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Abstract—This paper presents a Bayesian approach for active
tactile exploration of a planar shape in the presence of both
localization and shape uncertainty. The goal is to dock the robot’s
end-effector against the shape — reaching a point of contact that
resists a desired load — with as few probing actions as possible.
The proposed method repeatedly performs inference, planning,
and execution steps. Given a prior probability distribution over
object shape and sensor readings from previously executed
motions, the posterior distribution is inferred using a novel and
efficient Hamiltonian Monte Carlo method. The optimal docking
site is chosen to maximize docking probability, using a closed-
form probabilistic simulation that accepts rigid and compliant
motion models under Coulomb friction. Numerical experiments
demonstrate that this method requires fewer exploration actions
to dock than heuristics and information-gain strategies.

I. INTRODUCTION

Uncertainty is an inherent challenge in robot manipulation
and locomotion; object/terrain geometries are sensed using im-
perfect sensors, geometric models are usually incomplete due
to occlusion, material and friction properties cannot be directly
observed, and robots suffer from calibration and localization
error. Although humans are adept at using tactile information
to infer the shape of objects and adapting their manipulation
or locomotion strategies accordingly, robots remain quite far
from mastering such behaviors.

In the sport of rock climbing, human climbers look upward
to observe a terrain and ask the question: “Would that terrain
feature make a good hand hold?” A good hold contains a
pocket, ledge, or protrusion with a size and shape suitable
for latching onto with fingers or tools, and applying large
downward and/or backward forces. However, the parts of the
terrain needed to assess quality are precisely the parts hidden
from view. From below, a deep pocket can appear nearly
identical to a useless slope (Fig. 1), so humans use the sense
of touch to explore the shape of occluded geometry. If the
terrain turns out to be unfavorable, the climber may move on
to alternate holds or choose different routes.

The goal of this paper is to enable a climbing robot,
equipped with a force/torque sensor, to explore static terrains
using tactile sensing in order to “dock™ an end effector in a
location that resists a given load. Toward this end, three novel
technical contributions are presented in this work:

1) A Bayesian geometric shape estimation technique that

integrates free-space line segments, contact information,
and stick/slip information from tactile sensing together

Fig. 1: (a) A climber’s view of potential holds from underneath does
not reveal the size and shape of pockets. (b) Shown from a side view,
occluded regions from the original view are indicated by dotted lines.
(c) Tactile exploration can be used by a climbing robot to probe the
hidden terrain shape.

with probabilistic priors. The estimator is statistically
consistent and robust to rare events.

2) An analytical probabilistic simulation technique that
quickly approximates the docking probability under a
compliant robot motion model and Coulomb friction.

3) A fast path planner that optimizes the estimated docking
probability for the posterior geometry distribution under
Gaussian shape uncertainty.

Experiments suggest that a novel Hamiltonian Monte Carlo
(HMC) method for shape estimation outperforms other meth-
ods under restrictive shape constraints. Analytical probabilistic
simulation is much faster than Monte Carlo simulation meth-
ods with comparable accuracy, and hence path planning can
be performed very quickly. These contributions are integrated
into the inference and planning steps of a tactile exploration
controller, which is shown to lead to optimized tactile explo-
ration plans that can dock the end effector (or determine a low
docking probability) in only a few attempts. The method is also
explored in a realistic physics simulation with the Robosimian
quadruped docking a hook end effector in 3D terrain.

II. RELATED WORK

Prior gecko, insect, and snake-like climbing robots [33} 23|
31, 132, 137, 25] use bioinspired controllers and end-effector
mechanisms to achieve passive compliance and adhesion to
terrain uncertainties. These robots largely rely on gaited lo-
comotion, which does not admit much flexibility in foothold
choice. Motion planning has been employed for climbing



robots to choose footholds in non-gaited fashion while ver-
ifying the existence of equilibrium postures [1]], but these
algorithms assume precise actuation and terrain modeling.

In the context of legged locomotion on uneven ground,
tactile feedback has been explored for state estimation [7|] and
terrain property estimation [11]. Tactile sensing has proven to
be a useful modality in robot manipulation to estimate object
properties, such as friction, pose, and shape in the presence of
visual sensing error and missing data due to occlusion [15].
Prior work can be grouped into three categories: passive esti-
mation, uncertainty-aware grasping, and active exploration.

Passive contact has been used for state estimation of legged
robots by fusing inertial readings with either known ter-
rains [2] or unknown terrain shape observed by sensors [7].
Tactile sensors have been used to classify terrain friction
and local shapes of contact points [11]. Machine learning
techniques have been used to characterize terrain from visual
and tactile sensors, which has been used to predict robustness
of footholds [12] or adapt the gaits of a hexapod to optimize
movement speed [34)]. In manipulation, tactile feedback has
been used for localization [27] and shape classification [22]
of familiar objects. It has also been used for estimating the
location of distinctive features like buttons in textiles [29]] and
localizing flat objects using texture and high-resolution tactile
sensors [21]]. A more difficult problem is simultaneous local-
ization and shape estimation, since the unknown shape model
must account for collision between fingers and unknown
geometry. Prior work in this area typically uses probabilistic
point cloud models [15] and Gaussian processes [4} 20, 36]
that add point contacts and sensed points as constraints.

Our novel shape inference technique makes use of free
space movement and slip detection in addition to contact
information. The geometric consistency constraints used in this
paper are similar to those proposed by Grimson and Lozano-
Perez [8]]. However, here they are used in a probabilistic
setting to infer distributions of terrain shape rather than binary
consistency. Hence, our method is similar to the manifold
particle filter method proposed for using contact information
for object localization in pushing [19]. The Markov Chain
Monte Carlo (MCMC) method proposed here does not permit
object movement, but is statistically consistent, i.e., converges
to the true probability as more samples are drawn.

Uncertainty-aware grasping incorporates uncertainty into
grasp planning by optimizing probabilistic measures (e.g., suc-
cess probability) for 2D grasps [3]] and 3D grasps [[14]. Each of
these techniques uses sampling for success probability estima-
tion, which is advantageous for parametric object models [10]]
and deformable object shape [3] because standard simulation
techniques can be used for each sample to determine success.
However, sampling can be slow, in particular in the absence of
good heuristics to restrict number of grasp alternatives [14].

Active tactile exploration schemes can be purely
information-gathering or goal-directed. Information gathering
has been applied to object shape and friction acquisition
using compliant sliding, using Gaussian process models of
shape and surface friction [30]. Information gain has been

used as a metric for choosing localization actions before
manipulating an object [10]] and for addressing the exploration
vs exploitation tradeoff in goal-directed grasping [3].

Partially-observable Markov decision processes (POMDP)
are a principled approach to optimize active goal-directed
manipulation [13| [18]], but require discrete state, action, and
observation spaces. Recent work has developed an RRT-like
motion planner for compliant robots that explores continuous
state and action spaces, while representing uncertain beliefs
using particles [28]. This can be computationally expensive.
The current work introduces a fast Gaussian docking prob-
ability estimator that is related to the collision probability
method of Patil et al [26]. Novel contributions include the
simulation of compliant motion with friction, and an improved
probability estimate using truncated bivariate Gaussians rather
than univariate ones.

III. SUMMARY OF METHOD

A. Problem Setup

1) Probabilistic shape model: The shape S C R? is
represented by its boundary 05, which is approximated as
a polygonal mesh with vertices V' = (vy,...,v,) and edges
E C V xV. The vertices are also represented as a stacked 2n-
dimensional vector z. The true vertex positions are unknown,
so X denotes the random variable corresponding to z. The
topology of the shape (i.e., F) is assumed known, and edges
are oriented in CCW direction around S. The prior joint
distribution P(X) includes shape and localization uncertainty.

The elements of X are highly correlated. For example,
localization uncertainty makes it more likely to observe a
constant shift in translation or rotation across all vertices,
rather than a partial shifting of the shape. Also, nearby points
on the shape tend to be more correlated than distant points.

P(X) is assumed to be well-approximated by a Gaussian
of the form X ~ N(ju,,%;). We assume X, = AT A is the
product of a 2n xm basis matrix A so that X = AZ+p, is an
affine transform of a zero mean, unit variance normal variable
Z ~ N(0,I,,). The basis matrix A provides a convenient
form to encode independence assumptions between different
sources of uncertainty.

2) Robot motion model: For simplicity, the robot is as-
sumed to be a point and the shape is assumed static. It
is possible to relax the point robot assumption to handle a
translating polygon, since the C-space obstacle has a polygonal
shape. The robot has known position relative to the reference
frame. To handle localization uncertainty, this reference frame
can be taken as the egocentric frame, while P(X) captures
the localization error. The robot moves along a 2D path using
guarded moves [[L6], which trigger a stop when the force felt
by the robot exceeds a threshold.

Our method can include a compliant motion model that al-
lows compliance perpendicular to the direction of motion. The
robot may then slide against the shape, and the contact force
obeys Coulomb friction. The surface friction is estimated, but
the method is tolerant to errors in friction estimate.
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Fig. 2: (a) Bayesian tactile exploration to achieve a diagonally
pulling load, with no compliance. The estimated shape distribution is
shown in grey and the ground truth is drawn in black. Upon executing
the initial plan to the lower ledge, the robot makes contact but slips,
and the shape distribution is updated for consistency with the free-
space and slip information. (b) An alternate site on the upper edge
is chosen. (c) This again slips, and the third plan successfully docks
against a notch near the first site.

3) Objective function and sensors: The docking objective
is to stop at a point in contact with the shape p € 9S such
that a desired loading force f;,qq is entirely canceled by the
friction forces available at p. In practice this is tested by having
the final motion of the robot move in the direction fj,.q and
checking if it sticks or jams. The robot attempts to minimize
the amount of time before the loading force is acquired.

The information available to the robot is represented by
line segments ab C R2?, annotated by their collision status
s (“free” or “colliding”). Free segments help eliminate shape
hypotheses in a manner similar to space carving for 3D shape
estimation [9]. If the robot’s force sensor provides enough
information to estimate the stick/slip status of the various
segments, we may also represent collision status flags “stick,”
“slip left,” and “slip right.” Here left and right indicate CCW
and CW from the motion direction, respectively.

B. Bayesian Tactile Exploration Method

During exploration, the robot records the information from
sensor readings I; = (s;,a;,b;), 1 =1,...,k as a history vari-
able H, which is initially empty. It repeats several exploration
cycles, each of which consists of the following steps:

1) Inference: infer the posterior distribution P(X|H) of
shape given history. (Sec.

2) Optimization: Optimize the robot’s path p(¢) to maxi-
mize a weighted sum of estimated docking probability
P(dock|p(t), H) and an exploration bonus. (Sec.

3) Execution: Execute p(¢). If the robot docks successfully,
we are done. Otherwise, back up to a non-colliding
point, record the sensor data in m new information
segments [y41,..., [p4y, into the history: H <+ H U
{Ix+1,---s Ix+m}, and repeat from step 1.

Execution also stops with failure if the docking probability
drops below a threshold, which is set to 0.001 in our experi-
ments. A successful three-cycle execution is shown in Fig. [

IV. CONSTRAINED MONTE CARLO SHAPE INFERENCE

To infer the shape distribution given history, we use Monte
Carlo (MC) methods to draw a finite sample set from the true
posterior distribution. The sample set will serve as an estimate
of the distribution of shape (mean, covariance, and bounds)
that improves in accuracy as more samples are drawn.

A. History consistency constraints

The posterior distribution of shapes conditioned on con-
sistency with the sensor history H = {I; = (a;,b;, ;)i =
1,...,k} can be expressed using Bayes’ rule: P(x|H) =
%. Let S, denote the shape of S given that the vertex
positions are given by state x. Under the assumption of perfect
sensor information, P(H|xz) = 1 if H is consistent with S,
and P(H|z) = 0 otherwise. Hence, P(z|H)  P(x) if S, is
consistent with H, and P(z|H) = 0 otherwise.

History consistency imposes the following conditions:

1) 0S5, does not overlap any free segment a;b;.
2) 0S5, overlaps all colliding segments a;b;.

We represent these conditions as mathematical inequalities.
For each free segment, we require that:

firee,a,0; () = max (—max gx(a;, by, Ty, ) <0 (1)

(u,v)EE k

where x,,z, are the endpoints of an edge (u,v) specified
by state x, and g, k = 1,...,4 are the segment-segment
collision constraints as defined in Sec. (Fig. [3] left). For
each colliding segment, we require that

feoll,a;,p: () = min (max g (as, b, Ty, x,)) < 0. (2)
(u,v)EE "k

Note that there is a nested minimum and maximum in this
expression because only one edge of the shape needs to collide.
This condition can also be interpreted as a boolean disjunction.

Moreover, if stick/slip information is available for a collid-
ing segment a;b;, then the angle of the shape normal relative
to the motion direction is constrained. Specifically:

1) l?ai— € Cone(ngp + it p, Nap — e p) if s; = stick.
2) bia; ¢ Cone(ngp + itz p, Nap — ttap) if s; = slip.
Here, ﬁ/ = y — x, the first point of collision is denoted p,
and the normal and tangent directions of 0.5, at p are denoted
ng,p and t, ,, respectively. As we shall see in Sec. these
conditions add 2 additional constraints to (2)), for a total of 6

constraints per edge (Fig. [3] right).
Overall, a shape x is history-consistent iff it satisfies

fH(x) = fs,a,b(x) < 0. (3)

max
(s,a,b)eH

B. Segment-segment collision constraints
Two planar segments ab and cd collide if and only if there
exists a solution (u,v) to the system of equations

%
a—l—u-%:c—i—v-cd, with 0 < wu,v < 1. 4)

Solving for (u,v) via 2x2 matrix inversion we get
U dl —C1
v b —ay

co — da

_1
_a az — by

C1—aq
Co — a2

} &)
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Fig. 3: Left: segment collision violations in cases ()—(IV) cor-
respond to violations of quadratic and linear inequalities (7)—(10),
respectively. Right: stick constraint violations in cases (V) and (VI)
correspond to violations of the respective elements of (12).

with o = (b1 —al)(CQ —dg) — (C —d1)(b2—a2) th_e) determinant.
Assuming « > 0, that is, that ab is CCW from cd, the original
condition can then be rewritten as
C1 — Q1
<
Jlazi]=e ®

which is a quadratic inequality. Specifically, if we let y =
(c1,¢2,d1,ds) denote the variables determining the coordi-
nates of cd, this can be rewritten as two quadratic inequalities
and two linear inequalities

di —cy
by —ax

cg — da

Og[agbg

—y"Qy+[ —a2 a1 az —a1 Jy<0 (7
y'Qy+[ b —by —by b Jy<O0 3
[b2—az a1—by 0 0 |y+ (azby —aiba) <0 (9)
[0 0 ax—by by—ay |y+ (arby —azby) <0. (10)

with @ a constant 4x4 matrix. (It can also be shown that o > 0
must hold if these equations are simultaneously satisfied.)

C. Segment stick/slip constraints

Let the operator z on R? yield the CCW perpendicular
vector (—x2,x1). For a motion along ab, the stick condition
requires

— — - - —
ba € Cone(dct + p-de, det — - de), (11

where C'one is the cone of positive combinations of its two
arguments and g is the friction coefficient. The constraint
x € Cone(y1,y2) with z € R? is equivalent to two linear
inequalities xt y1 > 0, xt 12 < 0 under the condition that
y¥'ys > 0 (i.e., y2 is clockwise from ;). This condition holds
in (TI), so (TI) can be rewritten as inequalities

b b b b —
M- b2a2 — 0161 —0202 — - 0107 cd < 0 (12)
o b2a2 + b1a1 b2a2 — - blal
that are linear over the vertex vector y = (c1,co,d;,d).

Moreover, the slip left condition is equivalent to bg> €
Cone(d_cﬁ_? udc,_—}dc), and slip right is equivalent to ba) €
Cone(de, dct+pdc). A similar derivation produces two linear
inequalities in y for either case.

Fig. 4: Monte Carlo methods for constrained shape inference: (a)
rejection sampling, (b) Metropolis-Hastings, (c) Gibbs sampling, and
(d) Hamiltonian Monte Carlo. Black dots are accepted samples, white
dots are rejected samples. The outlined shape illustrates the feasible
set, blue paths illustrate a MCMC trajectory, and the dotted lines
illustrate a sampling range.

D. Constrained Monte Carlo Sampling

Monte-Carlo methods are the preferred approach to sam-
ple from distributions P(z|H) without having to compute
P(H). Without loss of generality, we shall sample a se-
quence 2z, ..., 2(Y) from the isotropic Gaussian distribution
z ~ N(0, I,;,) under the restriction fr(Az + p,) < 0.

The simplest method for constrained MC is rejection sam-
pling (Fig. Ela), which leads to an i.i.d. sequence. However,
procedure can be extremely inefficient, as P(H) is often
miniscule, and it will need to draw an expected N/P(H)
samples to find NV feasible ones. MCMC methods can lower
the rejection rate, but at the cost of introducing dependence
between subsequent samples (autocorrelation). As a baseline
MCMC technique, Metropolis-Hastings (MH) takes small
perturbations and accepts moves with a given acceptance
probability (Fig. @]b). Our experiments suggests MH performs
poorly in constrained sampling due to strong autocorrelation.

We also consider the Gibbs sampling technique (Fig. @c),
which has been applied to Gaussian distributions truncated
by linear inequalities [17]. Each iteration samples the pos-
terior distribution of a single element of the state along
a given axis, keeping all other elements fixed. Specifi-
cally, zfjJrl) + P(z]|H, z%j), cey zi({)l, Zi(i)lv ey z,(g)), with
i = j mod m denoting the chosen element of the state vector.
Customarily, every m’th sample is kept and the rest discarded.
This approach leads to a constant rejection rate of (m—1)/m,
which is independent of P(H).

To sample z;, we determine a feasible range by intersecting
the feasible set along the line through Az + pu, in direction
Ae;. Specifically, we determine the set of ¢ such that fr (A(z+



ei(t — 2)) + pz) < 0. We discuss how to do so in Sec. [[V-E]
The range is a set of disjoint intervals, from which ¢ can be
sampled from using truncated Gaussian sampling routines that
are widely available in scientific computing software libraries.

We finally present a constraint bouncing Hamiltonian Monte
Carlo (HMC) method (Fig. 4]d), which has been applied to
Gaussian distributions under linear and quadratic inequali-
ties [24]]. For each iteration, HMC treats the state as a dynamic
particle subject to momentum and external force, which has a
momentum vector py that is sampled independently at random.
Starting from zy = 2U) and p, the method integrates the
equations of motion of a dynamic particle subject to the
system Hamiltonian H (z,p), which is the sum of a potential
energy U(z) = log P(z) and a kinetic energy K (p) which
is a positive definite function of p. The time evolution of the
particle follow the coupled ODE:

d oH d

%z—a—p, %p——g. (13)
This dynamical system is reversible, and hence integration
of these equations for a given timestep 7' to obtain a pro-
posal state (2',p’) can be viewed as a Metropolis-Hastings
proposal distribution. In the Gaussian case the integration
greatly simplifies [24]. With log P(z) = 1/2||2||? and setting
K(p) = 1/2||p||%, the equations of motion trace out an
ellipsoid given by the closed form z(t) = zgcost + pgsint.
Moreover, the MH acceptance probability is always 1, so a
step 20+ = 2(t) can always be taken for any value of t. A
recommended step size is t = 7/2 because it tends to produce
low autocorrelation [24].

A given step along the elliptic trajectory may violate feasi-
bility, so a constraint bouncing method is used. This involves
determining the first point in time ¢, at which a constraint is
violated, advancing the system to t¢;, and then reflecting the
momentum about the gradient of that constraint. The equations
of motion are then integrated forward again until another
constraint is hit, or the desired timestep is reached. Again,
feasible range determination is used here (Sec. [V-E])

Note that MCMC methods must begin from a feasible initial
seed. We find the seed by random descent of fy from an initial
state sampled from N (0, I,,,). If this fails after a given number
of iterations, we sample another initial state and repeat.

0H

E. Feasible range determination

Both Gibbs and HMC sampling steps determine the feasible
interval set along a state space trajectory z(t). The Gibbs
method samples ¢ from all feasible intervals along a line,
while HMC ¢ from the feasible interval containing ¢ = 0
along an ellipsoidal trajectory. An interval set is a collection of
r > 0 disjoint intervals [t1,t2] U [t3, t4] U~ U [ty tr11], With
t1 = —oo and ¢, 41 = oo representing unbounded sets. Interval
sets can be solved in closed form by polynomial inequalities
denoting intersection with the primitive linear and quadratic
constraints and (T2). Fig. [3] illustrates the process for
a linear path and a single collision constraint.

Let us consider a general primitive constraint gi(y) =
yI'Qy+yTp+r <0, with y = (c1, c2, dy, dz) the coordinates

(@ (b)

Fig. 5: (a) Given a linear search direction, vertices of the shape
will be displaced simultaneously along lines. (b) The range of
displacements for which the shape obeys the (coll, a,b) constraint
is determined analytically.

of the vertices of an edge. The trajectory y(¢) moves along
a line / ellipse in R* for Gibbs / HMC respectively, since
vertices are linear functions of state. We first determine a set
of roots in ¢ such that g (y(t)) = 0 as follows.

For a linear constraint and linear trajectory y(t) = yo + vt,
the root satisfies a linear equation p”yo + tp”v +7 = 0 For a
quadratic constraint and linear trajectory, the roots of y& Qyo+
2tvT Quo + 20T Qu + pTyo + tpTv + r < 0 are determined
by the quadratic equation.

For elliptical trajectories, we solve for roots of y(t) =
yo cos(t) + vsin(¢) by introducing variables ¢ = cos(t),
s = sin(t), with ¢® + s> = 1. Then, a linear equality can
be rewritten to yield a quadratic equation in s. Quadratic con-
straints can be solved to produce a degree 4 polynomial in s,
whose roots are determined using characteristic polynomials.
Each root of s yields two possible roots of ¢t = +sin~'(s).

The roots calculated thusly split the number line into
sections, and the value of the inequality on each section
[ti, ti+1] could either be positive or negative. Due to numerical
errors, best results are achieved by checking the value of the
constraint away from the roots, e.g., at interval midpoints.
The final feasible set corresponding to (3) is constructed by
intersecting (max operations), unioning (min operations), and
taking the complement (negation) of primitive interval sets.

F. Empirical performance

All methods in this paper are implemented in the Python
programming language, and experiments are conducted on a
single core of a 2.60GHz Intel Core i7 PC. Note that these
algorithms can be almost trivially parallelized, and would also
benefit from implementation in a compiled language.

Measuring sampling performance requires accounting for
the autocorrelation of the sequence (particularly in the MH
algorithm, as illustrated in Fig. [6). We measure the perfor-
mance of each MCMC technique by the Effective Sample
Time (EST'), which estimates the amount of computation time
needed to generate one effectively independent draw. EST is
a function of total computation time 7' and Effective Sample
Size ESS given by EST = T/ESS. Fig. [I| reports perfor-
mance for all four sampling techniques on three problems.



Fig. 6: Illustrating the Sloper problem with five constraint segments.
Metropolis-Hastings (MH) samples exhibit strong autocorrelation and
bias in estimating the mean on the lower portion of the terrain (dotted
line), while the HMC method is far less autocorrelated and biased.
Each plot shows 20 samples drawn at random from sets of 1,000 and
100 samples for MH and HMC, respectively.
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Fig. 7: Effective Sample Time for four sampling techniques (lower
is better) over three problems whose constraints are increasingly
restrictive. The performance of rejection sampling rapidly degrades
when highly constrained, while Gibbs and HMC are more tolerant.
Problem 3 is illustrated in Fig. [0}

Problems 1, 2, and 3 have 3, 3, and 5 constraints, respectively,
and the fraction of the prior that obeys constraints is approx-
imately 23%, 2.4%, and 0.2%. Rejection sampling performs
best on the least restrictive problems, but HMC outperforms all
other methods when highly constrained. Although each HMC
sample is more costly, it achieves higher ESS because the
rejection rate is 0 and autocorrelation is quite close to 0.

V. OPTIMIZING EXPLORATION PLANS

Given a path p(t), let E; denote the event that docking is
successful during execution, i.e., fj,qq is resisted at the robot’s
stopping point. The docking probability is given by:

P(Blp(t), H) = /X P(Ealp(t), z)P(e| H)dz.  (14)

Since we assume no stochasticity in the robot’s motion,
P(Eq|p(t), x) is a deterministic function Fy4(p(t), ) — {0,1}
which can be determined by simulation, because the shape is
known given x. The goal of the path planner is to determine
p(t) starting at the current state po to maximize the weighted
sum of and an exploration bonus.

Minimizing the speed of evaluating is essential because
the planner will need to evaluate many potential docking paths.
Given the Monte Carlo samples z(1), ... (") Eq. (1) could
be immediately approximated as:

1 & .
P(Edlp(t), H) ~ 5 > _ Ea(p(t),=") (15
i=1

which would require N deterministic simulations of the robot’s
motion model along the path p(t) with given shapes z(*). For a
path consisting of m segments, evaluating (T3)) is an O(mnN)
operation. We present a probabilistic simulation method that
is more computationally efficient under the assumption that
P(X|H) is well-approximated by a Gaussian distribution.
This new method runs in O(mn) time per path.

Moreover, we make the assumption that resistance is only
desired along the final segment of the path. Our path planner
enforces that a path should terminate in a segment that crosses
the expected midpoint of an edge e in the direction — fj,qq-
We call this the optimal terminal segment for e. The objective
function is nearly unaffected after departing sufficiently far
from the shape, so the main question is how to optimize the
terminal segment so that estimated docking probability (now
an O(n) operation) is maximized and the remainder of the
path has nearly O probability of collision.

A. Probabilistic Simulation

Probabilistic simulation evaluates the probability of stop-
ping at every vertex or edge of the shape while executing a
given path. Remarkably, we are able to do so without speci-
fying the location of the vertex or edge under the assumption
of a Gaussian shape distribution. The procedure is based on a
primitive operation that simulates the execution of a compliant
move along a single line segment of the path ab.

The method is based on summing the probability that the
robot stops at a shape feature F' (vertex or edge) given that
it makes contact with some other feature F’, then slides to
F' and gets stuck. Since the shape has a known winding, we
denote these movements as “slide right” and “slide left”. We
assume for simplicity that the robot does not break then re-
acquire contact with the shape, although this method could be
extended to handle such cases. Let [(F') and r(F’) denote the
feature immediately to the left and right of F', respectively,
as viewed from the exterior. Let us also denote the primitive
events C'r, where the motion collides with F'; K, where the
motion sticks on F'; SLr, where the motion slides left on F';
and SRy where the motion slides right on F'.

The robot stops at F' (event Sp) iff one of the following
disjoint events happen:

e Cp N Kp: collide with F' and gets stuck, or
o L,(ry N Kp: slide left from r(F') and get stuck, or
o Rypy A Kp: slide right from I(F') and get stuck.

The robot slides left from F' (event L) if one of the following
disjoint events happen:

e Cp ANSLp: collide with F' and slide left, or
o L.(ry N SLp: slide left from r(F') and slide left again.

Similarly, it slides right (event Rp) if either Cr A SRp or
Ry(ry AN SRF occurs. Because the events are disjoint, we have
o P(Sr) = P(Cr,Kr)+ P(Ly(r), Kr)+ P(Ryr), Kr),
. P(LF) = P(CF, SLF) + P(LT(F), SLF),
. P(RF) = P(CF7 SRF) + P(Rl(p), SRF),
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Fig. 8: TIllustrating probabilistic simulation. (a) To determine the
edge collision likelihoods (illustrated as size of circles) the segment
collision conditions are checked against the joint distribution over
endpoints ¢ and d. (b) Determining slide-right probabilities for three
edges under compliance. The first slip occurs with moderately low
probability. The second slide occurs with high probability conditional
on the first slip. The third slide probability is nearly 0, since the
outgoing edge is far more likely to induce a slip left.

Applying conditioning, we obtain recursive linear equations

P(Sp)=P(Cr,Kp) + P(LT(F))P(KF|LT(F))

(16)

+ P(Ryr))P(Krp|Ri(r))
P(Lp) = P(Cp, SLr) + P(Lyp)P(SLe| L) (17)
P(Rp) = P(Cp,SRr) + P(Ryr)) P(SRF|Ryr)). (18)

Sections and describe how to calculate P(Cp, -),
P(-|Ly(py), and P(-|Ryp)), with - standing in for a prim-
itive event. Once calculated, the system of equations can
be solved for all features of the shape in O(n) time using
sparse matrix inversion. The overall probability of docking is
Soev P(50) + Seep PS).

The system of equations can further be simplified under
certain conditions. Because each vertex v has no volume,
P(C,) = 0. In a non-compliant motion model, all P(Lp)
and P(Rp) probabilities are 0. In the compliant model,
P(Ke‘Lr(e)) = P<K€|Rl(e)) = 0 and P(SL6|LT(E)) =
P(SRc|Ry) =1 for all edges e because if a robot slips on
a vertex, it will continue until the next vertex. This is because
the direction of force application is constant and exceeds the
available friction along the entire length of the edge.

1) Probability of Contact: The probability P(C.) that
contact occurs for a edge e = cd is approximately the
integrated density of P(c, d|H) restricted to the feasible set
[I0) (Fig. [8la). Adding the stick or slip constraints adds two
additional linear inequalities in the form (12).

To estimate the integrated density quickly, for each edge
we produce the 4-D Gaussian approximation P(c,d|H) =~
N (fted, Xeq). We linearize the quadratic term of about
Yy = ueq and produces 6 linear inequalities of the form
Ay + b < 0 with y = (c1,c,d1,d2). We approximate
the probability that the inequalities are satisfied by assum-
ing independence of three pairs of inequalities, but allowing
dependence in each pair. To calculate that the probability that
a pair of inequalities afy + b; < 0 and aly + by < 0 are
mutually satisfied, we define A2 = [ajaz]T and by = [bybo]T
and transform the endpoint distribution to a bivariate Gaussian
N(Aiapicq + bia, A12¥qAT,) and evaluate the probability
integral over the quadrant (—oo, 0] X (—o0, 0]. This evaluation
can be done accurately using a low degree quadrature [6].

2) Probability of sticking/sliding: The stick event K, at a
vertex v is equivalent to a cone condition at the extrema of the
friction cones of the outgoing edges r(v) = 7w and I(v) = uw:

;l € Cone(wt + pwd, vl — pot). (19)

SL, is equivalent to ba € Cone(vt- — pvt, —vt), and SR,
is equivalent to ba € Cone(wb, wb+pwd). As before, cones
are transformed to inequalities in u, v, and w (Fig. B}b).

Independence is not appropriate to assume in P (/| L, (.))
and P(K,|R;(,)), because sliding provides significant infor-
mation about the normal of the originating edge. Specifically,
if L, occurs, then it is certain that ba ¢ C‘one(zﬁL +
MW,WL — mﬁ). Hence, for K, to occur after a left slip,
the more restrictive condition Wz € C’one(mL - mﬂ, vl +
MWLJ—) must be satisfied. Similarly, for K, to occur after Rl(v),
- .
ba € Cone(wb+ pwd, vi* + pvt) must be satisfied. Ignor-
ing long-range dependencies, we approximate P(K,|L,(y)) =
P(KU|SLT(U)) = P(Kvy SL’I"(’U))/P(SLT(U))

We apply the same conditional dependency to rightward
sliding and continued sliding. P(SL.,,SL.(,)) is evaluated

using the constraints QLTWL + pwd > 0 and QLLTWP +
mﬁi > 0. This is exact as long as vw does not turn to the left
of ab, e.g., the robot does not separate from the shape at v.

3) Illustration: Fig. 9 plots the simulated distributions for
both non-compliant and compliant docking on the 3 Ledges
example. Lines give the sticking probability for three different
candidate sites. Observe that without compliance, the proba-
bility of sticking at any vertex is zero, but with compliance, the
end effector can slide after making contact, which increases
the overall probability of docking.

B. Optimal Path Planning

Let P denote the set of previously executed paths. The
overall objective function adds to the docking probability an
exploration bonus term as follows:

.
1) = PEdp 08 (L winds)) O
where w is the bonus weight and d(p,p’) measures some

notion of path-wise distance. We set d(p,p’) to measure the
distance between endpoints of the terminal segments of the
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Fig. 9: Probabilistic simulation with non-compliant and linearly
compliant motion. The shape distribution is the same as in Fig.[6] but
only the mean shape is shown. Three docking sites are chosen, and
probability of sticking on nearby features is drawn as horizontally
offset lines. Circles are shaded by the probability of docking in a
horizontal loading direction, if aimed through the center of circle.

paths. The bonus factor B(z) = 1 — exp(—z) transforms the
domain [0, 00) to [0,1], with O denoting low novelty (e.g.,
d(p,p’) = 0) and 1 denoting high novelty. Setting w = 0
leads to a greedy approach, but having a small weight helps
account for sensor noise and errors in the inference model. We
set w equal to the spatial resolution of the contact detector.

The planner maintains an optimal path p*, docking proba-

bility P .. and function value J*, and proceeds as follows:

1) Initialize p* < nil, Pj . « 0, and J* < oo.

2) For each edge in order of increasing P(C., K.) for e’s
optimal terminal segment, repeat:

3) Perform  docking  probability  estimation. If
P(S.) < PJ,., or J(p) < J*, it cannot be optimal, so
skip to the next edge.

4) Plan a collision-free path p ending in e. If successful,
store p* <— p, P} . < P(S.), and J* « J(p).

In Step 4, we first establish a likely obstacle region (LOR), a
free-space region in which collision has moderate probability.
Its complement is the unlikely obstacle region (UOR). LOR is
obtained by taking convex hulls of each edge over the shape
estimation samples, and then performing a union operation.
The planner works backward from the terminal point, which
lies in LOR. It first finds a path to the boundary of LOR,
starting in direction fj,,q, While maintaining the invariant
that clearance away from the mean shape is monotonically
increasing [35]]. Once the path exits LOR, it plans a path to
the start point using UOR as free-space. Shortest paths through
UOR can be planned to all vertices of LOR quickly using
standard methods, e.g., a visibility graph.

C. Experimental results

Fig. [T0] shows the docking success rate and cycle count on
three problems, where 10 ground truth shapes are sampled
at random. In Sloper, only 5/10 ground truth shapes had
a feasible solution. Our technique is compared with 1) a
growing-window (GW) technique that starts at the site the
most likely to dock successfully, then attempts docking at

10 * mew 3 mew .
w 8 oiG $30 @i °
§ W Ours %25 W Ours
S 6 c 20
v % O
E 4 §15 3 x
oy 5 I_|><_I 10 O 5
# 5 ’_hx X
0 0
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Fig. 10: Docking success rate and number of execution cycles in
three problems, over 10 randomly sampled ground truth shapes.
The growing-window (GW) heuristic fails in many instances. The
information-gain strategy (IG) and our technique (Ours), both using
our shape estimator, are more successful. Ours uses fewer execution
cycles than both GW and IG. (*: ground truth success rate. Error
bars: cycle count std. dev. Dots: max cycles.)

increasingly distant sites, and 2) an information-gain (IG)
technique that alternates between one greedy docking step
and two information-gain steps, using our HMC estimator
to determine a shape distribution. The same path planner
is used for all techniques. Note that the standard deviation
for cycle count is generally high, since some instances are
solved luckily on the first try, while others require dozens
of cycles. Our method never failed on a feasible instance,
and found a solution with fewer executions than GW or IG.
Also, the modest cycle count on Sloper indicates that our
method terminates quickly on infeasible problems by correctly
estimating a low likelihood of feasibility.

Supplemental videos at http://motion.pratt.duke.edu/
locomotion/tactile.html] show our technique in action with
a model of the Robosimian robot and a 3D climbing wall
scan generated via photogrammetry in a realistic physics
simulation (Fig. 1). Given a simulated noisy vertical laser
scan, our technique generates docking trajectories for a
hook end effector along a 2D plane. An operational space
controller performs guarded moves using a force sensor to
detect collision. The tactile exploration method attempts to
dock at multiple sites in response to failed docking moves.

VI. CONCLUSION

This paper presented a Bayesian tactile exploration con-
troller for docking a point against uncertain shapes. Its two
technical contributions include 1) Hamilton Monte Carlo shape
sampling, which outperforms other sampling methods, and 2)
a probabilistic simulator that quickly computes probability of
docking for Gaussian shape models under compliance and
friction. The resulting controller is reliable and usually requires
few cycles to localize docking sites. In ongoing work, we
are attempting to evaluate this technique on the physical
Robosimian robot. Future work may consider generalization
to other geometric representations, such as point clouds,
occupancy grids, and 3D meshes.
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