
GPU-Based Max Flow Maps in the Plane
Renato Farias Marcelo Kallmann

Computer Science and Engineering Department
University of California, Merced, CA, 95343
E-mail: {rfarias2,mkallmann}@ucmerced.edu

Abstract—One main challenge in multi-agent navigation is
to generate trajectories minimizing bottlenecks in environments
cluttered with obstacles. In this paper we approach this problem
globally by taking into account the maximum flow capacity of a
given polygonal environment.

Given the difficulty in solving the continuous maximum flow of
a planar environment, we introduce in this paper a GPU-based
methodology which leads to a practical method for computing
maximum flow maps in arbitrary two-dimensional polygonal
domains. Once the flow is computed, we then propose a method
to extract lane trajectories according to the size of the agents
and to optimize the trajectories in length while keeping constant
the maximum flow achieved by the system of trajectories.

As a result we are able to generate trajectories of maximum
flow from source to sink edges across a generic set of polygonal
obstacles, enabling the deployment of large numbers of agents
optimally with respect to the maximum flow capacity of the
environment. Our approach eliminates bottlenecks by producing
trajectories which are globally-optimal with respect to the flow
capacity and locally-optimal with respect to the total length of
the system of trajectories.

I. INTRODUCTION

The problem of optimally deploying multiple agents travers-
ing a polygonal environment has important applications in
many areas, for example, to control multiple robots in ware-
houses, to coordinate autonomous cars across narrow streets
and to evaluate evacuation scenarios. While optimality can
be defined by taking into account different variables such as
energy, time, or distance travelled, in all cases the problem
is difficult to be solved in a planar domain and is usually
addressed in a discrete representation of the environment.

In this paper we introduce the approach of relying on the
continuous maximum flow of a given environment and we
present a new GPU-based method that allows us to compute
the maximum flow and to represent it in a max flow map.

By computing the max flow map of the environment,
bottleneck-free lanes can be determined leading to a system of
trajectories able to deploy agents to safely reach their destina-
tions. If a large quantity of agents is deployed, the system
of trajectories will optimally guide all agents to reach the
destination region. Here optimality is related to the maximum
number of agents that can be deployed across the environment
from a source polygonal entrance to a sink polygonal exit
without creating bottlenecks.

We consider the input polygonal domain to be delimited
by entrance and exit polygonal edges which function as the
source and sink of the obtained max flow map. See Fig. 1.
Once the flow map is computed, lane trajectories are extracted

Fig. 1: This scenario illustrates a max flow map computed
from a source edge to a sink edge. While this flow map has
optimal flow capacity, path lanes are subsequently optimized in
length according to the characteristics of the agents navigating
the flow.

according to the size of the agents and optimized in length
while keeping constant the maximum flow achieved by the
system of trajectories.

As a result our method is able to generate trajectories
of maximum flow from source to destination edges among
a generic set of polygonal obstacles, guaranteeing that no
bottlenecks are formed. Given the obtained flow optimality
of the trajectories, when the system of trajectories is fully
occupied by agents moving along them, no more agents can
fit the environment without eventually creating bottlenecks.
Agents can safely follow our computed trajectories without
having to employ any complex local behavior strategies in
order to reach the destination region.

Our trajectories are globally-optimal with respect to the flow
capacity and locally-optimal with respect to the total length
of the generated system of trajectories. Several simulations
are presented demonstrating the superior performance of our
method in deploying large quantities of agents across environ-
ments with obstacles.

II. RELATED WORK

Multi-agent path planning is important for a variety of
applications and the problem has been extensively studied in
different contexts.

The vast majority of approaches developed to date are based
on grid representations. In this case, the problem consists
of finding trajectories for agents from given initial cells to



given target cells in the environment grid, while avoiding cells
marked as obstacles [7]. A popular approach to this problem
is to plan paths individually for each agent and subsequently
solve all conflicts. Different strategies for solving conflicts
exist. For example, one approach is to recursively solve
conflicts between pairs of agents [10]. A number of variations
and extensions exist, such as integration with roadmaps for
scalability to higher dimensional problems including articu-
lated structures [3]. While finding optimal solutions for several
versions of the multi-agent path finding problem is known to
be NP-hard [15, 13], unlabeled variations can be solved in
polynomial time [17, 11].

Discrete flow algorithms have clear applications to multi-
agent path planning and the problem of computing maximum
flows in a capacitated network graph has been very important
in combinatorial optimization. The problem is commonly stud-
ied in textbooks and many polynomial-time algorithms exist.
The connection between network flows and path planning has
started to be investigated in a number of works; however, to
date all previous works have been limited to investigations
performed in discrete versions of the problem.

A Conflict-Based Min-Cost-Flow algorithm has been pro-
posed to address the combined target assignment and path
finding problem, where a min-cost max-flow algorithm on a
time-expanded network is used to assign all agents in a single
team to targets [6]. Yu and Lavalle [16] study the problem
of computing minimum last arrival time and minimum total
distance solutions for multi-agent path planning on graphs.
Their formulation relies on discrete multi-commodity flow
algorithms which address the problem of flowing different
types of commodities through a graph network.

Heuristics for search-based algorithms that systematically
explore the state space have also been proposed based on
commodity flows [14], and multi-agent path planning has
been investigated with graph network flows, with respect to
goal replacement for paths when the goals are permutation
invariant [17]. In the area of multi-agent simulation, crowd-
flow graphs have been developed to distribute agents in an
environment according to capacity information extracted from
a harmonic field computed in the environment [1].

While these works clearly show that solving flow problems
represents a powerful approach to address multi-agent path
planning, no previous work has explored the use of a con-
tinuous flow formulation in order to be able to directly ad-
dress planar environments described by polygonal boundaries.
Such an approach is important in order to reach optimality
guarantees in the Euclidean sense, and furthermore, to take
into account specific geometric constraints (such as agent size)
without simplifications.

While the generalization of the maximum flow problem to
a continuous domain is clearly interesting, its computation is
not obvious. Strang [12] describes an extension of the max
flow-min cut theorem to continuous flows, showing that the
maximum flow from sources to sinks in a planar domain is
determined by the minimal cut, just like the discrete version
of the problem. This result opens a direction for computing

max flows in continua.
Mitchell [8] addresses the problem of actually constructing

the min cuts and max flows in a clever approach based on the
computation of Shortest Path Maps (SPMs) [9]. Polynomial-
time algorithms are given for varied max flow scenarios
involving source edges and sink edges in simple polygons.
Similar to the calculation of SPMs, a continuous Dijkstra
paradigm forms the basis for their algorithms, but in a specific
form which solves the so called 0/1/∞ weighted regions
problem. In this paper we follow this approach in order to
achieve our proposed flow maps.

While a traditional CPU implementation of SPMs based
on the continuous Dijkstra paradigm is still difficult to ac-
complish, in this paper we approach the problem with a new
GPU implementation which greatly simplifies addressing the
problem. The approach is based on the concepts introduced
by Camporesi and Kallmann [2]. In this paper we extend
this GPU approach to take into account polygonal edges as
sources and the required 0/1/∞ weighted region formulation.
By applying our extended SPM methods we are able to obtain
a diagram expressing the desired flow map for the entire input
environment.

While it is possible to generate SPMs via CPU-based
methods, our GPU implementation was developed in order
to achieve a practical approach to the problem by making
use of the built-in features of the OpenGL rendering pipeline.
Additional information of our implementation is available [4]
and also demonstrates performances superior to some other
approaches.

Contributions This paper proposes two main contributions.
First, while previous works have been limited to discrete
flow definitions, we introduce a method to compute maximum
flow maps in continuous domains, relying on the insight of
applying GPU rasterization techniques previously used for
computing shortest paths with SPMs. Second, we demonstrate
a simple method to optimize the flow trajectories with respect
to their total length, while keeping the maximum flow capacity
optimal.

III. METHOD OVERVIEW

The goal of our overall method is to be able to optimally
generate paths for multiple agents traversing a polygonal
environment cluttered with obstacles.

The input polygonal environment is delimited by a polygon
P containing all obstacles of interest in its interior. We assume
that agents will enter P from given source edges Psrc and
will exit the environment by crossing sink edges Psnk. In
our formulation Psrc and Psnk are polygonal lines which are
pieces of the domain boundary P .

While it is possible to consider multiple disconnected polyg-
onal lines as sources and sinks, in this work we limit ourselves
to a single polygonal line for each. Assuming Psrc is left of
Psnk, as in the example of Fig. 1, there are two additional
polygonal lines between Psrc and Psnk which appear at
the bottom and top of the domain. We call these additional
polygonal lines as Pbot and Ptop. In this case the concatenation



of Psrc, Pbot, Psnk and Ptop completely covers the domain
boundary in counter-clockwise order.

With source and sink edges defined it is then possible to
compute a max flow in P . A flow in P is as a divergence-free
vector field defined for every valid point in the interior of P .
The vector field of the flow provides directions that can be
followed by agents in P . We informally define a maximum
flow in P as a flow maximizing flow directions crossing
Psnk outwards, and with directions along Psrc entering P .
Given that the flow is divergence-free a max flow provides a
way to route agents from Psrc to Psnk while maximizing the
flow of agents exiting P . While capacity constraints could be
defined in terms of maximum magnitudes of flow vectors, in
our application we consider a constant magnitude everywhere.
Formal definitions of the above concepts are provided by
Mitchell [8].

Our approach to compute a max flow for P however does
not take into account the size of agents or the length of the
generated trajectories when agents follow the flow. We then
present a second step to address these additional aspects.

Considering that an agent traversing the environment is
approximated by a circle of radius r, we present a method to
extract lanes from the max flow such that each lane connects
entrance points on Psrc to exit points on Psnk, and to optimize
them in length. The produced lanes will be of maximum flow,
will minimize total length, and will have clearance r; that is,
for each point in a lane its minimum distance to the boundary
P , the obstacles inside P , or to other lanes, will be at least r.

The next sections detail the steps discussed above.

IV. SHORTEST PATH MAP

We start by describing our approach to compute Shortest
Path Maps (SPMs), which are necessary for computing the
proposed max flow maps. For additional details an extended
exposition of our SPM computation method described in this
section is also available [4].

SPMs are structures constructed with respect to one or more
“source points” or “source segments”, and that partition the
space into regions that share the same sequence of parent
points along the shortest path to the closest source. This means
that an SPM encodes shortest paths to the sources for all points
in a particular planar environment, and is thus useful for global
navigation. Fig. 2 shows an example SPM computed for one
of our test environments.

Let ns source points {s1, s2, ..., sns} be defined in the plane,
such that si ∈ P , i ∈ {1, 2, ..., ns}, and where P ⊂ R2 defines
a polygonal domain containing all sources and obstacles. We
can also have nl line segment sources {l1, l2, ..., lnl

}, such
that li, i ∈ {1, 2, ..., nl}, consisting of two endpoints ∈ P .
A set of polygonal obstacles O, with a total of n vertices, is
also defined in P such that shortest paths will not cross any
obstacles in O.

Given source points and segments the respective SPM will
efficiently represent globally-shortest paths, which are optimal
collision-free paths from any point p ∈ P − O, to either: 1)
its closest source point si or 2) the closest reachable point on

Fig. 2: Shortest Path Map of our Scenario 2 map. Contour
lines represent points equidistant to the SPM’s source segment,
and the blue circles represent agents whose shortest paths are
shown with blue lines.

its closest segment source li (as will be discussed in section
IV-B).

We follow the approach of Camporesi et al. [2] and improve
it in order to take into account polygonal edges as sources and
to eliminate geometry approximation. Our solution is imple-
mented using OpenGL Compute Shaders [4]. The approach
is based on rasterizing “clipped cones” with apices placed
at specific depths below source points and obstacle vertices,
relative to the z = 0 plane, such that the final rendered result
from an orthographic top-down view is the desired SPM. Each
apex’s z coordinate is equal to its distance to the closest source
along the shortest path. When a cone is rasterized, the depth
values of the affected pixels increase proportionally to their
Euclidean distances to the apex, and thus the GPU’s depth
test will maintain only the closest ones to a source.

A. Algorithm

An array containing points with the xy coordinates of the
ns source points and n obstacle vertices is stored in the GPU.
These points are referred to as “generator points”, or simply
“generators.”

The GPU framebuffer stores the following information for
the pixels: 1) the red and green channels store the xy
coordinates of the pixel’s current parent point in P; 2) the
blue channel stores the current known shortest path distance
to the closest source; 3) the alpha channel is used as a flag
to determine whether the pixel has yet to be rasterized by a
generator. When the buffer is visualized, we zero out the blue
channel so that we can visualize the xy coordinates of each
region.

The SPM generation process consists of choosing a gener-
ator from the array and rasterizing its clipped cone ntotal =
ns + n times, such that each generator is processed once.



First, we determine which generator will be rasterized next
by choosing the one with the smallest distance to source. This
means that naturally the source points themselves will be the
first ones to be picked, as their distance to source is 0. Points
which have already been chosen before are not considered,
and a non-source point cannot become a generator if it has not
been reached by a previous cone because its correct distance
to source is not yet known.

Second, we rasterize the clipped cone. This means that only
the parts of the scene which have direct line-of-sight to the
cone are rasterized, hence why it is “clipped.” This visibility
determination is part of the construction of the clipped cones,
and is done before the actual rasterization. The pixels that are
affected by the rasterization have direct line-of-sight to the
generator point, so they calculate their Euclidean distance to
it and add it to the generator’s accumulated distance. If this
sum is smaller than the current distance stored in the pixel
(from the cone of a previous generator), then its blue channel
stores the new distance and its red and green channels are
updated with the generator’s coordinates, making the generator
the pixel’s new parent point.

After all generators have been processed, the result in the
framebuffer will be the desired SPM.

B. Line Segment Sources

To extend the SPM algorithm from source points to source
segments, we must also process “elongated” cones that have
apices which are segments rather than just points.

Let li be a source segment with nci critical points, nci ≥ 0.
These critical points come from the visibility set of segments
of the critical graph, which will be explained in greater detail
in Section V-A. Critical points are the points on the source
segments onto which obstacle vertices can be projected (see
Fig. 3).

Since critical points denote points on the segment where the
visibility of the scene changes with respect to the segment, we
must consider each of the sub-segments between the endpoints
and the critical points independently. We consider that li is
now made up of nci + 2 points: its two endpoints plus all of
the critical points along its length, if any.

Each pair of adjacent points makes up a sub-segment that is
included in the SPM generation process as an elongated cone.
In practice this means that the distance calculation of the pixels
is slightly different when the generator is a segment, as it must
determine whether it is closer to one of the endpoints or to
a projected point somewhere inbetween. However, this is still
just a point-to-segment distance calculation.

V. MAX FLOW

Given the polygonal domain P , the obstacles in it, source
edges Psrc and sink edges Psnk, we can then compute a
maximum flow from Psrc to Psnk. Central to the approach
taken in this paper is the intimate connection between the
max-flow problem and its dual, the min-cut problem.

The min-cut of the environment represents a polygonal line
cut, starting at Ptop or Pbot, traversing the environment, and

ending at the opposite boundary, Pbot or Ptop, respectively.
The total length of the sub-segments of the min-cut that are
on the free space of the domain represents the main bottleneck
of the environment, and defines the maximum possible flow
from source to sink. Relevant to our work is the fact that the
min-cut can be determined by accumulating distances from
Pbot to Ptop (or from Ptop to Pbot) without considering the
cost of traversing obstacles.

The needed distance accumulation is addressed by the
0/1/∞ weighted region problem, which is a limited case
of the general Weighted Region Problem where only three
weights exist: 0 (no cost), 1 (cost proportional to distance
traveled), and ∞ (impassable region) [5]. With this formu-
lation, when generating a SPM with source as Pbot or Ptop,
distances are accumulated from one boundary of the domain
to the other without considering obstacles, which are seen as
0-cost regions rather than the ∞-cost regions they would be
in a normal SPM.

The vector field defining our max flow will consist of the
vectors orthogonal to the isolines of the generated SPM. As
we will later see, the final flow lanes that will be used will
be extracted directly from the generated flow and we will not
need to explicitly extract the min-cut.

A. Critical Graph of the Domain

In order to compute the SPM of an environment with 0-
cost regions, the critical graph [8] of the domain has to be
computed first.

The critical graph of the domain contains essential infor-
mation for the construction of the max flow map via the
SPM algorithm, and is comprised of line segments between
the boundary and the obstacles in the scene, or between
the obstacles themselves. There are two distinct sets of line
segments that make up the critical graph: a visibility set and
a flow propagation set.

The visibility set of line segments serves to inform the SPM
algorithm at which points along a polygonal line the visibility
of the scene changes with respect to that polygonal line. It is
derived from projecting all obstacle vertices onto the polygonal
line of the domain boundary, either Pbot or Ptop, that will be
used to generate the max flow map. Assuming, for example,
that we are using Pbot, the obstacle vertices with direct line-
of-sight to Pbot project onto its segments as shown in Fig. 3.
The construction of this part of the critical graph depends on
the choice between Pbot and Ptop, which themselves depend
on Psrc and Psnk.

The purpose of the flow propagation set of line segments
is to inform us of the shortest segment that exists between
the boundary and each obstacle, and between pairs of ob-
stacles. This is crucial to correctly propagate flow distances
throughout the scene, as will be explained in Section VI.
The vertices from the entire boundary are projected onto
all obstacle segments, and the vertices of all obstacles are
projected onto the segments of all other obstacles. A line
segment is added to the critical graph if this line segment
is the shortest distance between them. An example is shown



in Fig. 3. The construction of this part of the critical graph
does not depend on the choice of source or sink, and therefore
depends only on the configuration of the scene.

Fig. 3: The critical graph of an environment with three
obstacles. In this example, Pbot (green) is the part of the
boundary that will be used to generate the map, and therefore
the vertices project onto it. The visibility set of segments is
shown in red and the flow propagation set of segments is
shown in blue. Arrows illustrate the direction of each vertex’s
projection.

VI. MAX FLOW MAP

We compute our max flow map by using the SPM prop-
agation approach as described in the previous section. The
initial pre-processing step is to compute the critical graph of
the scene, as explained in Section V-A.

In this section we choose Pbot to generate the max flow map.
The generation process is illustrated in Fig. 4 and follows the
three steps enumerated below:

1) First, all of the segments of Pbot are set to be initial SPM
segment sources and the SPM of the scene is computed.

2) Then, for each obstacle in the domain, the critical graph
is used to find its smallest distance to the closest segment
of Pbot. If an obstacle finds a new smallest distance, the
SPM is updated, expanding all of the obstacle’s seg-
ments again using this new distance. This step updates
the SPM to take into account 0-cost transitions across
the selected obstacle.

3) Finally, the previous step is repeated until none of the
obstacles find new smallest distances. The resulting map
is the max flow map.

By computing the max flow map and querying it, we are
able to determine in constant time which direction each agent
should move so that maximal flow is achieved. The max flow
map is a vector field where each pixel now stores a direction
rather than a single parent point. Each direction is set to be
orthogonal to the SPM distance field, i.e., the max flow vector
field will store vectors tangent to the white SPM isolines
shown in the figures.

For practical use the obtained map can then be divided
into “lanes”, which are corridors that originate from Psrc

and follow the flow field until reaching Psnk. By following
these lanes agents will move towards the sink in an orderly

(a) SPM generated from an initial scene configuration with three
obstacles A, B, and C, and the corresponding critical graph as
shown in Fig. 3.

(b) Obstacles A and B find new smallest distances, and expand
again with them, altering the map.

(c) Obstacle C finds a new smallest distance through obstacle B
and expands again, finalizing the max flow map.

Fig. 4: Example steps to generate a max flow map.

fashion that guarantees maximal flow. Agents of course have
a certain size and lanes must have enough clearance to
prevent collisions with obstacles and with other agents. A lane
determination process is therefore necessary.

We assume that each agent can be represented by a circle
of radius r. A candidate lane whose minimum distance to any
obstacle segment and to P is less than r is considered to be
invalid, otherwise it is valid.

Our lane determination procedure works as follows. We take
points along Psrc from an extreme endpoint towards the other
extreme endpoint in order to generate candidate lanes. If a
candidate lane is found to be invalid, we advance by a small
increment ∆ along Psrc and try again. In our scenarios we



have set ∆ to be the height of a pixel. If a valid candidate
lane is found, we advance by 2r because we know adjacent
lanes must be spaced by at least 2r. Because of this and the
fact that lanes run parallel to each other, we do not need to
check for collision with previously-accepted valid lanes. With
this procedure we determine the maximum possible number
of valid lanes from Psrc to Psnk.

A possible optimization to the above procedure is to directly
compute the total incremental space needed when an invalid
lane is found, instead of performing increments of ∆ size.
This is possible to obtain from the largest obstacle penetration
depth encountered in an invalid candidate lane. However the
approach of testing by small increments is simpler and was
effective in our scenarios.

The choice of Pbot or Ptop as the origin of the SPM
generates two different max flow maps which almost certainly
have different configurations of lanes. However, because the
max flow is determined by the min cut, and the min cut is
dependent only on the scene, this choice has no effect on the
capacity of the maximal flow.

VII. LENGTH OPTIMIZATION OF FLOW LANES

Utilizing the max flow map described in the previous section
and assigning agents to all the possible lanes guarantees
a continuous max flow of agents through an environment.
However, depending on the layout of the scene and the relative
sizes of the source and sink, the generated lanes may be
inefficient with respect to the path they take through the scene,
taking extremely long detours when shorter, more direct paths
are available. We present here a post-processing optimization
process to reduce this inefficiency.

For each lane, we randomly choose a pair of points p1 and
p2 along its path, and check to see if the segment p1p2 is a
valid “shortcut.” This is only true if p1p2 does not intersect
with any other occupied lane or obstacle segment and keeps
its minimum distance to all obstacles and P as at least r, and
to all other lanes as at least 2r.

This optimization can be applied individually to any lane,
in any order, and repeated any number of times. In practice,
we start the process with the last assigned lane and work our
way backwards to the first. This is because if Psrc’s length is
less than the min cut of the environment, the lanes will not
be able to use all available space up to the side opposite of
the one that generated the max flow map, and therefore the
last lane tends to have the most open space to work with. As
shortcuts are accepted and lanes are shortened, they also free
up new space for subsequent lanes.

The optimization does not change the original lane assign-
ment, it only shortens the lanes instead of searching new
ways through the environment, so this optimization does not
guarantee a globally-optimal configuration of lanes length-
wise nor does it alter the maximal flow. However, by iterating
enough times, it converges to a locally-optimal solution. The
effect of this process on the lanes of our test environments is
illustrated in Figure 5.

VIII. RESULTS AND DISCUSSION

In order to illustrate the benefits of using our max flow
trajectories we have produced several multi-agent simulations
in different environments.

In each simulation we define Psrc at the top of the domain
boundary and Psnk at the bottom, then proceed to construct
three types of navigation environments:

1) The first type is based on the SPM computed with Psnk

as source, such that agents will follow their shortest paths to
Psnk. We call this SPM as SPMsnk. Paths are the shortest
possible but several bottlenecks occur which are handled with
simple collision avoidance between the agents. This SPMsnk

case is not to be confused with the SPM pass used to construct
the max flow map (next type).

2) The second type uses our max flow map of the environ-
ment, which is computed with the 0/1/∞-SPM formulation
starting from Pbot. The flow map provides directions to agents
placed anywhere in the covered regions of the environment.
Lanes respecting the size of the agents are retrieved from
Psrc to Psnk and used to guide the agents. The lanes are
optimal with respect to the flow capacity but their lengths can
be further optimized.

3) In the third type the lanes obtained from the flow
map are optimized leading to a system of trajectories with
minimized total length while still achieving the max flow of
the environment.

In each environment type we repeatedly spawn agents at the
beginning of each lane whenever there is space for them, as
the agents use either the SPMsnk, the max flow map, or the
max flow map with optimized lanes to navigate towards the
sink. Whenever an agent reaches the sink, it is removed from
the environment. Fig. 6 shows a snapshot of the simulation
running on scenario 3.

The simulations ran for 60 seconds, measuring the mini-
mum, maximum, and average lengths of the paths computed
and the number of agents that were able to reach the sink
during that time, as can be seen in Table I. The SPMsnk

consistently computed the shortest paths in every environment,
which is to be expected since it gives the globally shortest
path for each point. However, fewer agents were able to reach
the sink during the simulation. When too many agents try to
follow their shortest paths to the sink, bottlenecks emerge that
slow down the majority of their progress.

The environment types relying on the max flow, as expected,
despite having longer overall lane lengths, were better for coor-
dinating the movement of agents throughout the environment.
No bottlenecks were created, and so the max flow map was
able to make 2 or sometimes close to 3 times as many agents
reach their destination. Also, agents using the max flow map
do not require collision avoidance behavior.

The accompanying video to this paper1 demonstrates the
path optimization procedure and full simulations running in
three different environments for each type of navigation strat-
egy.

1available at http://graphics.ucmerced.edu/publications.html

http://graphics.ucmerced.edu/publications.html


(a) original lanes

(b) optimized lanes

Fig. 5: Scenarios 1 (left), 2 (middle), and 3 (right).

Scenario 1 Scenario 2 Scenario 3
Method min max avg n min max avg n min max avg n
SPMsnk 1.97 2.02 1.99 453 2.24 2.28 2.26 214 1.97 2.03 2.00 441

Max Flow 2.57 3.92 3.06 1053 3.30 4.39 3.89 553 2.74 4.31 3.20 766
Max Flow (optimized) 1.97 2.52 2.39 1165 2.65 3.61 3.09 611 1.98 2.89 2.40 843

TABLE I: The results of simulations where agents continuously spawn at the beginning of their assigned lanes whenever there
is enough space for them, and then navigate towards the sink, for a duration of 60 seconds. Columns min, max, and avg refer
to the minimum, maximum, and average path/lane lengths computed for the scene, respectively, and n is the total number of
agents that were able to reach the sink in the allotted time. The three scenarios are illustrated in Fig. 5.

Our results clearly show the benefits of computing optimal
flow trajectories for deploying large numbers of agents across
generic polygonal domains. Because the computed flow is
optimal, no better solution can be found in terms of numbers
of agents per second reaching the exit sink polygonal line.
Our optimization of trajectories also ensures that each agent
will follow a short path to the exit; however, our current
method does not guarantee a globally-optimal solution in
terms of overall path length of all trajectories, because we
do not evaluate all combinatorial possibilities of assigning
trajectories, or portions of trajectories, to different corridors.
Such an extension is left for future work. An additional

promising direction for future work is taking into account
disconnected source and sink polygonal lines.

IX. CONCLUSION

We have introduced in this paper a new method to compute
max flow maps capturing the maximum flow capacity of given
generic polygonal domains. The proposed method is able to
determine bottleneck-free lanes that lead to a system of trajec-
tories optimally guiding a large number of agents to reach a
destination exit of the environment. The presented simulations
demonstrate that our approach can dramatically increase the
number of agents that successfully navigate towards the goal



(a) SPMsnk

(b) Max flow with optimized lanes

Fig. 6: Snapshots of simulations on scenario 3. Despite both
having the same amount of space and 8 lanes to start with,
the SPMsnk only permits 4 agents to reach the exit at a time,
while the max flow map permits all 8 to do so.

exit of the environment in a given time frame.
The proposed approach introduces a methodology for taking

into account continuous flows in polygonal domains, opening
new research avenues in flow-based multi-agent path planning.

ACKNOWLEDGMENTS

This research was sponsored by the Army Research Office
and was accomplished under Grant Number W911NF-17-1-
0463. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein. The authors also thank Prof. Joseph S.
B. Mitchell for several discussions on the topic of this paper.

REFERENCES

[1] Adam Barnett, Hubert P. H. Shum, and Taku Komura.
Coordinated crowd simulation with topological scene
analysis. Computer Graphics Forum, 35(6):120–132,
September 2016.

[2] Carlo Camporesi and Marcelo Kallmann. Computing
shortest path maps with GPU shaders. In Proceedings
of the Seventh International Conference on Motion in
Games, MIG ’14, pages 97–102, New York, NY, USA,
2014. ACM.

[3] Andrew Dobson, Kiril Solovey, Rahul Shome, Dan
Halperin, and Kostas E. Bekris. Scalable asymptotically-
optimal multi-robot motion planning. In 2017 Inter-
national Symposium on Multi-Robot and Multi-Agent
Systems (MRS), Los Angeles, CA, USA, December 4-5,
2017, pages 120–127, 2017.

[4] Renato Farias and Marcelo Kallmann. Improved shortest
path maps with GPU shaders. E-print arXiv:1805.08500
[cs.GR], May 2018. URL https://arxiv.org/abs/1805.
08500.

[5] L. Gewali, A. Meng, J. S. Mitchell, and S. Ntafos. Path
planning in 0/1/∞ weighted regions with applications.
In Proceedings of the Fourth Annual Symposium on
Computational Geometry, SCG ’88, pages 266–278, New
York, NY, USA, 1988. ACM.

[6] Hang Ma and Sven Koenig. Optimal target assignment
and path finding for teams of agents. In Proceedings
of the 2016 International Conference on Autonomous
Agents &#38; Multiagent Systems, AAMAS ’16, pages
1144–1152, Richland, SC, 2016. International Founda-
tion for Autonomous Agents and Multiagent Systems.

[7] Hang Ma and Sven Koenig. AI buzzwords explained:
multi-agent path finding (MAPF). AI Matters, 3(3):15–
19, 2017.

[8] Joseph S. B. Mitchell. On maximum flows in polyhedral
domains. In Proceedings of the Fourth Annual Sympo-
sium on Computational Geometry, SCG ’88, pages 341–
351, New York, NY, USA, 1988. ACM.

https://arxiv.org/abs/1805.08500
https://arxiv.org/abs/1805.08500


[9] Joseph S. B. Mitchell. A new algorithm for shortest paths
among obstacles in the plane. Annals of Mathematics and
Artificial Intelligence, 3(1):83–105, 1991.

[10] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R.
Sturtevant. Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell., 219(C):40–66, February 2015.
ISSN 0004-3702.

[11] Kiril Solovey, Jingjin Yu, Or Zamir, and Dan Halperin.
Motion planning for unlabeled discs with optimality
guarantees. In Robotics: Science and Systems, 2015.

[12] Gilbert Strang. Maximal flow through a domain. Math-
ematical Programming, 26(2):123–143, Jun 1983.

[13] Pavel Surynek. An optimization variant of multi-robot
path planning is intractable. In AAAI, 2010.

[14] Jiri Svancara and Pavel Surynek. New flow-based heuris-
tic for search algorithms solving multi-agent path finding.
In ICAART (2), pages 451–458. SciTePress, 2017.

[15] Jingjin Yu and Steven M. LaValle. Structure and
intractability of optimal multi-robot path planning on
graphs. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, AAAI’13, pages
1443–1449. AAAI Press, 2013.

[16] Jingjin Yu and Steven M. LaValle. Planning optimal
paths for multiple robots on graphs. In Proceedings
of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3612–3617, 2013.

[17] Jingjin Yu and Steven M. LaValle. Multi-agent path
planning and network flow. In Algorithmic Foundations
of Robotics X, pages 157–173, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.


	Introduction
	Related Work
	Method Overview
	Shortest Path Map
	Algorithm
	Line Segment Sources

	Max Flow
	Critical Graph of the Domain

	Max Flow Map
	Length Optimization of Flow Lanes
	Results and Discussion
	Conclusion

