Alexander Hornung, Boyi Zeng, and Leif Kobbelt. Image
selection for improved multi-view stereo. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1-8. IEEE, 2008.

Volkan Isler and Malik Magdon-Ismail. Sensor selection
in arbitrary dimensions. IEEE Transactions on Automa-
tion Science and Engineering, 5(4):651-660, 2008.

R. Kaucic, R. Hartley, and N. Dano. Plane-based
projective reconstruction. In Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV
2001, volume 1, pages 420-427 vol.1, 2001. doi:
10.1109/ICCV.2001.937548.

Georg Klein and David Murray. Parallel tracking
and mapping for small ar workspaces. In Mixed and
Augmented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, pages 225-234. IEEE,
2007.

Andreas Krause and Daniel Golovin. Submodular func-

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

tion maximization. In Tractability: Practical Approaches
to Hard Problems, pages 71-104. Cambridge University
Press, 2014.

Kiriakos N Kutulakos and Charles R Dyer. Recovering
shape by purposive viewpoint adjustment. International
Journal of Computer Vision, 12(2-3):113-136, 1994.
Z.Li and V. Isler. Large scale image mosaic construction
for agricultural applications. IEEE Robotics and Automa-
tion Letters, 1(1):295-302, Jan 2016. ISSN 2377-3766.
doi: 10.1109/LRA.2016.2519946.

Massimo Mauro, Hayko Riemenschneider, Alberto Sig-
noroni, Riccardo Leonardi, and Luc Van Gool. An
integer linear programming model for view selection on
overlapping camera clusters. In 3D Vision (3DV), 2014
2nd International Conference on, volume 1, pages 464—
471. 1IEEE, 2014.

Jasna Maver and Ruzena Bajcsy. Occlusions as a guide
for planning the next view. IEEE transactions on pattern
analysis and machine intelligence, 15(5):417-433, 1993.
Raul Mur-Artal and Juan D Tarddés. Orb-slam2: An
open-source slam system for monocular, stereo, and rgb-
d cameras. IEEE Transactions on Robotics, 33(5):1255—
1262, 2017.

Cheng Peng and Volkan Isler. Adaptive view planning
for aerial 3d reconstruction of complex scenes. arXiv
preprint arXiv:1805.00506, 2018.

Hossein Sahabi and Anup Basu. Analysis of error in
depth perception with vergence and spatially varying
sensing. Computer Vision and Image Understanding, 63
(3):447-461, 1996.

William R Scott, Gerhard Roth, and Jean-Francois
Rivest. View planning for automated three-dimensional
object reconstruction and inspection. ACM Computing
Surveys (CSUR), 35(1):64-96, 2003.

Noah Snavely, Steven M Seitz, and Richard Szeliski.
Skeletal graphs for efficient structure from motion. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

Peter Sturm and Bill Triggs. A factorization based al-
gorithm for multi-image projective structure and motion.
Computer VisionECCV’96, pages 709-720, 1996.
Pere-Pau Vazquez, Miquel Feixas, Mateu Sbert, and
Wolfgang Heidrich. Automatic view selection using
viewpoint entropy and its application to image-based
modelling. In Computer Graphics Forum, volume 22,
pages 689-700. Wiley Online Library, 2003.

Ji Zhang and Sanjiv Singh. Visual-lidar odometry and
mapping: Low-drift, robust, and fast. In Robotics and
Automation (ICRA), 2015 IEEE International Conference
on, pages 2174-2181. IEEE, 2015.


http://www.agisoft.com/

APPENDIX

A. Proof of Lemma

Proof: We prove the lemma by contradiction: Sup-
pose there exists a camera s, € A — {sp,s,} such that
Cone((sg,0r), g) intersects Tyu3 at point uy, us, where uy <
v1 and uy > w3 as shown in Fig(b); Since Cone((sg,0k), g)
must contain target g, u; = v1. We know that u;, us are on the
vertical line passing through g, we can formulate %702 using
the law of sine of the triangle A(spuquz).

uruy;  h/sin(0, — )
sin(2a)  sin(7/2 — 0 — @)
2hsin(2a)
U1Ug =

sin(26y) — sin(2«)

Since ue > v3, we want to find the minimum %y us by choos-
ing different s, # sp,s4, which is equivalent to minimizing
Uitz W.I.t. 0. Thus, Tyus is minimized when sin(26;) = 1,

which results in 0, = w/4. By substituting 6, = w/4,
U = % = diagy. It means that either s, = s, or

Uiugz > U103, both of which contradict with our assumption.
| |

B. Proof of Lemma

Proof: Using small angle approximation, we get sin(a) ~
« and cos(a) ~ 1 and o? ~ 0. The angles are constrained
such that 0,6, € [7/4 — 2a, 7/4].

diagy = ||r? 4+ 13 —2 -1y 79 - cos(f, + 0,)||2
~ ||2t2a? + 2t2a? — 4t%a? cos(0, + 0,)||2
= 2ta||1 — cos(8p, + 64)]2

max(diag;) < 2ta and min(diag;) > /1 — 4a - 2ta

diags = ||r3 + 13 —2 -1y - 74 - cos(m — 0, — O, + 2a)||2
~ 2ta||l + cos(0, + 04) — 2asin(f, + 0,)||2

max(diags) < /1 + 2a - 2ta and min(diage) > /1 — 4o -
2ta. Therefore, diags < }fiz -diag; and 1 — 4o will not
be negative since « must be less than 0.25 to satisfy small
angle approximation. Given that e; = max(diagl, diag2), we
can conclude

. 1+ 2a 2hsin(2a)
S 1-dal- sin(2«)

C. Proof of Lemma

Proof: We will add two more line segments aa’ and cc’ to
generate an isosceles trapezoid aa’cc’ (Fig @ When the angle
Lspaa' > Zspab, the diagonal @c will be the longest line
segment in the trapezoid aa’cc’. Therefore, when Zs,aa’ >
Zspab, that is 0, + 0, > T + «, is satisfied, ||diag:|| >
||diags||. u

D. Proof of Lemma

Proof: First, when the inner half planes of both Cone(sy,)
and C'one(s,) intersect above g, it is clear that by moving the
intersection down to g, 0, + 6, is increased. Now assume that
target g is moving along the x axis (Fig [8)) by some length
m, where m < 6,4/2. We can formulate 6, + 6, as a function
of m and the distance between the cameras as

1 h
F(m) =0y + 0q = tan (h/tan(w/4—oz)—m)+
_ h
tan 1(h/tan(7r/4—a) +m) 20

We can get the derivative

d{l(;:) as
d :
%f(m) = {2m(2 cos(2a) 4+ 2 cos(2a) sin(2a) }-
{2m? sin(2a)) 4 2m* sin(2a) + 4m? sin*(2a)
+m*sin?(2a) +m? +4}7!

Since d];(rzl) >0, 6, + 6, keeps increasing and is maximized
at target g* = g £ 04/2. [ ]

E. Proof of Theorem

Proof: The intersection length x is obtained using the law

of sines.
xr  h/sin(0 - «) B 2hsin(2a)

~ sin(26) — sin(2a)

sin(2a)  sin(f -6 — )

When the inner half-plane of Cone(s,) and Cone(s,) inter-
sect at g£04/2, x is maximized. We can now compute directly
the worst case uncertainty when o < 0.1 rad which gives the
desired result. [ ]

F. Proof of Lemma

First, we analyze the effects of horizontal variation \y,.

Lemma A.1: Let s = (sz,8y) be a camera location in an
optimal pair for target g € G. Let § = (s, £ Aph, s,) obtained
by perturbing s in the horizontal direction. Let = INCone(8§)
and x =[N Cone(s).

<
ol < -

el

Proof: From Lemma [4.2] we can see that when sensor is
at location § = (s + Aph, sy), ||Z|| is maximized. Therefore,
||Z|| > ||=|]. From Fig[14] we can get the following relation-

ship using similar triangles: ‘b‘f_lcl = /\hl};—a and ”i” = a}—j_b.
We can get the following result.
M _ c(Aph+a) Anh+a
llz||  (a+b)(b+c) = a+b
h 1
< <
“h—=MAh T 1—=X,
|



Fig. 13: Comparison of dense reconstruction of the orchard taken at 30 meters altitude. (a) Dense Reconstruction using 875
images, with closeup views of the trees. (b) Dense Reconstruction using 209 images extracted using our multi-resolution view

selection method, with closeup views of the trees.
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(b)Horizontal Variation
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Fig. 14: Variation in horizontal and vertical positions

G. Proof of Lemma[A2]

Then, we add vertical perturbation A,k in between the
viewing plane and the ground plane.

Lemma A.2: Let s = (s;,s,) be a camera location in a
optimal pair for target g € G. Let = (s, s, £\, h) obtained
by perturbing s in the vertical direction. Let & = I N Cone(§)
and x =[N Cone(s).

21 < (14 X0)| ||l

Proof: From Lemma 4.2 we can see that when sensor is
at location § = (s, s, + Ayh), ||| is maximized. Therefore,
||#|| > ||=||. From Fig (14} we can get the following relation-
ship using similar triangles: %%El = % and ui—” = h%ibi’ We

can get the following result.

||2]] ac(l+ \y)
2l _ _acl+r) 4y
ERRCED D

H. Wedge Intersection

Using the law of sines over the triangle s,viv2, we get

r SpU1 p—

WIQQ) m. We also have ZSP’UQSq = T —

20 — Lspvva = ™ —2a — (0, + 0, — 20) = 7w —
SpU

0, — 04 From A(spvisy), we know that m

By combining both equations, we obtain:

t
stn(mr—0p—04+2a) "

o tsin(0,—a) sin(2a) .
re = sin(0p+9q‘1_2a) sin(ep_s_)@q)(U)smg the same method, we
. tsin(f,+a) sin(2a
have: 74 sip(9p+9q§s_in(ap+eq+2a) From A(spvsvy), we
get: rg = ——smlbeta)sin@a) __ gimitarly, from A (sqv104)

sin(0p+04) sin(0p,+04+2c)
_ tsin(0,—a) sin(2a§
T4 = §n(0,+0,—2a) sin(0,+02)
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