
Analytical Derivatives

of Rigid Body Dynamics Algorithms

Justin Carpentier and Nicolas Mansard

Laboratoire d’Analyse et d’Architecture des Systèmes and Université de Toulouse

Email: justin.carpentier@laas.fr

Abstract—Rigid body dynamics is a well-established frame-
-work in robotics. It can be used to expose the analytic
form of kinematic and dynamic functions of the robot
model. So far, two major algorithms, namely the recursive
Newton-Euler algorithm (RNEA) and the articulated body
algorithm (ABA), have been proposed to compute the inverse
dynamics and the forward dynamics in a few microseconds.
Evaluating their derivatives is an important challenge for various
robotic applications (optimal control, estimation, co-design or
reinforcement learning). However it remains time consuming,
whether using finite differences or automatic differentiation. In
this paper, we propose new algorithms to efficiently compute
them thanks to closed-form formulations. Using the chain rule
and adequate algebraic differentiation of spatial algebra, we
firstly differentiate explicitly RNEA. Then, using properties about
the derivative of function composition, we show that the same
algorithm can also be used to compute the derivatives of ABA
with a marginal additional cost. For this purpose, we introduce
a new algorithm to compute the inverse of the joint-space
inertia matrix, without explicitly computing the matrix itself.
All the algorithms are implemented in our open-source C++
framework called Pinocchio. Benchmarks show computational
costs varying between 3 microseconds (for a 7-dof arm) up to
17 microseconds (for a 36-dof humanoid), outperforming the
alternative approaches of the state of the art.

I. INTRODUCTION

Rigid-body-dynamics algorithms [7] are a well-established

framework at the heart of many recent robotic applications,

and have become even popular in related domains such as

biomechanics and computer animation. This is mostly due to

their ability to compute in a generic and efficient way the

kinematic and dynamic quantities that describe the motion of

poly-articulated systems. Rigid body dynamics algorithms are

for example crucial for the control and the stabilization of

quadruped and humanoid robots [10, 15, 17]. Additionally,

optimal control and trajectory optimization are becoming

standard approaches to control complex robotic systems [26,

16], generate human-like or avatar motions [28, 22], or for

instance in the context of simultaneous design and control of

robots [27, 8, 14]. They mostly rely on an accurate integration

of the forward dynamics together with the differentiation

of the resulting quantities with respect to the state, model

parameters and control variables of the system. A large part of

the total computational cost of such optimization algorithms

(up to 90 %) is spent in computing these derivatives.

This work is supported by the RoboCom++ FLAG-ERA JTC 2016 proposal
and the European project MEMMO (GA-780684).

Evaluating the partial derivatives of the dynamics can

be performed in several manners. The simplest way is to

approximate them by finite differences, i.e. evaluating several

times the input dynamics while adding a small increment on

the input variables. The main advantage is to systematize the

derivation process by considering the function to differentiate

as a black box. It comes at the price of calling n + 1 times

the input function (with n the number of input variables).

It is also sensitive to numerical rounding errors. Yet, if

this approach has shown to be fast enough to be applied

on real systems [29, 16], it requires fine parallelization.

Another methodology is to analytically derive the Lagrangian

equation of motion [11]. Lagrangian derivation gives a better

insight into the structure of the derivatives but leads to

dense computations. It fails to exploit efficiently the sparsity

induced by the kinematic model, in a similar way than rigid

body dynamics algorithms do. A last method is to rely on

automatic differentiation of rigid body dynamics algorithms

as implemented in the control toolbox Drake [30] and more

recently exploited by Giftthaler et al. [12]. The idea is to

overload the scalar type of the input variables, by applying

the chain rule formula in an automatic way knowing the

derivatives of basic functions (cos, sin or exp), to obtain the

partial derivatives. Automatic differentiation typically requires

intermediate computations which are hard to avoid or to

simplify. Using code generation [12] can mitigate this issue

but is a costly technological process to set up.

In this paper, we rather propose to analytically derive

the rigid-body-dynamics algorithms in order to speed up the

computation of the derivatives. Our formulation provides a

better insight into the mathematical structure of the derivatives.

We are then able to exploit the inherent structure of spatial

algebra (e.g. the cross product operator) at the root of

rigid-body-dynamics algorithms, while the aforementioned

approaches are in fact not able to do so. Our method extends

previous works on serial chains with loop closures Lee et al.

[18] to any kinematic tree while exploiting the more expressive

spatial algebra. We also provide a complete, efficient and open

source implementation on which our benchmarks are based.

This paper is made of two concomitant contributions.

In a first contribution we establish in a concise way

the analytical derivatives of the inverse dynamics through

the differentiation of the so-called recursive Newton-Euler

algorithm (RNEA) [19, 7]. The second contribution concerns

the analytical derivatives of the forward dynamics. Rather than



Fig. 1: Spatial notations used all along this paper.

computing the derivatives of the articulated body algorithm

(ABA), we demonstrate that these derivatives can be directly

deduced from the derivatives of the inverse dynamics with only

a minor additional cost. This implies to compute the inverse

of the joint space inertia matrix, for which we also introduce

an original algorithm. We implement all these derivatives

inside our C++ framework for rigid-body systems called

Pinocchio [5].

Based on the standard notations of rigid-body dynamics

(recalled in Sec. II), we make explicit in Sec. III the

partial derivatives of the recursive Newton-Euler algorithm

(RNEA). Sec. IV then explains how the derivatives of the

forward dynamics can be computed from RNEA derivatives.

Benchmarks are reported in Sec. V.

II. RIGID BODY DYNAMICS NOTATIONS

Spatial algebra allows to write in a concise manner the

kinematic (velocity, acceleration, etc.) and dynamic (force,

momenta, etc.) quantities that describe the motion of a rigid

body. All over this paper, we use the spatial notations and

conventions which have been introduced and popularized in

robotics by Featherstone [7]. They are now at the root of many

efficient and mature software packages such as HuMAnS [33],

RBDL [9], METAPOD [24], Drake [30] or MuJoCo [31], just

to name a few. Hereafter, we summarize all these notations

that we exploit later in Sec. III in order to derive the analytical

expressions of the partial derivatives of RNEA.

A. Spatial quantities and notations for an isolated rigid body

1) Placement quantity: If we consider an isolated bodyBi

in space endowed with a fixed frame with index i (see Fig. 1),

it is firstly described by its placement quantity, denoted iX0

by Featherstone [7], where the subscript 0 corresponds to the

index of the world frame. iX0 belongs to SE(3), the special

Euclidean group of rigid transformation of dimension 3.

2) Kinematics quantities: The instantaneous time derivative

of the placement quantity iX0 is given by its spatial velocity

vi which belongs to the tangent space of SE(3), denoted se(3).
A spatial velocity is a 6d vector concatenating the linear and

angular velocities of the rigid body. In a similar way, we can

define the spatial acceleration of a rigid body, denoted by ai

as the time derivative of the spatial velocity.

3) Kinetic quantities: If the rigid body is also provided

with a mass distribution, we may define its spatial inertia

Ii characterized by the mass, the center of mass and the

rotational inertia of the body. This spatial inertia enables

us to introduce two additional quantities which quantify the

dynamic properties of the rigid body: (i) the spatial momentum

given by hi
def
= Iivi which stacks the linear and angular

momenta expressed in the body frame; (ii) the spatial force

given by fi
def
= Iiai +vi ×

∗ hi which corresponds to the time

derivative of the spatial momentum quantity. The ×∗ operator

is made explicit in the next paragraph.

4) Group actions: Both spatial velocity and acceleration

belong to a specific group, called by Featherstone the group

of motions [7] whose elements are generically denoted by m.

This means that they have in common similar operators to

act on other spatial quantities. Spatial momentum and force

belong to the group of forces whose elements are denoted by

f. Spatial inertia can then be seen as an operator which maps

from the space of motions to the space of forces.

Placement objects may act on both motion and force

quantities. If we note A and B two Cartesian frames and AXB

their relative placement, these operations are respectively

denoted by [7]:

mA = AXB mB (1a)

fA = AX∗

B fB (1b)

which reads as “AXB acts on the motion mB expressed in

frame B to return another motion mA expressed in frame A”.

Motion objects may also operate on both motion and force

objects through the notion of spatial cross product operations,

which are in some sense similar to classic time derivatives:

ṁ = vA ×m (2a)

ḟ = vA ×∗ f (2b)

where ṁ and ḟ are the time variation of m and f, both

m and f are spatial quantities which are fixed when they

are expressed in frame A moving at the spatial velocity vA.

Following these notations, the time derivative of an inertia

element IA attached to a frame A is given by:

İA = vA ×∗ IA − IAvA× (3)

Finally, the time variation of the action operator of the

placement AXB onto a motion m [7, p.28] is given by:

˙AXB m = (vB − vA)×
AXB m (4)

This last relation will be of primal importance in Sec. III.

All these operators have an explicit expression in the book

of Featherstone [7], while further details on the mathematical

structure can be found in [23].

B. Spatial quantities and notations for poly-articulated

systems

A poly-articulated system like a humanoid robot or a robotic

arm is composed of several rigid bodies linked together by

articulations called joints (see Fig. 1).

A joint can be seen as a constraint which limits the

relative displacement between two consecutive bodies: the

relative transformation XJ governed by the joint only covers

a subset of SE(3). The relative transformation between the



frame i and the frame of the parent body λ(i) is given by
iXλ(i)

def
= XJ XT (i) where XT (i) is the (fixed) placement of

the joint with respect to the frame attached to λ(i) and XJ

varies with the joint movement.

This partial covering of rigid transformation space can also

be observed at the joint motion level. If we note qi the minimal

coordinates representation of the transformation XJ and q̇i the

instantaneous time variations of qi
1, the instantaneous joint

velocity vJ is given by:

vJ
def
=

∂XJ

∂qi
q̇i = Siq̇i (5)

where Si
def
= ∂XJ

∂qi

is a matrix (depending on qi in general,

but often constant) whose columns only span a subspace of

se(3). In (5), we have considered that Si is independent from

time, which is the case for most of the joints used in robotics.

Generally, a drift term σJ(t, qi) should be added in (5).

We may again derive vJ with respect to time to get:

aJ = Siq̈i + cJ + vi × vJ (6)

where cJ collects all the drifting terms due to the variations

of Si with respect to qi and q̈i is the time derivative of q̇i.

In other terms, we have:

cJ
def
=

(

q̇T
i

∂Si

∂qi

)

q̇i (7)

where ∂Si

∂qi

is a tensor expression often equal to zero for most

of the classic joints. A closed form computation of q̇T
i

∂Si

∂qi

is

given by:

q̇T
i

∂Si

∂qi
=

ni
∑

k=1

∂Si

∂qk
i

q̇k
i (8)

with ni the number of degrees of freedom (dof) of joint i and

qk
i is the k-th component of the configuration vector qi. We

refer again to [7] for further details on these terms.

III. ANALYTICAL DERIVATIVES OF THE RECURSIVE

NEWTON-EULER ALGORITHM

In this section, we derive the analytical expressions of the

partial derivatives of the inverse dynamics function, denoted

by ID, in the context of rigid-body systems. Inverse dynamics

allows to compute the generalized torque τ to apply on a

rigid-body system (model) in order to produce a desired

generalized acceleration q̈ giving the current generalized

position q and velocity q̇ of the system together with the stack

of external forces f ext:

τ = ID(model, q, q̇, q̈,f ext)

Using the Lagrangian formalism, the inverse dynamics reads:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q)−
∑

i

Ji(q)
Tf ext

i (9)

1More precisely, q̇
i

is the tangent vector to the configuration qi, i.e. might
be of smaller dimension (e.g. when qi is a quaternion).

Algorithm 1 - Pseudo code of the recursive

Newton-Euler algorithm as exposed by Featherstone

[7, p. 96]

1 Initialization step:

2 v0 = 0

3 a0 = −ag // initialize the world spatial acceleration

with the gravity field value

4 Forward pass:

5 for i = 1 to NB do

6 [XJ,Si,vJ, cJ] = jcalc(jtype(i), qi, q̇i)
7

iXλ(i) = XJ XT (i)
8 vi =

iXλ(i)vλ(i) + vJ

9 ai =
iXλ(i)aλ(i) + Siq̈i + cJ + vi × vJ

10 hi = Iivi

11 fi = Iiai + vi ×
∗ hi − f ext

i

12 end

13 Backward pass:

14 for i = NB to 1 do

15 τi = ST
i fi

16 if λ(i) 6= 0 then

17 fλ(i) = fλ(i) +
λ(i)X∗

i fi

18 end

19 end

where M stands for the joint space inertia matrix, C is the

Coriolis matrix, g encompasses the gravity effects and Ji are

the frame Jacobians where external forces are expressed. For

clarity reasons, we remove from these quantities the explicit

dependency on the input model.

Efficient algorithms have been proposed in the literature

to evaluate ID [7]. The most efficient one still remains the

RNEA (see Alg. 1) whose complexity is linear in the number

of bodies composing the rigid-body system. It was originally

proposed by Luh et al. [19] in the 80’s and generalized

by Featherstone [7] to exploit the computational structure of

spatial algebra.

The partial derivatives of the inverse dynamics then

correspond to the variations of the torque output according to

the input variables (q, q̇, q̈). With the Lagrangian notations,

these partial derivatives correspond to:

∂ ID

∂q
=

∂M

∂q
q̈ +

∂C

∂q
q̇ +

∂g

∂q
−
∑

i

∂JT
i

∂q
f ext
i (10a)

∂ ID

∂q̇
=

∂C

∂q̇
q̇ + C and

∂ ID

∂q̈
= M (10b)

where dependency on input variables are dropped. At this

stage, several observations arise:

(i) the quantities ∂M
∂q

, ∂C
∂q

,
∂JT

i

∂q
and ∂C

∂q̇
which appear

in (10a) and (10b) are large tensor matrices that are hard

to write explicitly and they require larger capacity storage

than the three partial derivatives we wish to compute.

Some closed-form expressions of these tensors have



been proposed in [11] using the Lagrangian formalism,

requiring intensive computations.

(ii) the partial derivative of the torque with respect to the

joint acceleration quantity (10b) is simply the joint space

inertia matrix. There already exist efficient algorithms to

compute this last quantity as the composite rigid body

algorithm (CRBA) originally proposed by Walker and

Orin [32].

In the following, we aim at exploiting the simplicity and

the efficiency of rigid-body dynamics algorithms like RNEA

and CRBA in order to derive the analytical expressions of the

partial derivatives ∂ID
∂q

, ∂ID
∂q̇

, ∂ID
∂q̈

using spatial notations while

avoiding complex computations as the aforementioned tensor

expressions.

A. The recursive Newton-Euler algorithm

As previously mentioned, RNEA recalled in Algorithm 1,

is the most effective way to solve the inverse dynamics

problem by exploiting the structured sparsity induced by the

kinematic model. It is a two-pass algorithm which propagates

the kinematic quantities in a first forward pass (similar to a

forward kinematics), then collect the torque contribution of the

subtrees in a second backward pass. Compared to Featherstone

[7, p. 96], we assume here that the external contact forces are

already expressed in the joint frames2.

In the forward pass of RNEA, jcalc is the function which

computes the forward kinematics at the joint level and for a

given joint type jtype(i), according to its current configuration

vector qi and the corresponding velocity vector q̇i. XJ,Si,vJ

and cJ are spatial quantities output by jcalc and they only

depend on the current joint configuration qi and velocity q̇i,

while vi,ai and fi depend on the motions of the parent bodies

by forward recursion.

In the backward pass of RNEA, both fi and τi quantities

are also subject to the dynamics of the subtree rooted at the

joint i through the backward recursion.

B. Generic partial derivatives of the recursive Newton-Euler

algorithm

In what follows, we derive in a generic manner the

computations performed by the RNEA. We will not derive

RNEA with respect to q̈ because we already know from (10b)

that ∂ID
∂q̈

= M , which can be efficiently evaluated by CRBA.

We denote by u an arbitrary vector which stands either for

q or q̇. Next, we use the chain rule formula in order to derive

the basic spatial operations performed in Algorithm 1. For the

sake of clarity, we separate the derivations for the forward and

the backward passes. All derivations are done with respect to

the generic variable u, which might be with qi or q̇i. The

expressions are later specialized for qi and q̇i.

1) Partial derivatives of the forward pass: Algorithm 2

summarizes the partial derivatives of the spatial quantities

involved in the forward pass of the RNEA.

2Most of sensors used in robotics to estimate the action of external forces
(e.g. force-torque sensors or tactile skins) provide measurements already
expressed in a frame attached to the joints themselves.

Algorithm 2 - Partial derivatives of the RNEA forward

pass inner loop.

1:

[

∂XJ

∂u
,
∂Si

∂u
,
∂vJ

∂u
,
∂cJ

∂u

]

= jcalc(jtype(i), qi, q̇i)

2:
∂ iXλ(i)

∂u
=

∂XJ

∂u
XT (i)

3:
∂vi

∂u
=

∂ iXλ(i)

∂u
vλ(i) +

iXλ(i)

∂vλ(i)

∂u
+

∂vJ

∂u

4:
∂hi

∂u
= Ii

∂vi

∂u

5:
∂ai

∂u
=

∂ iXλ(i)

∂u
aλ(i) +

iXλ(i)

∂aλ(i)

∂u
+

∂Si

∂u
q̈i +

∂cJ

∂u
+

∂vi

∂u
× vJ + vi ×

∂vJ

∂u

6:
∂fi

∂u
= Ii

∂ai

∂u
+

∂vi

∂u
×∗ hi + vi ×

∗
∂hi

∂u

Algorithm 3 - Partial derivatives of the RNEA

backward pass inner loop.

1:
∂τi

∂u
=

∂ST
i

∂u
fi + ST

i

∂fi

∂u
2: if λ(i) 6= 0 then

3:
∂fλ(i)

∂u
=

∂fλ(i)

∂u
+

∂λ(i)X∗

i

∂u
fi +

λ(i)X∗

i

∂fi

∂u
4: end

Due to the forward recursion, and similarly to the

observations made on RNEA in Sec. III-A, we might see on

lines 3 and 5 that both ∂vi

∂u
and ∂ai

∂u
directly depend on the

partial derivatives of their parent bodies through
∂vλ(i)

∂u
and

∂aλ(i)

∂u
. The other partial derivatives ∂hi

∂u
and ∂fi

∂u
directly rely

on the internal partial derivatives of the current joint i and

indirectly on the parent bodies motion via ∂vi

∂u
and ∂ai

∂u
.

It is also worth to notice that on one side ∂vi

∂u
and ∂ai

∂u
are

motion-sets, namely collections of motion vectors which have

been stacked inside a matrix. On the other side, ∂hi

∂u
and ∂fi

∂u

are force-sets, that are collections of force vectors also stacked

inside a matrix.

We deliberately omit the partial derivative of the joint

placement variables XT (i) with respect to u as it is a fixed

quantity independent from the kinematic variables q and q̇.

The same rule applies for the spatial inertias Ii on line 6.

2) Partial derivatives of the backward pass: Algorithm 3

depicts how the partial derivatives of the joint torque ∂τi

∂u

are affected by the variations of Si and the variation of the

force-set supported by joint i. This backward loop mostly

propagates the partial derivatives computed in the forward pass

towards the kinematic tree.

It is important to notice at this stage that the structured

sparsity of RNEA is preserved in Algorithms 2 or 3, thanks

to the direct application of the chain rule.



C. Simplifying expressions

Depending on the value of u, some partial derivatives in

Algorithms 2 or 3 vanish because they are independent from

either q or q̇. We now detail these simplifications in order

to give at the end, a complete and applicable version of the

recursive derivatives. This is certainly the most technical part

of this paper. Both algorithms propagate the motion sets ∂vi

∂u
,

∂ai

∂u
and force sets ∂hi

∂u
, ∂fi

∂u
that are 6xN matrices (N being

the number of dof in the kinematic tree) whose columns are

either motion or force vectors. Placements quantities X act

on the columns of motion and force sets as they do on motion

m and force f objects.

1) Algorithm 2, line 1: XJ and Si only depend on the

configuration qi of joint i. It follows that ∂XJ

∂u
and ∂Si

∂u
are

only nonzero for u = qi. As introduced in Sec. II, ∂XJ

∂qi

is equal to Si. The value of ∂Si

∂qi

depend on the type of

joint (given by jtype(i)) and is equal to 0 for all the joints

typically considered in robotics (resolute, prismatic, spherical

quaternion, free flyer), and in particular for all the joints that

we considered in our implementation.

We can deduce from Sec. II that ∂vJ

∂qi

= q̇T
i

∂Si

∂qi

and
∂vJ

∂q̇
i

= Si. The term ∂cJ

∂u
for both qi and q̇i corresponds to

the evaluation of complex tensor expressions. As it is often

equal to zero (once more for the types of joints we considered

in our implementation), we omit their analytical expressions

for brevity.

2) Algorithm 2, line 2: The term ∂XJ

∂u
XT (i) should not

be explicitly compute as explained in the next paragraph. As

XJ only depends on q, this term is zero for u = q̇.

3) Algorithm 2, line 3: For u = q, iXλ(i)
∂vλ(i)

∂q
is the

action of iXλ(i) on the motion set
∂vλ(i)

∂q
, hence similar in

nature to the action of iXλ(i) on a motion m. For u = q̇, ∂vJ

∂u

is simply Si [7]. The term ∂vJ

∂u
for u = q has already been

detailed in Sec. III-C1.

The most delicate part concerns the first term
∂ iXλ(i)

∂u
vλ(i)

with u = qi (otherwise the term is equal to zero). From (4),

we have for any m:

d iXλ(i)

dt
m = −vJ×

iXλ(i) m =
(

iXλ(i) m
)

× (Siq̇i) (11)

by definition of vJ in (5). We can also show that:

d iXλ(i)

dt
m =

(

∂ iXλ(i)

∂qi
q̇i

)

m (12)

Identifying both expressions (11) and (12) that are linear in

q̇i, we get:

∂ iXλ(i)

∂qi
vλ(i) =

(

iXλ(i) vλ(i)

)

× Si (13)

This operation must be understood as a column-wise operation

of the spatial vector iXλ(i) vλ(i) on the motion-set Si. A more

rigorous demonstration can be done using the formalism of

Lie groups and Lie algebra [23, 18], but it would require the

introduction of additional notations that are out of the scope

of this paper.

4) Algorithm 2, line 4: The computations done on this

line are simply the action of the inertia Ii on the motion-set
∂vi

∂u
.

5) Algorithm 2, line 5: The two first terms of this line are

similar to the two first terms of line 3. ∂Si

∂u
is zero except for

u = qi. In this case and as explained above, this term is also

zero for most of the classical joints. We already detailed the

computation of ∂cJ

∂u
in Sec. III-C1. For u = qi, the last term

is zero for most of classical joints. For u = q̇k, ∂vJ

∂q̇
i

= Si if

i = k (zero otherwise) while vi ×Si = 0, hence the last term

always vanishes.

6) Algorithm 2, line 6: This line presents basic operations

on motion and force sets. All the same, it is important to notice

that in ∂vi

∂u
×∗ hi, the operator m×∗ hi acting on any motion

m, can be interpreted as a linear operator with a spatial skew

matrix representation.

7) Algorithm 3, line 1: For classical types of joints,
∂ST

i

∂qi

= 0. And it appears that ST
i

∂fi

∂u
is simply a matrix

product, which can be evaluated following the sparsity induced

by the kinematic tree.

8) Algorithm 3, line 3: Following the same reasoning than

in Sec. III-C3, we can show that:

∂λ(i)X∗

i

∂u
fi =

λ(i)X∗

i (Si ×
∗ fi) (14)

which has to be again interpreted as a column-wise operator

of the columns of Si on the spatial force fi.

D. Direct outcome of these derivations

Finally, a direct outcome of these computations is the

analytical expressions of the partial derivatives of the forward

kinematics, through the quantities ∂vi

∂q
, ∂vi

∂q̇
and ∂ai

∂q
, ∂ai

∂q̇
.

Indeed, these four last terms refer to the partial derivatives

of the spatial velocity and spatial acceleration of the joint i

with respect to the joint configuration and velocity vectors.

They come for free with the direct derivation of RNEA.

IV. ANALYTICAL DERIVATIVES OF THE FORWARD

DYNAMICS

Forward dynamics, denoted by FD, is the reciprocal of

inverse dynamics. In other words, it computes the generalized

acceleration q̈ of the rigid-body system according to the

current generalized position q, velocity q̇, torque input τ and

external forces f ext:

q̈ = FD(model, q, q̇, τ ,f ext)

Using the Lagrangian notations, the forward dynamics reads:

q̈ = M−1(q)

(

τ − C(q, q̇)q̇ − g(q) +
∑

i

JT
i (q)f ext

i

)

(15)

Similarly to inverse dynamics, efficient recursive rigid-body

algorithms have been proposed to solve (15). One of the

most efficient is the ABA, introduced by Featherstone in

the 80’s [6]. Similarly to RNEA, the algorithmic complexity

of ABA is linear in the number of bodies composing the

rigid-body system. One of the main feature of ABA is to not



rely on the explicit inverse of the joint space inertia matrix

M , allowing to save computation times.

Yet, ABA is much more complex than RNEA as it is

composed of three main recursions that we briefly summarize

here. In the first recursion, the kinematic quantities are

propagated along the tree structure. The second recursion

corresponds to a backward pass where the spatial forces which

act on bodies are computed from the joint torque input. In

the last recursion, the spatial accelerations of bodies are then

deduced, allowing to compute the joint acceleration vector.

A. Lagrangian expressions of the partial derivatives of the

forward dynamics

The partial derivatives of the forward dynamics correspond

to the variations of the joint acceleration q̈ with respect to the

input variables (q, q̇, τ ), which gives:

∂ FD

∂q
=

∂M−1

∂q

(

τ − Cq̇ − g +
∑

i

JT
i f ext

i

)

+M−1





∑

i

∂JT
i

∂q
f ext
i −

∂C

∂q
q̇ −

∂g

∂q





(16a)

∂ FD

∂q̇
= M−1

(

∂C

∂q̇
q̇ + C

)

and
∂ FD

∂τ
= M−1 (16b)

From these expressions, some remarks can be raised:

(i) we already mentioned in Sec. III the difficulties to

explicitly compute the tensors quantities ∂ C
∂q

, ∂ C
∂q̇

and
∂M
∂q

. A similar comment holds for ∂M−1

∂q
which can also

be deduced from ∂M
∂q

through the relation:

∂M−1

∂q
= −M−1 ∂M

∂q
M−1

(ii) from Eq. (10b) and Eq. (16b), we can observe that the

partial derivatives of the inverse and forward dynamics

with respect to their third input argument (q̈ and τ

respectively) are the inverse of one another. This leads

to the following mathematical relation:

∂ FD

∂τ
= M−1 =

(

∂ ID

∂q̈

)

−1

(17)

B. Link between analytical derivatives of forward and inverse

dynamics

Due to the three recursions present in ABA, analytically

deriving this algorithm is much more laborious than in the case

of RNEA, as it involves additional intermediate computations.

Despite that, we show hereafter how the partial derivatives

of the forward dynamics can be obtained from the partial

derivatives of the inverse dynamics, and hence from the ones

of RNEA which have been introduced in Sec. III.

As aforementioned, the forward dynamics is the reciprocal

of inverse dynamics, which means that these two functions are

linked by the following identity:

ID ◦ FD = id (18)

where ◦ denotes the composition operator and id is the identity

function (i.e. for any input x, id(x) = x). Evaluated at any

given entry (q0, q̇0, τ0), Eq. (18) also reads:

ID(model, q0, q̇0, FD(model, q0, q̇0, τ0)) = τ0 (19)

and for convenience in the notations, we set:

q̈0
def
= FD(model, q0, q̇0, τ0) (20)

We omit here the dependency on external forces f ext for better

readability. Applying the chain rule formula on (19), we obtain

the following point-wise equality:

∂ ID

∂u

∣

∣

∣

q0,q̇0,q̈0

+
∂ ID

∂q̈

∣

∣

∣

q0,q̇0,q̈0

∂ FD

∂u

∣

∣

∣

q0,q̇0,τ0

=
∂τ0

∂u

∣

∣

∣

q0,q̇0,q̈0

(21)

where u indistinctly denotes either q or q̇. As τ0 is given and

fixed, we have:
∂τ0

∂u

∣

∣

∣

q0,q̇0,q̈0

= 0 (22)

for any value of q0, q̇0 and q̈0. We know from Eq. (10b) that:

∂ ID

∂q̈

∣

∣

∣

q0,q̇0,q̈0

= M(q0) (23)

which leads to:

∂ FD

∂u

∣

∣

∣

q0,q̇0,τ0

= −M−1(q0)
∂ ID

∂u

∣

∣

∣

q0,q̇0,q̈0

(24)

as the joint space inertia matrix is always invertible.

It follows from (17) and (24) that the partial derivatives

of the forward dynamics can be directly deduced from

the derivatives of the inverse dynamics. To the best of

our knowledge, this is the first time that this specific

relation between the partial derivatives of forward and inverse

dynamics is highlighted and exploited in order to simplify the

underlying computations.

To summarize the proposed approach, we have shown that

it is sufficient to compute the inverse of the joint space inertia

matrix and the partial derivatives of inverse dynamics, in order

to get the partial derivatives of the forward dynamics. It is

also important to notice at this stage that, if we have already

computed the partial derivatives of the forward dynamics, it is

then possible to directly deduce the partial derivatives of the

inverse dynamics from these quantities. This is made possible

through the inherent relations (18) and (24) that link together

the inverse and forward dynamics as well as their partial

derivatives.

C. Computing the inverse of the joint space inertia matrix

The last difficulty lies in the computation of the inverse

of the joint space inertia matrix denoted M−1. The standard

approach consists in first computing the joint space inertia

matrix M using CRBA and then performing its sparse

Cholesky decomposition by employing a dedicated algorithm

proposed in [7, p. 112]. Such a decomposition can be written

as:

M = LDLT (25)



TABLE I: Summary table of mean computation times for

derivatives of forward and inverse dynamics with respect to

all three inputs: q, q̇, and τ or q̈ all together.

KUKA-LWR HyQ Atlas
ID 1.20 us 2.14 us 5.51 us
analytical derivatives of ID 3.34 us 7.01 us 16.72 us
finite differences of ID 21.26 us 88.52 us 452.46 us
FD 1.78 us 4.28 us 9.81 us
analytical derivatives of FD 5.78 us 14.24 us 45.20 us
finite differences of FD 22.67 us 94.23 us 470.14 us

M
−1 dedicated algorithm 1.82 us 4.86 us 12.70 us

M
−1 Cholesky factorization 1.88 us 5.82 us 28.29 us

where L is a lower triangular matrix and D is a diagonal

matrix. It follows from Eq. (25) that the expression of the

inverse of the joint space inertia matrix is given by:

M−1 = L−T D−1 L−1 (26)

However, we found out that this approach is not the most

efficient way to compute the inverse of the joint space inertia

matrix. Indeed, it requires the computation of the joint space

inertia matrix itself with its Cholesky decomposition, which

are not required in the calculation of the partial derivatives of

the forward dynamics, as shown in Sec. IV-B.

To overcome these limitations, we have developed a

dedicated algorithm to efficiently compute M−1 by exploiting

the sparsity induced by the kinematic tree, and without

requiring the computation of M itself. This algorithm is a

rewriting of ABA where we have omitted the affine terms

like Coriolis and gravity effects that are normally evaluated

by ABA. We also exploit the fact that M−1 is a symmetric

matrix, which means that it is sufficient to compute and store

its upper or lower triangular part. Due to the space limitation,

we provide all the details of this three-pass algorithm in the

companion report [3]. We have experimentally found that

computing M−1 with this algorithm is in practice up to twice

faster than the Cholesky decomposition for robots equipped

with numerous degrees of freedom, as illustrated in Sec. V.

V. RESULTS

In this section, we report the performances of our analytical

derivatives compared to the finite differences approach. We

run these benchmarks for various robots: the 7-dof robotic

arm KUKA-LWR, the 18-dof quadruped robot HyQ and the

36-dof humanoid robot ATLAS. All our derivatives have

been implemented in C++ and we use the popular Eigen

library [13] (version 3.3.4) for linear algebra computations.

All the benchmarks have been performed on a 2.2 GHz

quad-core Intel Core i7 processor using LLVM 9.0.0 as C++

compiler. We have done the computations on a single core

of the CPU and we have disabled the turbo-boost option in

order to obtain consistent timing measurements all along the

benchmark process. While it may be possible to parallelize

finite differences, most of the current robots do not have

enough computational resources to do it. We then decided to

implement them on a single core.

A. Benchmark on the partial derivatives

1) Analytical versus finite differences: For each robot,

we randomly sample generalized configuration, velocity and

acceleration vectors. We measure over 105 samples the mean

time spent for the basic algorithms themselves (RNEA or

ABA) as well as the mean times required to evaluate their

derivatives both analytically and using finite differences. Tab. I

and Fig. 2 collects all these computation times, that we

comment in what follows.

Running the analytical derivatives of inverse dynamics is

3 times slower than evaluating the inverse dynamics itself.

Moreover, we have a ratio from 7 to 26 with respect to finite

differences.

Similarly to inverse dynamics, performing analytical

derivatives is at most 4 times slower than a call to the forward

dynamics function. The ratio between analytic derivation and

finite differences goes from 4 up to 10. This difference of

performances between analytical derivatives of forward and

inverse dynamics are mainly due to the additional cost of

computing M−1.

Theoretically, finite differencing should cost 2N+1 of the

cost of one call to ID or FD (with N the number of dof) while

the analytical derivatives scales with the depth of the kinematic

tree (i.e. 7, 4 and 6 for the 3 used models). The results fit with

these expectations.

2) Analytical versus automatic differentiation: Giftthaler

et al. [12] have also reported some computation times for

the HyQ model, using automatic differencing and code

generation. We obtain similar timings for the inverse dynamics

(5.06 us against 6.92 us3), but our analytical derivatives of

forward dynamics show better performances (8.72 us against

20.52 us), again without using code generation from our

side. This difference in performances is certainly due to the

computational trick on the derivatives of function composition

highlighted in Sec. IV.

3) Benchmark on the joint space inertia matrix inversion:

Fig. 2c demonstrates that our algorithm to directly compute

the inverse of M outperforms the standard Cholesky

decomposition approach for systems having a high number

of dof and remains competitive for robots having few dof.

B. Numerical precision

It is well-known that methods using finite-differences are

subject to numerical rounding errors. This phenomenon is

amplified when the function to differentiate involves highly

non-linear functions like cos, sin or exp. In what follows,

we want to illustrate this aspect and to show how analytical

derivatives in the context of inverse and forward dynamics

have a larger numerical accuracy than the finite differences

method.

For that aim, we evaluate the partial derivatives of both FD

and ID at a given random configuration q0, with q̇0 = q̈0 = 0

and we set the gravity to zero, with no external forces. In this

3both obtained without modeling the free-flyers, following benchmarks of
[12]



Benchmark of inverse dynamics

KUKA-LWR HyQ Atlas
10

0

10
1

10
2

10
3

m
e
a
n
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 [

s
]

Inverse dynamics

Analytical derivatives

Finite differences

(a) Inverse dynamics

Benchmark of forward dynamics

KUKA-LWR HyQ Atlas
10

0

10
1

10
2

10
3

m
e

a
n

 c
o

m
p

u
ta

ti
o

n
 t
im

e
 [

s
]

Forward dynamics

Analytical derivatives

Finite differences

(b) Forward dynamics

Benchmark of inversion of M

KUKA-LWR HyQ Atlas
10

0

10
1

10
2

m
e
a
n
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 [

s
]

Proposed algorithm

Using Cholesky factotorization

(c) Joint space inertia matrix inversion

Fig. 2: Comparison of mean computation times for derivatives of forward and inverse dynamics. The scales are logarithmic.

10 7

10 6

Fig. 3: Rounding errors while computing the finite differences.

The partial derivative is not fully equal to zero.

case, Eqs. (9) and (15) vanish, and so do the partial derivatives

of ID and FD with respect to q̇. Yet, as finite differences add

a small increment in the input vectors in order to evaluate

derivatives, it appears that the result is not uniformly equal to

zero as shown in Fig. 3, due to numerical rounding.

C. Source code implementation

All the aforementioned analytical derivatives have been

implemented in our rigid-body dynamics frameworks called

Pinocchio [5]. Pinocchio implements fast forward and inverse

dynamics algorithms and their analytical derivatives, for

poly-articulated systems characterized by a free-floating base

or not. It also provides Python bindings for efficient code

prototyping. Pinocchio is now at the heart of the planning

and control algorithms [20, 4] of the Gepetto team at LAAS.

VI. CONCLUSION

The paper has proposed the first generalization of efficient

rigid-body-dynamics algorithms to compute their derivatives.

Our approach leads to very efficient algorithms, easy to

implement, and able to compute the derivatives of the inverse

and direct dynamics. The complexity is linear in the number of

bodies. Computing the derivative of these two functions costs

about three times larger than evaluating the function itself. As a

side contribution, we have also proposed an original algorithm

to compute the inverse of the mass matrix.

All this theoretical work comes with a practical

implementation: we provide a complete open-source

implementation in C++ of these algorithms, which be run

using a URDF model of the robot. We have used it to

benchmark the proposed algorithms on several robot models.

Obviously, by keeping a linear complexity, we are much faster

than finite differences (about 40 times faster on a humanoid

robot). We have also shown that analytical derivatives are

important to properly capture the sparsity of the resulting

matrices, that finite differences fail to properly achieve. We

have used the same benchmark (HyQ model) on a similar

CPU than in [12], the fastest implementation proposed so

far. While we do not rely on code-generation software, our

algorithm is 30% faster for the inverse dynamics (5µs versus

7µs) and 60% faster for the direct dynamics (8µs versus

20µs).

The capability to write simple and super-efficient

algorithms [7] to compute inverse and direct dynamics

has an important impact in enabling roboticists to develop

complex model-based methods in many aspects of our domain.

We also believe that the extension of these algorithms, with

similar complexity (in implementation and cost), will have a

similar impact. Optimal control and model-predictive control

(MPC) rely on gradient computations of the robot dynamics

to iteratively improve the robot future trajectory [29]. So

far, the most efficient MPC solvers are implemented using

finite differences [28, 22]. To prevent outrageous cost, they

have to rely on parallelization for computing the derivatives,

which leads to the use of high-performance computers, often

in the cloud, when implemented in a real-time set up [16].

Our benchmarks tend to show the feasibility of implementing

whole-body MPC for a full humanoid robot with control

frequency higher than 100Hz.

Similarly to control, optimal estimation (e.g. maximum

likelihood) is often written as an optimization problem where

the derivatives of the dynamics are important [1, 2, 25].

Differentiating the dynamics is also important in co-design,

where the mechanical design of the robot is optimized (once

more using gradient-based iterations) [27, 14]. We have

introduced the derivatives of the dynamics with respect to

the robot state and control variables. The proposed method

directly extends to the derivatives with respect to the model

parameters (masses, lengths, etc). Finally, the derivatives

also give important information about the variability of the

robot behavior and might be useful, if cheaply available, in

reinforcement learning and deep policy optimization [21].



REFERENCES

[1] M. Benallegue and F. Lamiraux. Humanoid flexibility

deformation can be efficiently estimated using only

inertial measurement units and contact information. In

IEEE International Conference on Humanoid Robots

(Humanoids), 2014.

[2] Michael Bloesch, Marco Hutter, Mark Hoepflinger,

Stefan Leutenegger, Christian Gehring, C. David Remy,

and Roland Siegwart. State estimation for legged robots

- consistent fusion of leg kinematics and IMU. In

Robotics: Science and Systems, 2012.

[3] Justin Carpentier. Analytical inverse of the joint space

inertia matrix. Technical report, Laboratoire d’Analyse

et d’Architecture des Systèmes, 2018. URL https://hal.

laas.fr/hal-01790934.

[4] Justin Carpentier and Nicolas Mansard. Multi-contact

locomotion of legged robots. Submitted to IEEE

Transaction on Robotics, 2018.

[5] Justin Carpentier, Florian Valenza, Nicolas Mansard,

et al. Pinocchio: fast forward and inverse dynamics

for poly-articulated systems, 2015–2018. URL https:

//stack-of-tasks.github.io/pinocchio.

[6] Roy Featherstone. The calculation of robot dynamics

using articulated-body inertias. The International Journal

of Robotics Research, 1983.

[7] Roy Featherstone. Rigid Body Dynamics Algorithms.

Springer, 2008.

[8] Roy Featherstone. Quantitative measures of a robot’s

physical ability to balance. The International Journal of

Robotics Research, 2016.

[9] Martin L Felis. RBDL: an efficient rigid-body dynamics

library using recursive algorithms. Autonomous Robots,

2017.

[10] Michele Focchi, Andrea Del Prete, Ioannis Havoutis, Roy

Featherstone, Darwin G Caldwell, and Claudio Semini.

High-slope terrain locomotion for torque-controlled

quadruped robots. Autonomous Robots, 2017.

[11] Gianluca Garofalo, Christian Ott, and Alin

Albu-Schaffer. On the closed form computation of

the dynamic matrices and their differentiations. In

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2013.

[12] Markus Giftthaler, Michael Neunert, Markus Stäuble,

Marco Frigerio, Claudio Semini, and Jonas Buchli.

Automatic differentiation of rigid body dynamics for

optimal control and estimation. Advanced Robotics,

2017.

[13] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3, 2010.

URL http://eigen.tuxfamily.org.

[14] Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung

Kim, and Katsu Yamane. Joint Optimization of

Robot Design and Motion Parameters using the Implicit

Function Theorem. In Robotics: Science and Systems,

2017.

[15] Alexander Herzog, Nicholas Rotella, Sean Mason,

Felix Grimminger, Stefan Schaal, and Ludovic Righetti.

Momentum control with hierarchical inverse dynamics

on a torque-controlled humanoid. Autonomous Robots,

2016.

[16] Jonas Koenemann, Andrea Del Prete, Yuval Tassa,

Emanuel Todorov, Olivier Stasse, Maren Bennewitz,

and Nicolas Mansard. Whole-body model-predictive

control applied to the HRP-2 humanoid. In IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), 2015.

[17] Scott Kuindersma, Frank Permenter, and Russ Tedrake.

An efficiently solvable quadratic program for stabilizing

dynamic locomotion. In IEEE International Conference

on Robotics and Automation (ICRA), 2014.

[18] Sung-Hee Lee, Junggon Kim, Frank Chongwoo Park,

Munsang Kim, and James E Bobrow. Newton-type

algorithms for dynamics-based robot movement

optimization. IEEE Transactions on robotics, 2005.

[19] J Luh, M Walker, and R Paul. Resolved-acceleration

control of mechanical manipulators. IEEE Transactions

on Automatic Control, 1980.

[20] Joseph Mirabel, Steve Tonneau, Pierre Fernbach,

Anna-Kaarina Seppälä, Mylene Campana, Nicolas

Mansard, and Florent Lamiraux. HPP: A new

software for constrained motion planning. In IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), 2016.

[21] Igor Mordatch and Emo Todorov. Combining the benefits

of function approximation and trajectory optimization. In

Robotics: Science and Systems, July 2014.

[22] Igor Mordatch, Emanuel Todorov, and Zoran

Popović. Discovery of complex behaviors through

contact-invariant optimization. ACM Transactions on

Graphics (TOG), 2012.

[23] Richard M Murray, Zexiang Li, S Shankar Sastry, and

S Shankara Sastry. A mathematical introduction to

robotic manipulation. CRC press, 1994.

[24] Maximilien Naveau, Justin Carpentier, Sébastien

Barthelemy, Olivier Stasse, and Philippe Souères.

METAPOD — Template META-PrOgramming applied

to dynamics: CoP-CoM trajectories filtering. In

IEEE-RAS International Conference on Humanoid

Robots (Humanoids), 2014.

[25] Simona Nobili, Marco Camurri, Victor Barasuol, Michele

Focchi, Darwin Caldwell, Claudio Semini, and Maurice

Fallon. Heterogeneous sensor fusion for accurate state

estimation of dynamic legged robots. In Robotics:

Science and Systems, July 2017.

[26] Michael Posa, Cecilia Cantu, and Russ Tedrake. A

direct method for trajectory optimization of rigid bodies

through contact. The International Journal of Robotics

Research, 2014.

[27] Guilhem Saurel, Justin Carpentier, Nicolas Mansard,

and Jean-Paul Laumond. A simulation framework

for simultaneous design and control of passivity

based walkers. In IEEE International Conference on

https://hal.laas.fr/hal-01790934
https://hal.laas.fr/hal-01790934
https://stack-of-tasks.github.io/pinocchio
https://stack-of-tasks.github.io/pinocchio
http://eigen.tuxfamily.org


Simulation, Modeling, and Programming for Autonomous

Robots (SIMPAR), 2016.

[28] Gerrit Schultz and Katja Mombaur. Modeling and

optimal control of human-like running. IEEE/ASME

Transactions on mechatronics, 2010.

[29] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis

and stabilization of complex behaviors through online

trajectory optimization. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

2012.

[30] Russ Tedrake and the Drake Development Team. Drake:

A planning, control, and analysis toolbox for nonlinear

dynamical systems, 2016. URL http://drake.mit.edu.

[31] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:

A physics engine for model-based control. In 2012

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2012.

[32] Michael W Walker and David E Orin. Efficient dynamic

computer simulation of robotic mechanisms. Journal of

Dynamic Systems, Measurement, and Control, 1982.

[33] Pierre-Brice Wieber, Florence Billet, Laurence

Boissieux, and Roger Pissard-Gibollet. The HuMAnS

toolbox, a homogenous framework for motion capture,

analysis and simulation. In International Symposium on

the 3D Analysis of Human Movement, 2006.

http://drake.mit.edu

	Introduction
	Rigid Body Dynamics Notations
	Spatial quantities and notations for an isolated rigid body
	Placement quantity
	Kinematics quantities
	Kinetic quantities
	Group actions

	Spatial quantities and notations for poly-articulated systems

	Analytical derivatives of the Recursive Newton-Euler Algorithm
	The recursive Newton-Euler algorithm
	Generic partial derivatives of the recursive Newton-Euler algorithm
	Partial derivatives of the forward pass
	Partial derivatives of the backward pass

	Simplifying expressions
	Algorithm 2, line 1
	Algorithm 2, line 2
	Algorithm 2, line 3
	Algorithm 2, line 4
	Algorithm 2, line 5
	Algorithm 2, line 6
	Algorithm 3, line 1
	Algorithm 3, line 3

	Direct outcome of these derivations

	Analytical derivatives of the Forward Dynamics
	Lagrangian expressions of the partial derivatives of the forward dynamics
	Link between analytical derivatives of forward and inverse dynamics
	Computing the inverse of the joint space inertia matrix

	Results
	Benchmark on the partial derivatives
	Analytical versus finite differences
	Analytical versus automatic differentiation
	Benchmark on the joint space inertia matrix inversion

	Numerical precision
	Source code implementation

	Conclusion

