
Improving Multi-Robot Behavior Using
Learning-Based Receding Horizon Task Allocation

Philipp Schillinger∗†, Mathias Bürger∗ and Dimos V. Dimarogonas†

∗Bosch Center for Artificial Intelligence, Renningen, Germany.
Email: {philipp.schillinger, mathias.buerger}@de.bosch.com

†KTH Centre for Autonomous Systems and ACCESS Linnaeus Center
EECS, KTH Royal Institute of Technology, Stockholm, Sweden.

Email: {schillin, dimos}@kth.se

Abstract—Planning efficient and coordinated policies for
a team of robots is a computationally demanding problem,
especially when the system faces uncertainty in the outcome
or duration of actions. In practice, approximation methods
are usually employed to plan reasonable team policies in an
acceptable time. At the same time, many typical robotic tasks
include a repetitive pattern. On the one hand, this multiplies the
increased cost of inefficient solutions. But on the other hand, it
also provides the potential for improving an initial, inefficient
solution over time. In this paper, we consider the case that
a single mission specification is given to a multi-robot system,
describing repetitive tasks which allow the robots to parallelize
work. We propose here a decentralized coordination scheme
which enables the robots to decompose the full specification,
execute distributed tasks, and improve their strategy over time.

I. INTRODUCTION

Behavior planning methods enable the use of robots for
increasingly sophisticated tasks. Actions can be planned in
a way that the resulting behavior is guaranteed to satisfy a
given specification. Linear Temporal Logic (LTL) [3, 5] is
an established formalism to describe logical specifications
including temporal dependencies in a mathematical way.
Such a specification provides a solid basis for synthesizing
verifiably correct behaviors for the available robots.

We propose here a decentralized receding horizon algo-
rithm that efficiently controls a team of robots from a single
LTL specification as input. More precisely, the proposed
approach uses Markov Decision Process (MDP) [31] models
of the robots and an LTL specification to describe safety
constraints and tasks that need to be satisfied repeatedly. To
handle the computational complexity of planning with prob-
abilistic models, we employ options [37] as an abstraction
for planning and show how such options can be derived
from the given LTL formula. In this setting, an option is
defined by a set of terminal states as well as some safety
constraints. Policies for the single options can then be found
as the solution of a stochastic shortest path problem.

To coordinate the allocation of options to different robots,
we employ a simple auctioning scheme [34] where robots
greedily bid for the next cheapest option. However, to incor-
porate a long-term perspective in this allocation process, we

include an estimate of the cost-to-go in the bids of each
robot. This cost-to-go estimate is continuously improved
while the repetitive tasks as described by LTL are being
followed. We argue that, in the considered multi-robot
setting, the cost-to-go can be approximated sufficiently well
by learning a value which only depends on the LTL progress
while abstracting from the current and future positions of
the robots. With this setting, the cost-go-go values can be
updated using a standard Q-learning approach [36].

The task execution is done in a receding horizon manner.
The robots execute the allocation procedure and follow the
policy of their respective allocated option until the first
robot achieves some progress with respect to the LTL goal.
Then, the allocation procedure is repeated to adjust for
recent observations. This provides an efficient coordination
between the robots and enables to prepare future subgoals
in advance by following some options only partially.

This work substantially extends the previous work [34].
First, the notion of options is significantly simplified, as here
an option corresponds to exactly one transition in the LTL
automaton. Considering the co-to-go approximations, we
show convergence even with these simple option definitions.
Second, the cost-to-go incorporates a perspective of long-
term performance, particularly relevant for repetitive tasks
in which costs accumulate and inefficiency is expensive.

A. Related Work

The problem at hand requires to find policies for multiple
robots in a way that guarantees satisfaction of a temporally
extended, repetitive task which is specified by a tempo-
ral logic formula. At the intersection of temporal logics
and multi-robot systems, computational complexity is a
particular challenge and motivates distributed approaches.
For example, [13, 14] plan for each robot individually by
assuming locally assigned tasks and then reconfigure these
plans online to achieve cooperation. [40] takes a similar
approach and decomposes the problem into smaller, finite
horizon problems. [28] does not synthesize controllers in ad-
vance, but ensure that the continuous behavior of the robots
is guaranteed to comply with specifications given in an

assume-guarantee structure [27]. However, these approaches
not only assume that an assignment of tasks to robots is
known in advance, but also do not consider the efficiency
of mission satisfaction. In contrast, [41] forms a centralized
product between the robots to optimize repeated satisfaction
of a single goal proposition. [35] avoids the expensive
product by decomposing the mission into independent tasks,
but only covers finite missions. Still, both approaches are
centralized and assume deterministic actions.

To find policies in increasingly complex and uncertain
environments, temporal logics can be used to guide a rein-
forcement learning process [22]. For example, [32] demon-
strates a temporal difference learning approach to satisfy
a given LTL specification. [15, 1] use batch Q-learning to
increase the robustness of satisfying a temporal logic goal.
Similarly, [21] converts a temporal logic goal into a reward
function. [20] defines options [37] to satisfy single atomic
propositions in order to reduce the complexity of learning.
[26] defines options and uses neural networks to learn low-
level controllers as well as high-level option activations.
However, these approaches are limited to a single agent and
do not consider the effects of multi-agent dependencies.

When extending learning to incorporate multiple agents,
the varying policies of other agents are challenging for
purely distributed learning approaches [8]. While this effect
can be utilized when training a single agent [4], it generally
needs to be addressed for finding multi-agent policies. [12]
presents with the MAXQ framework a hierarchical approach
to multi-agent reinforcement learning. [7] employs a decen-
tralized Monte Carlo Tree Search while agents communicate
their policies. [23] proposes that the agents learn a set of
policies with full knowledge about the policies of other
agents and then estimate which policy is followed by the
others. [9] demonstrates a model identification approach
while conforming with temporal logic constraints. However,
these approaches do not support goals given by a temporal
logic formula and often require a learning phase in advance.
To formally model the dependencies on other agents instead
of learning them, [2] proposes to use the DecPOMDP for-
malism [6] and presents a way to incorporate options in this
framework as opposed to considering an LTL specification.
[25] extends the approach by incorporating planning of
policies for the explicitly modeled options.

Another efficient method to coordinate the allocation of
tasks between multiple robots are decentralized auctions
[19, 10]. For example, [42] proposes an auction approach
to cooperate in overlapping tasks based on a hierarchical
structure. [16] presents sequential single-item auctions as
a particularly efficient coordination method. In our previ-
ous work [34], we consider dependencies of auction tasks
derived from temporal logic specifications. Specifically,
efficient concurrent execution of dependent tasks requires
attention. [29] discusses three different termination schemes
of concurrent action execution and [30] presents an approach
for generating concurrent plans in MDPs. [38, 24] model
concurrent cooperation of a two-arm manipulator with asyn-

chronous activities. Still, optimizing concurrent execution
while considering their interdependency is computationally
expensive for an increasing number of agents.

To combine the advantages of both learning coordination
and the auctions, we propose in this work a receding
horizon scheme. The robots coordinate their next actions by
auctioning while learning the desirability of their assignment
for the team beyond the horizon to improve over time.

B. Preliminaries

A Linear Temporal Logic (LTL) formula φ over the
propositions π ∈ Π with π ∈ {>,⊥} is given inductively
by the syntax [3, 5]

φ = > | π | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | ©φ1 | φ1 U φ2

where φ1, φ2 are itself LTL formulas. >, ⊥ denote the
Boolean constants true and false, respectively. The opera-
tors ¬ (negation), ∧ (conjunction), and ∨ (disjunction) are
Boolean and are extended by the temporal operators ©
(next) and U (until).

In LTL, the semantics of these operators are defined over
sequences of sets of propositions σ : N→ 2Π. We say that a
sequence σ(t) satisfies φ at time t as given in the following
and denoted by the operator �.
• σ(t) � > trivially holds
• σ(t) � π if proposition π ∈ σ(t)
• σ(t) � ¬φ1 if not σ(t) � φ1

• σ(t) � φ1 ∧ φ2 if both σ(t) � φ1 and σ(t) � φ2

• σ(t) � φ1 ∨ φ2 if any of σ(t) � φ1 or σ(t) � φ2

• σ(t) �©φ1 if next σ(t+ 1) � φ1

• σ(t) � φ1 U φ2 if eventually ∃T ≥ t : σ(T) � φ2 and
until then ∀t′ ∈ [t, T) : σ(t′) � φ1

In addition to the above basic operators, we define the
derived operators⇒ (implication) as φ1 ⇒ φ2 := ¬φ1∨φ2,
♦ (eventually) given by ♦φ1 := > U φ1, and � (always) as
�φ1 := ¬♦¬φ1.

It is well-known [3, 5] that an LTL formula φ can be
translated into a non-deterministic Büchi Automaton (BA)
defined as follows.

Definition 1 (Büchi Automaton). A Büchi automaton is a
tuple B := (QB, QB,0, αB, δB, FB), consisting of (1) a finite
set of states QB, (2) a set of initial states QB,0 ⊂ QB,
(3) an input alphabet αB, (4) a non-deterministic transition
relation δB ⊆ QB × αB ×QB, (5) a set of accepting states
FB ⊂ QB.

A run ρ : N0 → Q is a sequence of states ρ = q0q1q2 . . .
and we say that a sequence σ describes a run ρ if it holds that
(ρ(i−1), σ(i), ρ(i)) ∈ δB for all i ∈ N. The construction of
a BA B, e.g. [11], ensures that the following relation exists
to its corresponding LTL formula φ.

Definition 2 (Büchi Acceptance). A sequence σ is accepted
by the BA B constructed from φ if and only if there exists
a run ρ described by σ such that ρ(0) ∈ QB,0 and the set
of accepting states FB is traversed infinitely often. In this
case, ρ is called accepting and it holds that σ � φ.

q7 q4

q1

q3

q5

c

>
a

a

db

¬a ⊥

Fig. 1. Example BA for the formula φ = ¬a U c∧�
(
♦(a∧♦b)∧♦d

)
.

For a simplified illustration, propositions {a, b, c, d} are assumed to be
mutually exclusive and infeasible transitions are not drawn. Also, self-
transitions which are trivially true are omitted.

In particular, a run can be formulated as the concatenation
of a finite prefix and an infinite suffix [3]. We call a prefix
safe if there is a suffix such that the prefix can be extended
to an accepting run. There exists a fragment of LTL called
syntactically co-safe LTL (scLTL) [17] for which a run ρ is
accepting if its prefix is safe for every suffix.

II. MODEL CONSTRUCTION

LTL is an established formalism to specify complex
logical and temporally extended goals for a given system. As
a basis for the presented algorithms, we first introduce how
to relate such a goal with a probabilistic model of the system
suitable for planning, learning, and multi-agent coordination.

A. Mission Formulation

We restrict mission formulations to the fairly general
subset of LTL which can be expressed as

φ = φi ∧�φr (1)

where both φi and φr are scLTL formulas. φi captures initial
tasks which only have to be completed once. φr formulates
repetitive tasks which the robots need to satisfy repeatedly.

We construct finite automata for φi and φr independently.
Specifically, we introduce a so-called Cyclic Finite Automa-
ton (CFA) as follows in order to resemble the suffix-part of
a BA and construct the CFA directly from φr.

Definition 3 (Cyclic Finite Automaton). The Cyclic Finite
Automaton C is a tuple C = (Q, q0, α, δ, F), given by (1) a
finite set of states Q, (2) an initial state q0, (3) an input
alphabet α, (4) a deterministic transition relation δ ⊆ Q×
α×Q, (5) a set of accepting states F .

When a run ρ described by a sequence σ reaches an
accepting state, we say that the CFA accepts σ and ρ is
reset to the initial state q0 of the CFA. If ρ is reset multiple
times (or infinitely often), we say that σ is accepted multiple
times (or infinitely often). An example of a BA and the CFA
for the respective φr is shown in Figures 1 and 2.

The relation between a CFA Cφ for φr and a BA Bφ for
φ with the structure (1) can formally be shown as follows.

Proposition 1 (Equivalent Acceptance). Let σ = σpσs be
a sequence with a finite prefix σp and an infinite suffix σs.
Furthermore, let σp be a safe prefix for φ and σp � φi.
Then, σ is accepted by Bφ if and only if σs is accepted by
Cφ infinitely often.

q0

q3

q5q2

q6

q4

a

d

d

b

ba

d

¬b ∧ ¬d
¬a ∧ ¬d

¬a ¬b

¬d

Fig. 2. CFA corresponding to the BA in Fig. 1, i.e., for the formula
φr = ♦(a ∧ ♦b) ∧ ♦d.

Proof: First, observe that σp � φi if and only if there
exists a run ρBp described by σp which reaches an accepting
state of Bφ. For the only if -direction, assume that σ is
accepted by Bφ. Then, every consecutive accepting loop
in Bφ described by the continuation of σp fulfills φr and
consequently, describes an accepting run in Cφ. For the if -
direction, assume that σs is accepted by Cφ infinitely often
and consider that σ = σpσs would not be accepted by Bφ.
Since ρBp reaches an accepting state, this would imply that σs

violates �φr eventually and thus, contradict the assumption.
Consequently, the equivalence follows.

Throughout this paper, we do not use the BA of an LTL
mission directly. Instead, we focus for clarity of presentation
and without loss of generality on the suffix as represented by
a CFA. Nevertheless, note that the prefix of φ can be triv-
ially incorporated when considering a different automaton
structure during the first iteration and then continuing with
the CFA. In particular, the automaton for the first iteration
is obtained by following the BA to an accepting state and
then resetting to the initial CFA state.

Remark. We make the limitation to (1) for the following
technical reason: most common LTL-to-automaton trans-
lators reduce the size of a BA as much as possible and
remove states which are redundant for acceptance. However,
this optimization may exclude some trajectories which are
desirable when considering each accepting loop separately.
For example, in Figure 1, only the order a, d, b leads back to
the accepting state while the order a, b, d is not recognized
as an accepting loop until a further occurence of b.

B. System and Problem Definition

We model a robot in the environment as a probabilistic
dynamical system. At each iteration k ∈ N the system has
a state sk ∈ S and can select an action ak from a set of
possible actions A. The transition kernel Pak(sk+1, sk) =
Pr(sk+1|sk, ak) is the probability that action ak in state sk
transitions to the subsequent state sk+1. For each transition,
the function c : S×A→ R>0 is an expected immediate cost,
i.e., c(sk, ak) is the cost incurred when action ak is chosen
in state sk. Finally, let Π be a set of atomic propositions.
A labeling function λ : S → 2Π assigns to every state a
label. In the following, we will refer to the tuple M =
(S,A, P, c,Π, λ) as a labeled Markov Decision Process.

Given an initial state s0 ∈ S and a sequence of actions
a0, a1, . . . , aK−1, the dynamical system will generate a
probabilistic trajectory s1, s2, . . . , sK . The corresponding
sequence σ to this trajectory is then σ = λ(s1), . . . , λ(sK).

For the purpose of this paper, it is most useful to give a
particular interpretation to the above dynamics, motivated
by robot navigation problems. Specifically, we consider as
cost c(sk, ak) the duration of an action ak. Note that this is
a slight variation of the standard MDP setting [31], where
usually one iteration corresponds to one time instant.

The notion of time needs particular attention in a multi-
agent setting. For an analysis purpose, we introduce here a
continuous, global reference time t ∈ R≥0. Suppose that, at
global time t, a robot r is in state srk and initiates action
ark. We denote sr(τ) = srk for all τ ∈ [t, t + crk) where
crk = c(srk, a

r
k). That is, in the global time, we assume that a

robot is in its originating state until the new state is reached.
A global time allows us to introduce a team trajectory

s(t). Consider a team of n robots R = {r1, . . . , rn}, each
modeled by a labeled MDPMri over the same set of atomic
propositions Π. We assume throughout this work that the
robots’ MDPs are independent of each other, that is, we
assume the dynamics of the robots are decoupled. The team
state at global time t is thus s(t) = (s1(t), . . . , sn(t)).
A sequence of time instances θ = t0t1 . . . then denotes
the times tk at which the state s(t) changes, that is, at
least one robot reaches a new state. Consequently, a team
trajectory is a sequence of states s(t0)s(t1) . . . at times
tk. Finally, a team sequence is given accordingly by σ =(
λ(s1(t0)), . . . , λ(sn(t0))

)(
λ(s1(t1)), . . . , λ(sn(t1))

)
. . . .

We conclude by formulating the objective addressed in
this paper based on the above definition of a team sequence.
Let σ(tk) be the team sequence from the start t0 to time
instant tk, and let ρ(tk) be a run in the CFA C of the mission
φr described by σ(tk). Further, define a sequence of time
instances Θ := T0, T1, . . . with Θ being a strict subsequence
of θ where T` is the time such that the run ρ(T`) reaches
an accepting state q ∈ F for the `-th time and T0 := t0.

Problem 1. Given a team of robots R, where each robot is
modeled as a labeled MDPMri , and an LTL mission spec-
ification φ as in Equation (1); minimize the time between
repeated visits of an accepting state, given by

Θ∆(`) = T (`)− T (`− 1). (2)

C. Option Definition

To achieve the above objective in a computationally
tractable way, we introduce a layer of abstraction which
allows to plan specific actions for the robots individually on
the lower layer while coordinating their progress towards
goal satisfaction on the higher layer. Instead of forming a
product between the MDP and an abstract automaton like
the CFA, as for example done by [18], we follow the idea
of options defined over an MDP [37].

A policy π : S → A for an MDP M defines a mapping
from a state s ∈ S to a desirable action a ∈ A and con-
sequently, produces a sequence of actions a0, a1, . . . , aK−1

given an initial state, as discussed before. We call a policy
safe if it guarantees that a given Boolean constraint ϕc is
never violated and a Boolean goal ϕg is satisfied eventually.

In this paper, we are specifically interested in condition
pairs (ϕc, ϕg) which reflect transitions in the CFA. For a
transition from q to q′, the condition ϕc is given by the
self-transition at q to guarantee that q can remain the active
state until the transition has been completed, i.e., until the
policy terminates. Accordingly, the goal ϕg is given by the
respective condition to transition to q′.

We call a transition in the CFA admissible in the case
that it admits a policy which is safe with probability 1.
We assume that for every state q there exists at least one
admissible transition and do not consider non-admissible
transitions in the following. For an admissible transition,
a safe policy to the states in M which satisfy ϕg can be
constructed by removing all actions from M which have a
non-zero probability of ending in a state that violates ϕc.

Starting at a state s0 ∈ S with the safe policy π, a
probabilistic duration can be stated as

d(s0) =

K−1∑
k=0

c(sk, π(sk)) (3)

with the final state sK denoting a state which satisfies the
goal condition ϕg. To summarize, we define one option for
each transition in the CFA as follows.

Definition 4 (Option). An option is given by the tuple o =
(q, q′, β, π, d) where (1) q ∈ Q is the originating state in the
CFA with a self-transition condition ϕc, (2) q′ ∈ Q is the
goal state in the CFA to which a transition is permitted when
a condition ϕg is satisfied, (3) β ⊆ S is the termination set
of the option, given by β = {s ∈ S : λ(s) � ϕg}, (4) π is
a safe policy ensuring that β will be reached and ϕc holds
until then, (5) d : S → R≥0 is a random function, mapping
an initial state distribution over S to the expected duration
of this option as given by Equation (3).

III. TASK COORDINATION

Based on the above definitions, we now describe the dis-
tributed option allocation approach, synchronously followed
by all robots, to coordinate the subsequent asynchronous
execution. The idea is similar to [34] and extends the finite
SSO auctions presented there. In particular, we propose a
sequential auctioning algorithm called Cyclic Single-Option
Auctions (CSO), as summarized by Algorithm 1. Each robot
plans a policy for each option and submits bids which
incorporate both the expected option duration and their
approximated cost-to-go at the target state of the option. In
the next auction round, the robots then consider the updated
CFA state and allocate subsequent options until all robots
are assigned at least one option.

Let t0 be the time instant at which the allocation pro-
cedure starts. Each robot is in a state sr(t0) of its MDP
Mr and the whole team is in a joint CFA state q(t0),
i.e., the initial system state is

(
q(t0), s1(t0), . . . , sn(t0)

)
.

Throughout subsequent auction rounds of the algorithm,
the robots track a predicted CFA state qc to anticipate
completion of options which have been allocated in previous
rounds. Furthermore, the robots predict future MDP states as

Algorithm 1 Cyclic Single-Option Auctions (CSO)
Model: Robot MDP M, CFA C, team of robots R
Input: CFA state qc, robot state s0

Output: Next option o for the executing robot ρ
Notation Remarks:
ρ ∈ R – the robot which executes this algorithm
Dr – total duration of options assigned to robot r ∈ R

1: ŝ(s0)← 1; ŝ(s)← 0, ∀s 6= s0

2: Dr ← 0, ∀r ∈ R
3: while ∃r ∈ R : Dr = 0 do
I Evaluate available options, c.f. Fig. 3
4: for all qi ∈ Q : (qc, ·, qi) ∈ δ do
5: oi ← constructOption(qc, qi) . Def. 4
6: ∆ρ

i ← max
(⋃

r 6=ρ{Dr} ∪ {Dρ + d̄ρoi}
)

I Select best assignment of next task
7: B ← syncBids

(
{bρi := ∆ρ

i +V(qi),∀i}
)
. Eq. (4)

8: r∗, i∗ ← argmin(B)

I Predict state after executing the assigned task
9: qc ← qi∗ ; Dr∗ ← ∆r∗

i∗

10: if r∗ = ρ then
11: if o not set then o← oi
12: ŝ← updateState(ŝ)

13: return o

resulting from assigned options during the procedure. This
prediction is denoted by ŝ : S → [0, 1] with

∑
s∈S ŝ(s) = 1

and is initialized with ŝ(s(t0)) := 1.
In each round of the auctioning process, each robot r

constructs an option oi for each qi to which a transition
from qc exists and estimates the expected duration d̄roi :=
Eŝ
[
droi(s)

]
over the state estimate ŝr. Figure 3 illustrates the

different options which form the bids for an auction round.
To calculate the corresponding bid, for example for option
o1

2, a safe policy π1
2 is planned for the constraints ϕ11 and

the goal condition ϕ12. This policy is then used along with
the state estimate ŝ1 to calculate the option duration d̄1

2.
To reflect potential dependencies on previous options, we

follow the idea of [34, Lem. 4] and calculate an expected
total duration ∆r

i . In the above example, the duration ∆1
2

after which option o1
2 is expected to terminate is given by

∆1
2 = max{D1 + d̄1

2, D2} with Dr denoting the duration
of all options already assigned to robot r. This process of
determining the expected durations ∆r

i is done in parallel
by each robot r for all of the target states qi.

To select the winning bid, we consider here an additional
parameter V : Q→ R≥0 that will later on allow us to con-
sider the long-term performance. In particular, we associate
to each CFA state q a single V(q) to estimate how preferable
it is to transition to the respective q. Further details on V
and how the value is determined is discussed in Section IV.

Consequently, the bid of robot r for target qi is given by

bri = ∆r
i + V(qi) (4)

where qi denotes the logic end state of an option. The
bids bri are then communicated between the robots, as

q1

q2

q3

o12

o2
2

o1
3

o23

Fig. 3. Illustration of the considered options with ori denoting the option
by robot r to reach qi, here for two robots and two target states.

denoted by the syncBids(·) directive, and a winning option
is determined. Finally, the anticipated team progress qc is
updated and the assigned robot updates the physical state in
which the assigned option is expected to terminate, denoted
by updateState(·). Note that this anticipation of qc requires
for consistency during execution that only the first assigned
option is allowed to terminate, while other robots can only
“prepare” by following their options up to a certain extent.
However, a discussion thereof is deferred to Section V.

Furthermore, note that reaching an accepting state does
not terminate Algorithm 1. Instead, the CFA is reset to its
initial state and is traversed again as discussed in Propo-
sition 1. The algorithm terminates only if all robots are
assigned at least one option. The following result shows
that this happens always after a finite number of iterations.

Theorem 1 (Termination). Under the assumption that (1)
the duration of an option is bounded from below by some
dmin > 0, (2) for every robot there exists at least one admis-
sible option, and (3) the value function V is nonnegative and
finite, then, after a finite number of iterations of Algorithm 1,
Dr > 0 for all r ∈ R and the algorithm terminates.

Proof: The total cost D =
∑
r∈RDr, given by the sum

of the costs of all robots, increases by a minimum amount
during each iteration as given by dmin. A robot ρ with Dρ =
0 will then have the winning option after a finite number of
iterations of Algorithm 1 if there exists an option oρi of
this robot with finite duration d̄ρoi and finite value V(qi)
of the target state qi. Consequently, Dr > 0 for all r and
Algorithm 1 terminates as given by line 3.

Assumptions (1) and (2) are clearly natural in a physical
system and do not limit practical applicability of the algo-
rithm. Assumption (3) is given by the update design of V
as discussed in the following section.

IV. COST-TO-GO APPROXIMATION

For the auction process in Algorithm 1, each agent
computes for all its available options the duration dri and
the cost-to-go estimate V(qi) of target state qi. Specifically,
dri is the expected duration of the policy execution starting
at the current robot state sr to a termination state of the
respective option. Due to the stochasticity of the setting,
subsequent physical states are generally a random variable,
but the option terminates only in one specific logic state.
In fact, even among multiple robots, only one specific
next team CFA state q′ follows from the parallel option
execution of the robots. While this aspect is discussed in

detail in Section V, recall that Algorithm 1 sequentially
assigns options to the robots while updating an anticipated
progress. As such, only the option which is assigned first
can cause a CFA transition upon termination.

Consequently, one can consider only the option which
terminates first when approximating the cost-to-go V and
thus, study single option execution rather than a parallel
execution of options. The other options can instead be seen
as changing the initial state of the subsequent options and
only become relevant after future executions of Algorithm 1.

Following this idea, the randomness of an option duration
dri can then be understood as not only being a result of
stochastic dynamics, but also according to an unknown
underlying distribution regarding the initial state of r when
the option starts. Here, this distribution is reflected by
observed starting states during repeated executions of the
mission and we use V in the following to estimate the long-
term cost-to-go only over the logic states Q rather than over
the full team product state space Q×S1×. . .×Sn, especially
since the latter becomes intractable for large n.

In this setting, the problem reduces to a shortest path
problem with random cost through the CFA. The duration
of completing one transition in the CFA is the duration of an
option with the expectation d̄o = Es [dro(s

r)]. The Bellman
equation for this shortest path problem is

V∗(q) = min
o∈O(q)

(
d̄o + V∗(q′)

)
(5)

with boundary conditions V∗(q) = 0 for all q ∈ F and q′

being the logic goal state of option o ∈ O(q) where O(q)
denotes the set of possible options at CFA state q.

In our setting, the durations d̄o are unknown and V∗ can
only be approximated by observing dro from samples ob-
tained online. In particular, we obtain samples for choosing
a particular option at a logic state. Accordingly, we update a
Q-function [36] given by Q : Q×O → R≥0, which reflects
the approximated cost-to-go when selecting an option o in
state q. Then, an estimate Vk of the cost-to-go V∗ at some
iteration k can be derived from Qk by

Vk(q) = min
o∈O(q)

Qk(q, o) (6)

for all CFA states q and options o ∈ O(q) available at
q. Note that we do not directly use Qk(q, o) during the
assignment in Algorithm 1 since the expected durations for
the respective options are calculated explicitly.

Upon option completion, one duration sample dk ∼ dro is
observed and a temporal difference update is performed as

Qk+1(q, o) = Qk(q, o)

+ αk

[
dk + Vk(q′o)−Qk(q, o)

] (7)

with a nonnegative step-size parameter αk that decreases for
larger k. If q ∈ F , we set Q(q, o) := 0 for all options o.
The following can then be established [39, Lem. 9, Thm. 4].

Proposition 2 (Convergence). Suppose that Q0(q, o) ≥ 0
for all q and o, Q0(q, o) = 0 for all o where q ∈ F ,

Algorithm 2 Receding Horizon Concurrent Execution
Input: CFA C, physical state sr

1: q1 ← q0; t1 ← getCurrentT ime()
2: for k ∈ 1, 2, . . . do
3: o← CSO(qk, s

r) . Alg. 1
4: π̃ ← addWait(π)

I Execute policy until termination set is reached
5: while not interrupted do
6: sr ∼ Pπ̃(·, sr) . Follow policy
7: if sr ∈ β then
8: sendInterrupt()
9: qk+1 ← q′ . Team progress update
I Update cost-to-go estimate for all robots

10: tk+1 ← getCurrentT ime()
11: dk ← tk+1 − tk
12: Vk(qk)← update(dk, o, qk) . Eq. (6), (7)

and dro(s) ≥ 0. Then, the sequence of iterates {Qk} is
bounded and Qk(q, o) converges with probability 1 such
that V∗(q) = mino∈O(q) Q(q, o) for all q.

Please note that it is natural to assume in our setting that
all durations are nonnegative and that the cost-to-go is zero
for accepting states. In particular, a minimal duration dmin >
0 can be assumed in a physical system like ours.

V. RECEDING HORIZON CONCURRENT EXECUTION

While the system is running, we propose to use the
auction algorithm and the cost-to-go estimate in a receding
horizon fashion. The robots follow the execution scheme
described in Algorithm 2. At each iteration k, the robots
observe the joint CFA state qk as well as their own physical
state sr. Starting from these states, the robots perform the
CSO algorithm (Alg. 1) to determine the next option.

To ensure consistency as noted in Section III, meaning
that only the option assigned first is allowed to terminate
and that no option which assumes an anticipated progress
violates the LTL specification in the current state, the policy
of each robot has to be slightly adjusted. This is done by
adding so-called wait actions in the following way. For every
state-action pair, it is checked whether one of its target states
violates the self-loop condition ϕk of the current CFA state
qk. If so, the respective action is substituted by a wait action,
which ensures that the robot stays in its respective state and
does not violate ϕk. As a desired side-effect resulting from
the determinism of the CFA, this guarantees that only the
first option can terminate and consequently, adds robustness
regarding communication delay. We denote this adjustment
process addWait(·), which maps a policy π to a policy π̃
containing only actions not violating the condition ϕk.

Every robot then executes its option by following the
policy π̃ as illustrated in Figure 4. Note that this applied
interruption scheme corresponds to Tany in the formalism of
[29]. When the first robot reaches a termination state s ∈ β,
all other robots are sent an interruption signal, denoted by
sendInterrupt(), to stop their execution. At the same time,

r1

r2

r3

terminates

interrupted

waits

Fig. 4. Option interruption scheme for time progressing from left to right.
Only the first option is allowed to terminate and will interrupt all others. The
robots do not communicate before the interrupt signal and subsequently,
option allocation is updated by following again the CSO algorithm.

the team CFA state of the next iteration qk+1 is set to the
goal state q′ of the respective option and is synchronized
between the robots. Recall that in the CFA, the state is reset
to the initial state whenever an accepting state is reached.

The value function Vk(qk) is updated according to Equa-
tions (6) and (7) where the duration dk is determined by
measuring the time required for performing iteration k. For
simplicity, we assume here that V and Q are updated by
the robot which terminates its option. However, in practice,
each robot can update these values based on the received
interrupt signals without further communication.

Following the receding horizon scheme, the task coordi-
nation procedure (Alg. 1) is executed again after an interrupt
and the next options are selected. This repeated coordination
allows the robot to account for the stochastic dynamics and
adjust their task allocation whenever reasonable.

Algorithm 2 produces a trajectory over team states s(t)
and thus, a team sequence σ of the labels of states s(t) for all
t while the robots are operating. Indeed, the generated team
sequence satisfies the specified LTL mission formulation φ.

Theorem 2 (Correctness). From any initial team state
(s1, . . . , sn) that does not violate the initial conditions of
φ, Alg. 2 generates a team sequence which satisfies φ.

Proof: By contradiction, suppose that an accepting state
would not be reached. Then, observations dro(s) ≥ dmin > 0
would update Qk infinitely often by a positive increment,
resulting in an unbounded Qk and contradicting Proposi-
tion 2. It thus follows from Proposition 2 that an accepting
state q ∈ F is reached eventually and thus, acceptance of
the sequence follows from Proposition 1.

Furthermore, the team sequence σ is used to measure
the performance. In particular, Θ∆(`), as introduced in
Equation (2), denotes the time of one repeated satisfaction
of φ and our objective is to decrease Θ∆(`), i.e., satisfy φ
as often as possible in a certain time window.

In this context, it is most reasonable to discuss the
expected satisfaction time E [Θ∆(`)] instead of particular
realizations of Θ∆(`) due to the uncertainty of the system.
Specifically, the expectation is to be understood as

E [Θ∆(`)] := lim
L→∞

1

(L− `)

L∑
l=`

Θ∆(l) (8)

including uncertainty of option durations resulting from the
underlying MDPs as well as uncertainty regarding the initial

physical state of one iteration as observed during execution.
We now consider the long-term performance of the system

with respect to E [Θ∆(`)]. In particular, let ` be sufficiently
large and assume convergence, as follows from Proposi-
tion 2, such that V approximately fulfills the Bellman
equation (5), i.e., V(q) ≈ V∗(q) for all q. In particular,
it then holds that

E [Θ∆(`)] ≈ V(q0) (9)

that is, the expected satisfaction time is approximated by the
cost-to-go at the initial state q0.

More generally, consider in iteration ` some intermediate
state q and let τ denote the time required for reaching q.
The expected satisfaction time is then given by

E [Θ∆(`)] ≈ τ + d̄o + V(q′) (10)

where o denotes the option selected at state q and q′

denotes the option’s target state. In particular, recall from
Equation (4) that Algorithm 1 chooses

o = argmin{d̄o + V(q′)} (11)

as the first option, i.e., with Dr = 0 for all r. Then, for any
other option choice õ at q, it immediately follows that

d̄o + V(q′) ≤ d̄õ + V(q̃′). (12)

In other words, convergence of V to the expected cost-
to-go establishes that

E
[
Θ∆(`)

]
. E

[
Θ̃∆(`)

]
(13)

holds for all Θ̃∆(`) resulting from other option choices õ
and thus, Algorithm 1 selects the approximately best option.

Please note that, as discussed above, convergence has to
be understood as convergence to a locally optimal cost-to-
go, given the observed physical distribution of the robots.
Nevertheless, the distribution is usually becoming more uni-
form when the number of robots in the system is increased.

VI. EVALUATION

We implemented the presented approach as a behav-
ior control framework in ROS, using Spot1 [11] for LTL
translation and FlexBE2 [33] for action implementation. To
demonstrate the ability of our proposed approach to improve
over time, we show the following case study scenario3

inspired by transportation tasks. The environment is given by
the grid map illustrated in Figure 5, containing a set of target
locations indicated by different colors and three robots. The
following goal specification is given to the system:

φ = �♦
(
red ∧ ♦blue ∨ yellow ∧ ♦green

)
.

This mission can either be fulfilled by first delivering to red
and then to blue or first to yellow and then to green. Objects
can be picked up at the locations p1 and p2. Furthermore, a
robot can be damaged with probability 0.1 when performing

1http://spot.lrde.epita.fr 2http://flexbe.github.io
3A video showing the case study is provided as media attachment.

http://spot.lrde.epita.fr
http://flexbe.github.io

red

blue

green

yellow

p1

p2

stationR1 R2

R3

default

carry

damaged

p
1
∨
p
2 co

lo
r

co
lor

station

color := red ∨ blue∨
yellow ∨ green

Fig. 5. Case study environment with robots R1, R2, and R3. Shown
right are the states in which a robot can be during transportation, including
transition conditions. The considered MDP is the product of both parts.

a delivery and while being damaged, no new object can be
picked up. A damaged robot can be repaired at station.

We observe the following when comparing our approach
(“learning”) with a non-adaptive version (“static”), obtained
by modifying the bid in Equation (4) to not include V(qi).
In the beginning, both approaches fulfill the mission by
choosing red/blue and “static” never changes this behavior.
However, “learning” already chooses yellow/green in the
third iteration and sticks to this variant as the estimated com-
pletion time after delivering to yellow is well below the one
previously observed after delivering to red. This difference
can especially be seen in Figure 6, which illustrates the grid
occupancy during the experiments.

After seven repeated satisfactions, the robot which pre-
viously delivered to green gets damaged. In the following
re-allocation phase, a second robot helps with delivery to
green, but still, this event results in a significantly increased
time to satisfy the mission for the eighth iteration. As a
consequence, the red/blue choice is explored again, but
still yields a higher duration. Finally, the robots converge
to the yellow/green behavior to achieve a lower average
completion time and also another disturbance during a later
iteration does not change this anymore.

Figure 7 shows the measured completion times for re-
peated satisfaction of the mission. Note that these times
vary due to the different durations of the navigation actions,
as well as specifically due to the varying relative timings
caused by the emergent behavior of two robots following the
more time consuming task in parallel. Nevertheless, the ex-
pected completion time E [Θ∆(`)] as defined in Equation (8)
is indeed lower in the learning case and here converges to the
optimal time. For an L bounded by the number of repeated
simulations, we get an average E [Θs

∆(`)] = 50.8 seconds

red

blue

green

yellow

p1

p2

station

red

blue

green

yellow

p1

p2

station

Fig. 6. Grid occupancy during execution of the learning case (red) and
the static case (blue). A higher saturation indicates a longer total duration
spent by any robot in the respective cell.

0 5 10 15
0

20

40

60

80

Number of Mission Satisfactions

Θ
∆

(s
ec

)

learning static

Fig. 7. Mission satisfaction times (in seconds) in the two different cases.

for “static” and E
[
Θl

∆(`)
]

= 34.0 seconds for “learning”.
Figure 8 shows the cost-to-go approximations V for CFA

states q3 (yellow has been served) and q2 (red has been
served). Initially, V(qi) = 0,∀qi and updates are performed
online after each task progress (see Alg. 2). The increase in
the estimate in iteration eight is particularly visible here.
In addition, V(q2) as approximated in the static case is
visualized in Figure 8. Since the team sequence in the static
case describes repeated CFA runs via q2, the resulting value
function provides a useful comparison to the learning case.

VII. CONCLUSIONS

We presented a framework which enables to synthesize
multi-robot policies from a single LTL specification that
describes repetitive tasks. Instead of planning one fixed
policy, we proposed a receding horizon execution in which
the task allocation can be revised to adjust for uncertainty
in the environment. In particular, allocation is decided by
following a decentralized coordination scheme based on
auctions, considering not only the immediate task costs, but
also an estimate of the long-term desirability of a particular
assignment. This estimate is improved over time while the
tasks are executed.

With LTL as a general formalism to describe a wide range
of tasks, the presented results are applicable to numerous
systems which can be modeled as MDPs, specifically in the
area of logistics, factory automation, and service robotics.

This work was supported by the EU H2020 Research and
Innovation Programme under GA No. 731869 (Co4Robots).
The third author is supported by the H2020 ERC Starting
Grant BUCOPHSYS, the Swedish Research Council (VR),
the Swedish Foundation for Strategic Research (SSF), and
the Knut och Alice Wallenberg Foundation (KAW).

0 5 10 15
0

20

40

Number of Mission Satisfactions

V
(q

i
)

(s
ec

) q3 q2 q2 (static)

Fig. 8. Value function (expected cost-to-go) of CFA states in the “learning”
case. Shown dashed is the value function of q2 as approximated in the
“static” case although it is not being considered for assignment there.

REFERENCES

[1] Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager,
and Calin Belta. Q-learning for robust satisfaction of signal
temporal logic specifications. In Conference on Decision and
Control (CDC), pages 6565–6570. IEEE, 2016.

[2] Christopher Amato, George Konidaris, Ariel Anders, Gabriel
Cruz, Jonathan P How, and Leslie P Kaelbling. Policy
search for multi-robot coordination under uncertainty. The
International Journal of Robotics Research, 35(14):1760–
1778, 2016.

[3] Christel Baier and Joost-Pieter Katoen. Principles of model
checking. MIT press Cambridge, 2008.

[4] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever,
and Igor Mordatch. Emergent complexity via multi-agent
competition. arXiv preprint arXiv:1710.03748, 2017.

[5] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal
Methods for Discrete-Time Dynamical Systems, volume 89.
Springer, 2017.

[6] Daniel S Bernstein, Robert Givan, Neil Immerman, and
Shlomo Zilberstein. The complexity of decentralized control
of Markov decision processes. Mathematics of operations
research, 27(4):819–840, 2002.

[7] Graeme Best, Oliver M Cliff, Timothy Patten, Ramgopal R
Mettu, and Robert Fitch. Decentralised Monte Carlo tree
search for active perception. In Proc. of WAFR, 2016.

[8] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A
comprehensive survey of multiagent reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics – Part
C: Applications and Reviews, 38 (2), 2008.

[9] Sandeep P Chinchali, Scott C Livingston, Marco Pavone, and
Joel W Burdick. Simultaneous model identification and task
satisfaction in the presence of temporal logic constraints.
In International Conference on Robotics and Automation
(ICRA), pages 3682–3689. IEEE, 2016.

[10] Han-Lim Choi, Luc Brunet, and Jonathan P How. Consensus-
based decentralized auctions for robust task allocation. IEEE
Transactions on Robotics, 25(4):912–926, 2009.

[11] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury
Fauchille, Thibaud Michaud, Etienne Renault, and Laurent
Xu. Spot 2.0 — a framework for LTL and ω-automata
manipulation. In International Symposium on Automated
Technology for Verification and Analysis (ATVA). Springer,
October 2016.

[12] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala
Makar. Hierarchical multi-agent reinforcement learning. Au-
tonomous Agents and Multi-Agent Systems, 13(2):197–229,
2006.

[13] Meng Guo and Dimos V Dimarogonas. Multi-agent plan
reconfiguration under local LTL specifications. The Interna-
tional Journal of Robotics Research, 34(2):218–235, 2015.

[14] Meng Guo and Dimos V Dimarogonas. Task and Motion
Coordination for Heterogeneous Multiagent Systems With
Loosely Coupled Local Tasks. IEEE Transactions on Au-
tomation Science and Engineering, 14(2):797–808, 2017.

[15] Austin Jones, Derya Aksaray, Zhaodan Kong, Mac Schwager,
and Calin Belta. Robust Satisfaction of Temporal Logic
Specifications via Reinforcement Learning. arXiv preprint
arXiv:1510.06460, 2015.

[16] Sven Koenig, C Tovey, M Lagoudakis, V Markakis, David
Kempe, Pinar Keskinocak, A Kleywegt, Adam Meyerson, and
Sonal Jain. The power of sequential single-item auctions
for agent coordination. In Proceedings of the National
Conference on Artificial Intelligence, volume 21, page 1625,
2006.

[17] Orna Kupferman and Moshe Y Vardi. Model checking of
safety properties. Formal Methods in System Design, 19(3):
291–314, 2001.

[18] Bruno Lacerda, David Parker, and Nick Hawes. Optimal and
dynamic planning for Markov decision processes with co-safe
LTL specifications. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1511–1516. IEEE,
2014.

[19] Michail G Lagoudakis, Evangelos Markakis, David Kempe,
Pinar Keskinocak, Anton J Kleywegt, Sven Koenig, Craig A
Tovey, Adam Meyerson, and Sonal Jain. Auction-Based
Multi-Robot Routing. In Robotics: Science and Systems,
volume 5, pages 343–350, 2005.

[20] Xiao Li and Calin Belta. A Hierarchical Reinforcement
Learning Method for Persistent Time-Sensitive Tasks. arXiv
preprint arXiv:1606.06355, 2016.

[21] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement
Learning With Temporal Logic Rewards. arXiv preprint
arXiv:1612.03471, 2016.

[22] Michael L Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min
Wen, and James MacGlashan. Environment-Independent Task
Specifications via GLTL. arXiv preprint arXiv:1704.04341,
2017.

[23] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel,
and Igor Mordatch. Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments. arXiv preprint
arXiv:1706.02275, 2017.

[24] Thibaut Munzer, Marc Toussaint, and Manuel Lopes. Effi-
cient behavior learning in human–robot collaboration. Au-
tonomous Robots, pages 1–13, 2017.

[25] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi,
Christopher Amato, Shih-Yuan Liu, Jonathan P How, and
John Vian. Decentralized control of multi-robot partially
observable Markov decision processes using belief space
macro-actions. The International Journal of Robotics
Research, 36(2):231–258, 2017.

[26] Chris Paxton, Vasumathi Raman, Gregory D Hager, and
Marin Kobilarov. Combining Neural Networks and Tree
Search for Task and Motion Planning in Challenging Envi-
ronments. arXiv preprint arXiv:1703.07887, 2017.

[27] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of
reactive (1) designs. In Verification, Model Checking, and
Abstract Interpretation, pages 364–380. Springer, 2006.

[28] Vasumathi Raman and Hadas Kress-Gazit. Synthesis for
multi-robot controllers with interleaved motion. In Interna-
tional Conference on Robotics and Automation (ICRA), pages
4316–4321. IEEE, 2014.

[29] Khashayar Rohanimanesh and Sridhar Mahadevan. Learning
to take concurrent actions. In Advances in neural information
processing systems (NIPS), pages 1651–1658, 2003.

[30] Khashayar Rohanimanesh and Sridhar Mahadevan. Coar-
ticulation: An approach for generating concurrent plans in
markov decision processes. In International Conference on
Machine Learning (ICML), pages 720–727. ACM, 2005.

[31] Sheldon M Ross. Applied Probability Models with Optimiza-
tion Applications. Holden Day, San Francisco, 1970.

[32] Dorsa Sadigh, Eric S Kim, Samuel Coogan, S Shankar Sastry,
and Sanjit A Seshia. A learning based approach to control
synthesis of markov decision processes for linear temporal
logic specifications. In Conference on Decision and Control,
pages 1091–1096. IEEE, 2014.

[33] Philipp Schillinger, Stefan Kohlbrecher, and Oskar von Stryk.
Human-Robot Collaborative High-Level Control with Appli-
cation to Rescue Robotics. In IEEE International Conference
on Robotics and Automation, Stockholm, Sweden, May 2016.

[34] Philipp Schillinger, Mathias Bürger, and Dimos V Dimarog-
onas. Auctioning over Probabilistic Options for Temporal
Logic-Based Multi-Robot Cooperation under Uncertainty. In
IEEE International Conference on Robotics and Automation.
Brisbane, 2018.

https://doi.org/10.1109/CDC.2016.7799279
https://doi.org/10.1109/CDC.2016.7799279
https://doi.org/10.1177/0278364916679611
https://doi.org/10.1177/0278364916679611
https://arxiv.org/abs/1710.03748
https://arxiv.org/abs/1710.03748
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
http://wafr2016.berkeley.edu/papers/WAFR_2016_paper_50.pdf
http://wafr2016.berkeley.edu/papers/WAFR_2016_paper_50.pdf
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/ICRA.2016.7487553
https://doi.org/10.1109/ICRA.2016.7487553
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.1109/TRO.2009.2022423
http://www.lrde.epita.fr/dload/papers/duret.16.atva2.pdf
http://www.lrde.epita.fr/dload/papers/duret.16.atva2.pdf
https://doi.org/10.1007/s10458-006-7035-4
http://dx.doi.org/10.1177/0278364914546174
http://dx.doi.org/10.1177/0278364914546174
https://doi.org/10.1109/TASE.2016.2628389
https://doi.org/10.1109/TASE.2016.2628389
https://doi.org/10.1109/TASE.2016.2628389
https://arxiv.org/abs/1510.06460
https://arxiv.org/abs/1510.06460
https://dl.acm.org/citation.cfm?id=1597457
https://dl.acm.org/citation.cfm?id=1597457
http://dx.doi.org/10.1023/A:1011254632723
http://dx.doi.org/10.1023/A:1011254632723
https://doi.org/10.1109/IROS.2014.6942756
https://doi.org/10.1109/IROS.2014.6942756
https://doi.org/10.1109/IROS.2014.6942756
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.5922
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.5922
https://arxiv.org/abs/1606.06355
https://arxiv.org/abs/1606.06355
https://arxiv.org/abs/1612.03471
https://arxiv.org/abs/1612.03471
https://arxiv.org/abs/1704.04341
https://arxiv.org/abs/1704.04341
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275
https://doi.org/10.1007/s10514-017-9674-5
https://doi.org/10.1007/s10514-017-9674-5
http://dx.doi.org/10.1177/0278364917692864
http://dx.doi.org/10.1177/0278364917692864
http://dx.doi.org/10.1177/0278364917692864
https://arxiv.org/abs/1703.07887
https://arxiv.org/abs/1703.07887
https://arxiv.org/abs/1703.07887
http://dx.doi.org/10.1007/11609773
http://dx.doi.org/10.1007/11609773
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907487
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907487
http://papers.nips.cc/paper/2204-learning-to-take-concurrent-actions.pdf
http://papers.nips.cc/paper/2204-learning-to-take-concurrent-actions.pdf
https://doi.org/10.1145/1102351.1102442
https://doi.org/10.1145/1102351.1102442
https://doi.org/10.1145/1102351.1102442
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1109/CDC.2014.7039527
http://dx.doi.org/10.1109/ICRA.2016.7487442
http://dx.doi.org/10.1109/ICRA.2016.7487442
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-224329
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-224329

[35] Philipp Schillinger, Mathias Bürger, and Dimos V Dimarogo-
nas. Simultaneous Task Allocation and Planning for Temporal
Logic Goals in Heterogeneous Multi-Robot Systems. The
International Journal of Robotics Research, 2018.

[36] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press Cambridge, 1998.

[37] Richard S Sutton, Doina Precup, and Satinder Singh. Be-
tween MDPs and Semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence,
112(1):181–211, 1999.

[38] Marc Toussaint, Thibaut Munzer, Yoan Mollard, Li Yang Wu,
Ngo Anh Vien, and Manuel Lopes. Relational activity pro-
cesses for modeling concurrent cooperation. In International
Conference on Robotics and Automation, pages 5505–5511.

IEEE, 2016.
[39] John N Tsitsiklis. Asynchronous stochastic approximation

and Q-learning. Machine learning, 16(3):185–202, 1994.
[40] Jana Tumova and Dimos V Dimarogonas. Multi-agent

planning under local LTL specifications and event-based
synchronization. Automatica, 70:239–248, 2016.

[41] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, Calin
Belta, and Daniela Rus. Optimality and robustness in multi-
robot path planning with temporal logic constraints. The
International Journal of Robotics Research, 32(8):889–911,
2013.

[42] Robert Zlot and Anthony Stentz. Complex task allocation
for multiple robots. In IEEE International Conference on
Robotics and Automation, pages 1515–1522. IEEE, 2005.

http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-214835
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-214835
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1109/ICRA.2016.7487765
https://doi.org/10.1109/ICRA.2016.7487765
https://doi.org/10.1023/A:1022689125041
https://doi.org/10.1023/A:1022689125041
http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://dx.doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1177/0278364913487931
https://doi.org/10.1177/0278364913487931
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570329
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570329

	Introduction
	Related Work
	Preliminaries

	Model Construction
	Mission Formulation
	System and Problem Definition
	Option Definition

	Task Coordination
	Cost-to-Go Approximation
	Receding Horizon Concurrent Execution
	Evaluation
	Conclusions

