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Abstract—We apply fast online trajectory optimization for
multi-step motion planning to Cassie, a bipedal robot de-
signed to exploit natural spring-mass locomotion dynamics using
lightweight, compliant legs. Our motion planning formulation
simultaneously optimizes over center of mass motion, footholds,
and center of pressure for a simplified model that combines trans-
verse linear inverted pendulum and vertical spring dynamics. A
vertex-based representation of the support area combined with
this simplified dynamic model that allows closed form integration
leads to a fast nonlinear programming problem formulation. This
optimization problem is continuously solved online in a model
predictive control approach. The output of the reduced-order
planner is fed into a quadratic programming based operational
space controller for execution on the full-order system. We
present simulation results showing the performance and robust-
ness to disturbances of the planning and control framework.
Preliminary results on the physical robot show functionality of
the operational space control system, with integration of the
trajectory planner a work in progress.

I. INTRODUCTION

In this paper, we present preliminary results from using fast
online trajectory optimization to control Cassie, a bipedal robot
with lightweight, compliant legs.

Cassie (Figure 1), built by Agility Robotics, is the latest in a
line of bipedal robots designed to use spring-mass principles
to walk and run. Its direct predecessors include Mabel [6]
and ATRIAS [15] [7], which have respectively demonstrated
planar and 3D walking and running. These robots were capable
of moving over uneven terrain while blind to the upcoming
ground surface using a combination of lightweight legs with
physical spring elements and compliant actuation control.
Cassie was designed with additional degrees of freedom in
its legs that make it physically capable of moving through
complex and structured terrain that cannot be handled by the
blind-walking approach used by its predecessors.

To allow Cassie to navigate obstacles that require advanced
planning, we have implemented a fast online trajectory op-
timization formulation for multi-step motion planning. This
formulation plans over a reduced-order model of the robot with
a fixed contact schedule. The details of this formulation are
covered in Section IV, with discussion of prior formulations
that it builds upon in Section II.

The online planner utilizes a reduced-order model of the
robot, which must then be mapped to the full-order robot.
This is accomplished using an implementation of operational

Fig. 1. Left: Cassie standing in place using operational space control. Right:
Simulated Cassie showing center of mass trajectory and footsteps planned
with reduced-order model.

space control (OSC) for controlling the acceleration of selected
points on the physical robot. The OSC formulation is discussed
is Section V.

Experiments on a simulated robot are discussed in Section
VI-B. The simulated robot demonstrates walking on flat terrain
with more precision than the robot’s previous controller, in-
spired by the blind control used on its predecessors, provides.
Robustness to unanticipated disturbances is also demonstrated.

Preliminary experiments with the physical robot are dis-
cussed in Section VI-C. Details of the real-time system im-
plementation are presented, and the robot is shown standing
and rejecting disturbances using the OSC implementation from
Section V. We also discuss some of the challenges encountered
during the physical experiments and how they have shaped the
development of our control and planning formulation.

II. BACKGROUND

The problem of controlling legged robots to walk and run
is made difficult by nonlinearities, hybrid dynamics, strict
constraints on ground reaction forces, instability, high dimen-
sionality, and underactuation. Planning and executing state
trajectories is one general approach that has been used to cope
with these challenges.



The most general approach for trajectory planning is to
calculate an optimal trajectory from the current state to the
goal state for the full order robot. One approach for full
body online trajectory optimization is differential dynamic pro-
gramming, which is an unconstrained optimization approach.
While DDP was demonstrated on a HRP-2 humanoid running
at 20 Hz [11], it is generally not a very robust approach
due to the fact that it has to discover contact instead of
explicitly reasoning about it. Another method is to solve the
optimal control problem using constrained optimization by
formulating the problem as a quadratic or nonlinear program.
Humanoid robots have shown success with this approach for
behaviors such as climbing steps and gait transitions [14]. The
central drawback of these methods comes from computational
constraints because the planning is done using a full-order
model of the robot.

The computational difficulty of the trajectory planning prob-
lem can be greatly reduced by planning on a reduced-order
model. This does restrict the space of possible movements
that can be found, but with careful co-design of the robot and
reduced-order model, computation can be significantly reduced
without a corresponding reduction in effective fidelity. One
common reduced order model (ROM)for walking is the linear
inverted pendulum (LIP) [9]. This model is computationally
advantageous due to its linear dynamics. A more complex
model is the spring-loaded inverted pendulum (SLIP). This
model is able to produce both walking and running, and more
closely reproduces the ground reaction force profiles observed
in humans [16]. Unlike the LIP model, the SLIP model has
nonlinear dynamics which increases the difficulty of trajectory
planning.

Tracking a trajectory from a reduced-order model requires
a sophisticated lower-level control layer that maps behavior
to the full-order model. A widespread approach used to
track the reduced order plans is OSC. OSC is an inverse
dynamics method to find torques that accurately track desired
accelerations in the task space of a robot. It was originally
developed to unify force and motion control for manipulators
[10]. There are several different ways to apply OSC to floating
base legged robots. One method is to perform an orthogonal
decomposition [12, 8]. Another method, which is used in this
work, is a quadratic program formulation which treats the
equations of motion as a constraint [20].

III. SYSTEM OVERVIEW

The planning and control architecture presented here uses a
fast nonlinear programing formulation for multi-step foot and
body motion planning and OSC for controlling the robot about
the reference trajectories. Since whole body motion planning is
computationally expensive we use a simplified reduced order
model for planning multiple footsteps. The full robot dynamics
are then considered in our OSC formulation.

The planner uses a reduced-order model for the robot’s
center of mass dynamics as a function of foot placement. The
contact schedule used by the planner is fixed based on step
time and percentage of time spent in the double stance phase,
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Fig. 2. The control hierarchy with execution frequency. Either a user or
a higher level task planner inputs a goal state for the reduced order model
as well as the contact schedule over time. The model predictive controller
generates trajectories for the robot’s body and feet which are tracked using
operational space control through torque commands.

which are provided by the user. The phase sequence always
cycles between double stance and single stance for a fixed
number of steps. The planner optimizes over open parameters
which are then converted to a center of mass trajectory and
foot placements for OSC.

To get the target accelerations required by OSC, the center
of mass trajectory found by the planner is analytically differ-
entiated. The desired foot accelerations are determined by the
contact schedule and the swing leg trajectory during single
stance. OSC then finds the motor torques and contact forces
required to reach these accelerations while obeying actuator
and friction cone constraints.

As seen in Figure 2, the planner can be run at about
100 Hz, while the OSC runs at 2 kHz. Because the planner
executes quickly, a Model Predictive Control (MPC) approach
is used, where the planning parameters are continuously re-
optimized as the robot moves. Once a new plan is found,
it is sent to the controller, which accounts for the planning
latency by jumping forward in the plan. This constant fast re-
planning gives the robot robustness to disturbances and other
environmental uncertainties.



IV. TRAJECTORY OPTIMIZATION

Whole body trajectory optimization for a complex walking
robot with an undefined contact sequence is too computation-
ally expensive to be done online at an acceptable rate. The
first simplification that we use is to plan over a reduced-order
dynamic model instead of a full-order model of the robot’s
dynamics. The second simplification that we use is to predefine
the contact schedule. A predefined schedule of when which of
the robot’s feet will be on the ground is sufficient for the vast
majority of desired walking behavior. It is not until the robot
experiences extreme disturbances that it significantly benefits
from allowing the optimizer to change the sequencing and
duration of distinct contact phases.

A. Problem Formulation

This section describes how the nonlinear programming
problem used for trajectory optimization is formulated. First,
we describe the reduced-order model that allows closed form
integration from [13], which is used for describing the robot’s
center of mass motion. Next, we discuss how foot placement
and center of pressure are parametrized, as well as their
constraints. Finally, we describe the swing leg trajectory and
how planning is integrated with control.

The user provides the planner with the step time, double
stance percentage, step height, number of steps, and desired
end position. The planner then outputs a continuous center
of mass trajectory and target foot positions. The trajectory
optimization problem is formulated such that there are a fixed
number of open parameters φ per phase. With two phases
per step (single/double stance), there are 2NstepNφ total open
variables, where Nstep is the number of steps and Nφ is the
number of open variables per phase. In our formulation there
are 25 open parameters per phase. The states, control actions
and parameters are

xi(t) = [ci(t) ċi(t) θi(t) θ̇i(t) pLi
pRi

] (1a)

ui = [θ̈ λ0 λT r0 rT ] (1b)

φi = [xi(0) ui]. (1c)

The state x(t) of the reduced order model includes the
positions and velocities of the main body and feet, while the
control action u(t) includes the angular acceleration, vertex
weightings, and spring reference.

The initial state of the center of mass for phase i is defined
by the position ci(0) and velocity ċi(0), along with the
heading θi(0) and rotational velocity θ̇i(0). The foot positions
pLi

and pRi
contain the transverse position and angle of the

foot at the end of the phase. The center of pressure is defined
by vertex weightings λ, which is a four dimensional vector in
our application. The initial and final vertex weightings of the
phase are optimized. Finally, we allow the reference position of
the spring to change linearly through stance, where the initial
and final positions are defined by r0 and rT , respectively.

Linear inverted pendulum dynamics in X/Y

Actuated vertical spring dynamics in Z

Fig. 3. A schematic of the different dynamics models used in the transverse
(X/Y) and vertical (Z) dimensions. By splitting the model dynamics in this
fashion, the majority of Cassie’s physical dynamics are captured while keeping
the model computationally efficient.

The trajectory optimization problem can be formulated as
the nonlinear program

find φi, for i ∈ [0, 2Nstep] (2a)
subject to x(0)− x0 = 0 (initial state) (2b)

xi+1(0)− xi(Ti) = 0 (dynamics) (2c)
h(φi) ≤ 0 (kinematics) (2d)
x2Nstep

(T )− xT = 0 (final state). (2e)

The constraints roughly fall into one of three categories:
Center of mass motion, foot placement, and center of pressure
motion. These constraints will be discussed in detail in the
following section.

B. Equations of Motion

The spring reference r and vertex weightings λ are con-
strained to move linearly between the initial and final values
over the phase, as shown by

r(t) =
t

T
(rT − r0) + r0 (3)

λ(t) =
t

T
(λT − λ0) + λ0, (4)

where T is the time duration of the phase.
As previously mentioned, we are using the simplified robot

model first discussed in [13]. The model uses a linearized
inverted pendulum to describe the dynamics in the transverse
directions, and a linear spring with equilibrium point actuation
to describe the dynamics in the vertical direction. A schematic
of the model is shown in Figure 3.

The transverse positions x(t) and y(t) are given by

x(t) = β1e
αt + β2e

−αt + ux(t), (5)



where

β1 = (x0 − u0,x)/2 + (ẋ0T − (uT,x − u0,x))/(2αT ), (6a)
β2 = (x0 − u0,x)/2− (ẋ0T − (uT,x − u0,x))/(2αT ), (6b)

α =
√
g/z0, (6c)

and u(t) is the center of pressure position (see Section IV-D),
and x0, z0, ẋ0 are the initial center of mass positions and
velocity. The equations of motion for y(t) are given by the
same equations but with the corresponding center of pressure
dimension. As can be seen, the transverse position has a closed
form solution. This is primarily due to a constraint on the
center of pressure forcing it to only change linearly over the
duration of the phase.

The vertical position z(t) is given by

z(t) = d1 cos(ωt) + d2 sin(ωt) + r(t)− g/ω2, (7)

where

d1 = z0 − r0 + g/ω2 (8a)
d2 = ż0/ω − (rt − r0)/(Tω), (8b)

ω =
√
k/m, (8c)

and k is the constant spring stiffness and m is total mass.
The vertical position also has a closed form solution due to
the linear constraint on the reference spring motion during the
phase. The motion of the main body heading is determined
according to the linear equation

θ(t) = θ0 + θ̇0t+
1

2
θ̈t. (9)

C. Foot Motion
The left and right foothold locations (pLi

andpRi
) are

chosen during each phase of the trajectory. The foot locations
are constrained such that the location of a foot in single stance
phase must equal its location during the previous double stance
phase. Likewise, the foothold location of a foot in swing
phase should equal its location in the subsequent double stance
phase.

In addition to the phase constraints, we also have to impose
a reachability constraint to make sure the foot location is
physically possible, given the center of mass motion over the
phase. The reachability constraint is

pnom − rx,y < Rθi(0)(pji − ci(0)) < pnom + rx,y, (10)

where pnom is the nominal offset of the foot from the main
body, rx,y is the reachability constraint in body coordinates in
the x and y directions, pji is the left or right foot position, and
Rθi(0) is the rotation matrix from global to local coordinates
according to the body yaw at the beginning of the phase as
seen in Figure 4. Because of the stitching constraints, the foot
position is also constrained according to the center of mass
position at the end of the phase, and we therefore do not need
to add that additional constraint here. The foot rotations are
similarly constrained according to the rotation of the main
body. An additional constraint is added to keep rotation of
the swing leg the same as the rotation of the main body on
touchdown.
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Fig. 4. Feet positions are constrained to be within the reachable areas shown
by the rectangles on the left and right. The vertex weightings λ are applied
at the front and back of each foot, which are centered at PL and PR.

D. Center of Pressure Motion

The benefits of using a vertex representation for the support
polygon in double stance were first discussed in [21]. We
use the same formulation here for determining the center of
pressure (COP) motion over a phase. Unlike [21], we constrain
the vertex weightings to change linearly over a phase to allow
the closed form equations of motion discussed in Section IV-B.
While this may seem overly restrictive, in practice it keeps the
desired COP from rapidly jumping between points or getting
too close to the edge of the support area. Large jumps in the
desired COP are undesirable when operating on a real robot,
as they will likely correspond to infeasible motions.

The center of pressure is calculated from the vertex weight-
ings according to

u(t) =
∑
j∈L,R

2∑
v=1

λvj (t)(pj(t) +Rθj(t)vv), (11)

where v is the vector from the center of the foot to the vertex
point, Rθj(t) is the rotation matrix of the foot, and λ(t) is
calculated according to 4. This equation simply multiplies each
vertex weighting by it’s corresponding position to determine
the center of pressure.

The vertex weightings are constrained such that they should
sum to one and that values of the weightings on a foot that
is not in contact should equal zero. These constraints are
expressed as

‖λ‖1 = 1 (12a)

0 ≤ λvj (t) ≤ cj(t), (12b)

where cj(t) ∈ 0, 1 is the contact state for foot j which comes
from the predefined mode schedule. If the foot is not in
contact, then the vertex weightings on that foot must equal
zero. This ensures that the center of pressure remains inside
the support area.



E. Objectives

Our primary concern in designing the objective function is
that the resulting behavior should be robust to disturbances
and uncertainties in the environment. This means that the
center of mass motion should be smooth. Additionally, as was
previously mentioned, the COP should stay close to the center
of the support polygon. The COP criteria is already enforced
by constraining its motion to change linearly over a given
phase. To produce smooth center of mass motion, we use the
objective

2∗Nstep∑
i=1

∑
t∈[0,Ti

2 ]

c̈i(t)
2Ti

2
(13)

which is the sum of body acceleration squared for dis-
cretized points along the trajectory. In [13], the authors in-
tegrated the acceleration squared over the plan. While inte-
grating the continuous function is the correct measure, we
found that it caused the optimization to run longer without a
noticeable difference in the resulting solution. As we discuss
in Section VI-B, the primary contributer to robustness was the
planning frequency. The exact objective used was found to be
much less important.

V. TRAJECTORY TRACKING

A controller is required to select torques to command to the
physical robot such that it accurately tracks the body and foot
trajectories generated by the MPC. The motion plan could
include highly dynamic behaviors, so inertial and velocity
product effects may be significant. OSC accounts for these
effects by solving inverse dynamics on the full order rigid
body model of the robot.

A. Constrained Forward Dynamics

The robot is modeled as a floating base rigid body system
with generalized coordinates q = [qb; qr] ∈ Rn. Here, qb ∈ R6

is the position and orientation of the floating base (specified
as three translational coordinates and three Euler angles) and
qr ∈ Rn−6 is the joint configuration. The robot has p point
contacts through which forces can be applied and m motors
which are mapped to joint space through the transpose of the
actuated joint selection matrix STa .

The equation of motion is

M(q)q̈ + h(q, q̇) = STa τ + Jc(q)
T f + Jeq(q)

Tλ, (14)

where M is the mass matrix, h is the velocity product and
gravitational terms, τ ∈ Rm is the applied motor torques, Jc is
the combined support Jacobian, f ∈ R3p is the ground reaction
forces, Jeq is the closed loop constraint Jacobian and λ is
the vector of constraint forces [1]. The constraint forces are
necessary because each Cassie leg contains a closed kinematic
loop. The closed loop imposes an equality constraint between
two points on the rigid body tree.

The velocity constraint takes the form of

ẋeq = Jeq q̇ = 0, (15)

where ẋeq is the relative velocity of the two points that close
the loop. The acceleration constraint is

ẍeq = Jeq q̈ + J̇eq q̇ = 0. (16)

The loop closure forces λ required to satisfy (16) can be
substituted into (14) to produce a constrained equation of
motion,

Mq̈ +NT
s h+ γ = NT

s S
T
a τ +NT

s J
T
c f, (17)

where
γ(q, q̇) = −JTeq(JeqM−1JTeq)†J̇eq q̇ (18)

is the velocity dependent terms that are produced by the
constraint and

Ns = I − JTeq(JeqM−1JTeq)†JeqM−1 (19)

is the dynamically consistent null space projector for the
constraint. In these expressions, (·)† represents the Moore-
Penrose pseudo-inverse.

B. Ground Reaction Force Constraints

The ground reaction forces are constrained to prevent the
foot from lifting off or slipping. The standard method to
describe point contact friction constraints is the friction cone.
For a friction coefficient µ and a surface normal in the +z
direction, the space of valid ground reaction forces is

C =
{

(fx, fy, fz) ∈ R3
∣∣∣ fz ≥ 0;

√
f2x + f2y ≤ µfz

}
. (20)

This friction model presents a problem for constraining fast
optimizations because it is a quadratic inequality constraint.

An alternative which we use here is a pyramidal friction
model,

P =

{
(fx, fy, fz) ∈ R3

∣∣∣∣ fz ≥ 0; |fx|, |fy| ≤
µ√
2
fz

}
. (21)

This model is more conservative than the friction cone model,
P ⊂ C, but has the advantage that it takes the form of a set
of linear inequality constraint on the ground reaction forces.

C. Swing Leg Trajectory

The swing leg trajectory is determined independently from
the ROM optimization in Section IV. Once the foothold loca-
tions are determined from the optimizer a cubic polynomial
trajectory is generated from the foot start position to the
target position. A single trajectory is used for the transverse
directions, while two trajectories are generated for the vertical
direction. The first trajectory goes to the target step height
midway through swing and the second trajectory goes to the
target position. The cubic trajectory equation is

xs(t) =

3∑
i=0

ait
i, (22)



where xs(t) is the position of the swing foot at time t. The
initial and final position and velocity of the foot are known so
coefficients a2 and a3 can be found using[

T 3 T 2

3T 2 2T

] [
a2
a3

]
=

[
xs(0) + ẋs(0)T − xs(T )

ẋs(0)− ẋs(T )

]
. (23)

As the swing leg trajectory is twice differentiable, we use
the desired acceleration as a feed forward term in our OSC
formulation. We also include a soft PD in operational space
about the desired swing leg trajectory.

D. Operational Space Control

The goal of the Operational Space Controller is to choose a
dynamically consistent set of torques, ground reaction forces
and generalized accelerations that minimize the error in the
operational space accelerations. Most approaches to this prob-
lem can be classified as hierarchical [17] or weighted [13]
(although a hybrid form is possible). The advantage of the
hierarchical approach is that the priority of the tasks is strictly
enforced, whereas in the weighted approach a low weight task
is able to interfere with a high weighted task. The advantage
of the weighted approach is that it only requires the inverse
dynamics to be computed once per time step.

A weighted quadratic program formulation of OSC is used
here for execution speed. If the task space accelerations are
able to be closely satisfied, there will be little to no conflict
between tasks. Our MPC trajectory generator should generally
produce trajectories that are possible for the full-order robot
to track.

Our desired trajectories are described as foot and center
of mass positions, velocities, and accelerations. We choose
a commanded task space acceleration using a proportional-
derivative plus feed-forward controller in operational space,

ẍcmd = Kp(x− xd) +Kd(ẋ− ẋd) + ẍd (24)

where Kp and Kd are diagonal feedback matrices. The true
task space positions are found using forward kinematics and
velocities with the task space Jacobian, ẋ = Aq̇.

These operational space commanded accelerations are
tracked using torques found by solving the following opti-
mization problem:

minimize
q̈,τ,f

‖Aq̈ + Ȧq̇ − ẍcmd‖2W (25a)

subject to Mq̈ +NT
s h+ γ = NT

s S
T
a τ +NT

s J
T
c f (25b)

f ∈ Pp. (25c)
Sff = 0 (25d)

¯
τ ≤ τ ≤ τ̄ (25e)

Minimization of (25a) is equivalent to minimizing the
weighted two-norm of error in task accelerations. The weight-
ing matrix W is not constant over all phases of the gait. For
example, when the leg is in swing phase, the weighting on
the foot acceleration is much less than when it is in contact
with the ground. Constraint (25b) restricts the accelerations,
toques, and forces to be dynamically consistent. When a foot

is in contact with the ground and applying forces, one option is
to constrain q̈ such that the contact point has zero acceleration
[20]. However, in [3] it was reported that simply using a large
weight on a desired zero acceleration gave better stability,
which is what we do here. The friction constraints on the
ground reaction forces are enforced through (25c). When the
foot is not in contact with the ground, we use the ground
reaction force selection matrix Sf in (25d) to constrain those
ground reaction forces to be zero. Motor torque limits are
enforced through (25e) where

¯
τ and τ̄ are vectors of the

minimum and maximum motor torques.

VI. EXPERIMENTS

The planning and control algorithms described above were
implemented in simulation and are in the process of being
implemented on the physical robot. The simulation results for
the complete system are promising, and the physical robot is
currently able to stand and move its limbs accurately using
the real-time OSC implementation. We will first discuss some
implementation details, follow with simulation experiments,
and finally discuss current progress on hardware.

A. System Setup

The hierarchy of subsystems in this system were divided
into the MPC planner, OSC controller, and either the simulated
or physical robot. Our simulation of Cassie is built using
MuJoCo [18], a fast physics simulator for multibody jointed
that uses soft contacts. As the planner and controller run at
different frequencies, we created two separate C++ applica-
tions that communicate to each other asynchronously over
UDP network sockets. The nonlinear programming problem
used by the planner was solved using Ipopt [19]. While
Ipopt provides the ability to hot start the optimization, our
implementation presently only partially does so by initializing
the open variables with the previous iteration’s solution. Fully
implementing the hot start capability will improve the average
run time even further. The OSC application uses the Rigid
Body Dynamics Library (RBDL) [2] for rigid body algorithms
and qpOASES [5] as the QP solver. qpOASES is an active set
QP solver that supports hot starting the solution [4], which
our implementation takes advantage of to achieve a 2kHz QP
OSC update rate.

B. Simulation Results

As mentioned previously, robustness to disturbances is a
primary concern for this planning and control framework. To
test robustness, we applied different magnitude disturbances
in different directions to the main body of the simulated robot
as it tried to walk forward a meter. We ran this procedure with
two different planning objective functions. One objective was
to minimize the sum of acceleration squared, formulated by
(13). The other was a null objective, meaning the optimizer
merely tried to satisfy the constraints. As shown in Figure 5,
disturbance forces were applied in the four cardinal directions
at 3 different locations along the robot’s path. Three different
impulse magnitudes were tested, equivalent to a 0.2, 0.25, and
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Impulse applied in 
one direction at one 
distance along path.

Tested with 0.2, 0.25,
and 0.3 m/s impulses

Fig. 5. Simulation experiment where the robot walks forward 1 m and
varying impulses are applied at different segments in the trajectory.

No Objective
∑
c̈2T

Run Time (ms) min|ave|max 5.4‖6.6‖71.0 18.9‖60.3‖120.4
Recover% 0.20 m/s impulse 100% 83%
Recover% 0.25 m/s impulse 91% 58%
Recover% 0.30 m/s impulse 75% 25%

TABLE I
SIMULATION RESULTS FOR DISTURBANCE FORCE REJECTION USING THE

SUM OF SQUARE OBJECTIVE AND NO OBJECTIVE FORMULATIONS.

0.3 m/s change in the robot’s velocity. A trial was considered a
success if the robot reached the final position without falling.
We collected data on run time statistics for the two objectives
as well as the percentage of successful trials. The data can be
found in table I.

We found that the null objective that simply satisfies con-
straints performed much better than the acceleration minimiza-
tion objective. As can be seen in table I, the average replanning
time is significantly faster for the null objective. This suggests
that a small replanning time is a much larger contributor to
robustness then the exact objective formulation used. Initially,
it was surprising that the constraint satisfaction formulation
produced such good results. However, after viewing many
solutions, we realized that the problem formulation is actually
fairly constrained. Therefore, faster solutions are typically
better as the robot stays closer to feasible solutions. When
the robot drifts too far between replanning iterations the robot
state gets closer to the infeasible region which in turn increases
the replanning times.

C. Hardware Results

We are currently able to test OSC on the physical Cassie
robot. We are able to show stable crouching behavior, small
disturbance rejection, and balancing on unstable and moving
ground. The results of running OSC can be seen in a video
accompanying this submission. We have begun to port the
motion planner used for walking in simulation over to the
physical robot. Current and future work, as well as some of

the more interesting issues that have been encountered in the
process, is discussed in section VII-A.

VII. CONCLUSION

In this paper we present an end to end planning and control
architecture for a bipedal robot. In simulation, we demonstrate
that the planning formulation presented above is robust to
large disturbances and is very responsive to changes in the
desired end goal. We show that this robustness is primarily due
to the MPC formulation combined with the fast replanning.
This allows us to reformulate the optimization problem into
a constraint satisfaction problem with notable improvements
in terms of robustness. Our OSC formulation is demonstrated
on the physical Cassie hardware, showing that it can handle
disturbances while standing.

A. Future Work

When implementing the OSC and planning on real hard-
ware, we ran into several issues that we are working to address.
The static friction in the actuated joints was not accounted
for in the dynamic model. While Cassie has fairly transparent
motors and transmissions, there is still a significant amount
of friction in the gear boxes. These model inaccuracies affect
the acceleration-to-torque calculation performed by OSC. This
highlights the sensitivity to model inaccuracies of the OSC
approach. Future work will attempt to better characterize the
joint dynamics to allow for more precise acceleration control.

Another issue encountered is that the planner and controller
operate in world coordinates, meaning the robot needs an
estimate of its body position and velocity. These cannot be
directly measured, so position and velocity are estimated by
detecting foot contact, assuming no slip, and calculating them
using kinematics. Performance of the planning and control
algorithms will greatly improve as the body state estimator
improves.
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