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Abstract—We present a control strategy to control the inter-
gyre switching time of an agent operating in a gyre flow.
The proposed control strategy exploits the stochasticity of the
underlying environment to affect inter-gyre transitions. We show
how control can be used to enhance or abate the mean escape
time and present a strategy to achieve a desired mean escape
time. We show that the proposed control strategy can achieve
any desired escape time in an interval governed by the maximum
available control. We demonstrate the effectiveness of the strategy
in simulations.

I. INTRODUCTION

There is increased interest in the scientific community in
employing autonomous marine vehicles (AMVs) to better
understand various biological, chemical and physical processes
in the ocean. Examples include characterizing the dynamics
of plankton assemblages [1], measurement of temperature
profiles [2], and monitoring of harmful algae blooms [3] and
the dispersion of harmful contaminants [4]. These applications
demand persistent monitoring of the relevant processes, and
as such require the AMV-based sensors to operate for long
durations of time. In addition, the sensors are often required
to reside within a monitoring region of interest for specific
amounts of time, and then move to adjacent regions to achieve
more widespread sampling. However, the environment these
sensors operate in is stochastic, nonlinear, and has high inertia,
and the dynamics are not always well understood. Therefore,
designing controllers for these sensors to reside in specific
regions and/or to transition between regions, while minimizing
actuation to prolong operation time, is extremely challenging.

The literature often utilizes simplified kinematic models for
control of AMVs, ignoring the complex flow-vehicle dynamic
interactions, which gives rise to modeling uncertainties. In
this work, we present a method that exploits such modeling
uncertainties and the inherent stochasticity of the environment,
to control the dwell times of the sensors in a given region. We
use a modeling framework where the ocean environment is
considered to be composed of an array of gyre flow structures
[5, 6], which can clearly be observed in satellite imagery of
the ocean (see Figure 1). With the proposed control strategy,
the average dwell time of a sensor in a gyre can be controlled
to a desired value. Stochasticity in the environment induces
transitions between adjacent gyres, which leads to reduced
actuation energy requirements.

Fig. 1: Coherent structures, including gyres, in the ocean as
observed by NASA satellites. Image from www.nasa.gov.

Recently, new mathematical tools have been developed to
elucidate and harness the effects of noise on switching behav-
ior in general dynamical systems [7, 8, 9]. These methods can
predict the most probable switching path from one basin of
attraction to an adjoining basin of attraction, that results from
a large fluctuation due to the underlying noise in the system.
More importantly, these methods can also accurately predict
the expected switching time of particles between distinct
basins of attraction. This framework has been used to describe
a variety of physical and biological phenomena including
extinction of diseases [10] or species [11] in populations, and
switching between gene states [12] or magnetization states
[13]. We use these techniques to predict the average time
required to switch from one gyre to the next in an ocean
environment. Since these transitions are precipitated by the
noise in the system, they require little to no actuation energy.
However, such noise-induced transitions are rare events, and
as such cannot be relied upon for prolonged dwelling in a gyre
or inter-gyre transition. Previous works [14, 15] have shown
that the addition of limited controls can enhance or abate the
switching times between gyres. However the control strategies
proposed in those works cannot control the switching time to
a desired value. In contrast, in the current work we present
a strategy which uses limited control to achieve a desired
average transition time. The required actuation is still minimal
since the actual transition is affected by the noise in the system.
The proposed strategy makes use of a few key assumptions in
its derivation. Even with these assumptions, the problem of
exploiting noise for navigation is a very complicated one, and
to the best of our knowledge, this is the first attempt in the



Fig. 2: Phase portrait of the double-gyre flow for A = 1, s = 1
and µ = 1. The black cross indicates the stable equilibrium at
x0, and the red cross indicates the saddle point at x1.

literature at using control to obtain a desired mean escape time.

The rest of the paper is organized as follows: the problem is
formulated in section II, mean escape times are characterized
in section III, the proposed control strategy is presented in
section IV, an analysis of the control is provided in section
V, parameter selection for the control strategy is discussed
in section VI, simulation results are presented in VII, and
conclusions and directions for future work are discussed in
section VIII.

II. PROBLEM FORMULATION

We consider an agent with kinematics given by

ẋ = F(x) + u(t) + η(t), (1)

where x = [x, y]T ∈ R2 is the position of the agent, F is the
flow field in which the agent operates, u(t) is the agent control
and η(t) is a white noise term where each component has zero
mean and a standard deviation of σ =

√
2D, with D being the

noise intensity. In this work, η(t) is used to capture any errors
in modeling as well as any sensing, actuation, or environmental
uncertainties. In ocean environments, a kinematic model is
valid and sufficient to describe the dynamics when the vehicle
dimensions are small in relation to the spatial scales of the
transport controlling flow structures.

Here we assume the external flow field F(x) is given by
the double-gyre model which is often used to describe large
scale recirculation in the ocean [16]:

F(x, y) =

[
Fx(x, y)
Fy(x, y)

]
=

[
−πA sin(πxs ) cos(πys )− µx
πA cos(πxs ) sin(πys )− µy

]
.

(2)
In (2), A denotes the strength of the flow, s is a scaling factor
for the gyre dimensions, and µ is a damping coefficient. Figure
2 shows the phase portrait of the flow for A = 1, s = 1,
and µ = 1. For µ > 0, each gyre has an attractor in the
center of the gyre, and is flanked by four saddle points. The
gyre boundaries consist of the stable and unstable manifolds of
these saddle points. A system of two adjoining gyres as shown
in Figure 2, qualitatively resembles a double-well potential.

To formalize the problem we consider a set of two adjoining
gyres in the flow field. Let x0 be the attractor in the left gyre,

(a) (b)

Fig. 3: (a) Average escape times obtained for the double gyre
flow using Monte Carlo simulations. (b) The most likely es-
cape path. Arrows along the escape path indicate the direction
and strength of the most likely noise profile that leads to this
most likely escape path.

and x1 be a saddle point at the lower right corner of the gyre.
In the absence of noise and control, x0 is an attractor, and
all passive agents in the left gyre will eventually converge to
x0. In the presence of small noise, the dynamical behavior
of the system is now determined by its stationary probability
density. All the attractors at the gyre centers will now be peaks
in this probability landscape, and most agent trajectories will
now be concentrated around the gyre center. However, there
exist rare events in which the noise in the system drives an
agent from the attractor of one gyre to the attractor of an
adjoining gyre. These “escape trajectories” most often pass
through one of the saddle points since they are regions of high
instability in the flow. The average time required for such an
escape event to occur is called the mean escape time TE , and
it depends on the properties of the flow and the intensity of
the noise in the system. The objective of the current work is to
synthesize a control u(t) that achieves a desired escape time
T dE . We assume that the agent has limited actuation and as
such ‖u(t)‖ ≤ cmax. We further assume that the agent is able
to localize within each gyre, and that it is able to measure the
flow velocity at its current position.

III. MEAN ESCAPE TIME DUE TO NOISE

In this section we characterize the mean escape time using
large deviation theory. We first consider an uncontrolled sys-
tem to obtain an expression for the mean escape time. Next
we show how control could be used to increase or decrease
the mean escape time.

A. Mean escape times for the uncontrolled case

From the theory of large deviations [17, 18], the probability
of the uncontrolled system, i.e. u ≡ 0, transitioning from the
attractor at x0 through x1 to the adjoining gyre is given by

P = ke−R/D (3)

where k is a constant and R is the action of the transition
path. Of the many paths leading to escape, the transition path
that is most likely to occur will minimize the action. Using



calculus of variations, one can show that the minimum action
is given by,

R = min
η(t)

1

2

∫ tf

t0

η(t)Tη(t)dt (4)

= min
x(t)

1

2

∫ tf

t0

[ẋ− F(x)]T [ẋ− F(x)]dt,

with boundary conditions x(t0) = x0, and x(tf ) = x1 [19,
17, 18, 20].1 The average time to escape the gyre through x1

is inversely proportional to the probability of occurrence of
this most likely transition path and its associated noise profile.
Thus, the average escape time is given by,

TE = beR/D, (5)

where b is a prefactor determined by numerical simulation or
experiment. Figure 3a shows average escape times obtained
through Monte-Carlo simulations for different noise intensi-
ties. It can be seen that the simulation results agree with the
average escape time predicted by (5). Figure 3b shows the
escape path with the minimum action, i.e., the most likely
escape path. The arrows along the path indicate the strength
and direction of the noise profile associated with this most
likely escape path. It can be seen that the noise acts as a
control that pushes the agent out of the gyre.

In the limit of small noise, each escape trajectory is a rare
event and thus the events are uncorrelated. Therefore, the
escape events can be considered to be a Poisson process, and
the probability density function of the escape times PTE is
exponential with a mean escape time of TE , i.e.,

PTE (t) =
1

TE
e
− t
TE , t ≥ 0. (6)

B. Mean escape time for the controlled case

Inspired by the noise profile associated with the path most
likely to occur, we consider a gyroscopic control force of the
form u = cf(x) to control the mean escape time. The function
f(x) determines the direction of the control and it is assumed
that ‖f(x)‖ = 1. Thus, ‖u‖ = c. Similar to (4), the action of
the path that is most likely to result in escape for this controlled
system is given by,

Rc = min
x(t)

1

2

∫ tf

t0

[ẋ− F(x)− cf(x)]T [ẋ− F(x)− cf(x)]dt.

(7)
Let the optimal escape path that results from (7) be denoted
by xc(t). Thus, the action of the most likely noise profile can
be re-written as,

Rc =
1

2

∫ tf

t0

[ẋc−F(xc)− cf(xc)]T [ẋc−F(xc)− cf(xc)]dt.
(8)

When c = 0, the action R0 is given by the uncontrolled case
(4), and the corresponding escape path is x0(t). Note that, for

1Due to the nature of the noise driven transition t0 = −∞ and tf =∞.

an arbitrary c, the most likely path xc(t) depends on c. Using
a Taylor series expansion,

xc(t) = x0(t) +
∂xc

∂c

∣∣∣∣
c=0

c+ h.o.t. (9)

Thus, for small values of c such that the change in the optimal
path is small, i.e.,

∣∣∂xc
∂c

∣∣� 1, one has xc(t) ≈ x0(t). For small
c, the action of the most likely escape path is therefore given
by,

Rc ≈ 1

2

∫ tf

t0

[ẋ0 − F(x0)− cf(x0)]T [ẋ0 − F(x0)− cf(x0)]dt

=
1

2

∫ tf

t0

[ẋ0 − F(x0)]T [ẋ0 − F(x0)]dt

− c

∫ tf

t0

f(x0)T [ẋ0 − F(x0)]dt+
c2

2

∫ tf

t0

f(x0)T f(x0)dt.

Concisely,
Rc ≈ R0 − αc+ βc2 (10)

where

α =

∫ tf

t0

f(x0)Tη0(t)dt, β =
1

2

∫ tf

t0

f(x0)T f(x0)dt,

and η0(t) is the optimal noise profile for the uncontrolled case.
Note that α > 0 and β > 0. Thus, the change in action due
to c is given by

∆R = −αc+ βc2. (11)

Using (5), the change in the escape time due to this change
in the action is given by

T cE
T 0
E

= e∆R/D, (12)

where T 0
E is the mean escape time for the uncontrolled case.

From (11) it can be seen that when c < 0 then ∆R > 0,
which from (12) implies that T cE > T 0

E . Similarly, it can be
seen that when 0 < c < α/β then T cE < T 0

E . Using (12), we
can compute the value of c required to affect a known change
in the escape time.

IV. CONTROLLING ESCAPE TIMES IN GYRE LIKE FLOWS

Using (5), it can be seen that log(TE) = log(b) + R/D.
Therefore, the average time required to escape from a gyre
depends on the action as well as the amount of noise D
available in the system. For a given noise level in the system,
the average escape time is governed by the action of the
transition path that is most likely to occur.

The objective of this work is to use a control of the form
u = cf(x), in which the parameter c ∈ [−cmax, cmax] can be
varied to obtain a given desired average escape time T dE . The
function f(x) determines the direction of the control vector,
and is set as

f(x) = [0, 0, 1]T × F(x)

‖F(x)‖
,

which results in a gyroscopic control vector that resembles the
direction of the optimal noise profile [21, 5].



(a) (b)

Fig. 4: (a) Variation of the distance to the closest gyre
boundary over time along a noise-driven escape path. The
width of the gyre is s. (b) The escape path hovers near the gyre
center before exhibiting an almost linear transition towards
escape.

Fig. 5: Desired noise driven escape path with an escape time
of T dE (black); actual escape path when T 0

E < T dE (blue); and
actual escape path when T 0

E > T dE (red).

If the noise intensity D and the current average escape
time T 0

E were known, equations (12) and (11) could easily be
used to compute the value of c required to obtain the desired
escape time. However, typically, none of these parameters are
readily available in a real system. Thus, in order to design
a control strategy to obtain the desired average escape time,
we consider the characteristics of a noise-driven escape path
of an agent in this double-gyre flow. Figure 4a shows the
typical variation of the distance d between the particle and
the closest gyre boundary over time until the agent escapes the
gyre through one of the boundaries. A simplified t vs. d plot
that captures the essential characteristic of the curve is shown
in Figure 4b. From these plots, it can be seen that a major
portion of the particle’s trajectory is concentrated around the
gyre center, before the particle suddenly transitions out of the
gyre. The actual transition itself occurs over a fraction of the
overall dwell time, and near the transition, the t vs. d curve
is approximately linear. These typical characteristics can be
used to identify a potential onset of the escape portion of a
trajectory, when neither the noise level of the system nor the
expected escape times are known.

A. Controller Synthesis

Let T 0
E be the ‘natural’ escape time of the uncontrolled

system for an unknown noise level, and let T dE be the desired

average escape time. If the noise in the system is high, then
T 0
E < T dE (blue trace in Figure 5), and if the noise in the

system is low, then T 0
E > T dE (red trace in Figure 5). Note

that T 0
E of the system is unknown. Therefore, the proposed

control strategy is based on making local assumptions about
T 0
E , and is given by u = cf(x) where c is given by:

c =


max{α−

√
α2+4β∆R
2β ,−cmax} if d < λs

s
2 and

t < (1− λt)T dE
cmax if t ≥ (1− λt)T dE
0 otherwise

(13)

In other words, when d < λs
s
2 and t < (1 − λt)T

d
E (e.g.,

dashed portion of the blue trace in Figure 5), the particle is
assumed to be transitioning towards escape, and T 0

E < T dE .
In this case, using the approximately linear escape transition
behavior, T 0

E is estimated to be,

T 0
E =

t

1− λt 2d
λss

. (14)

Using (12), the required change in action is computed to be

∆R = k log(
T dE
T 0
E

),

and using (11), the control parameter is set as,

c = max
(α−√α2 + 4β∆R

2β
,−cmax

)
. (15)

When t ≥ (1−λt)T dE (e.g., dashed portion of the red trace
in Figure 5), it is assumed that T 0

E ≥ T dE , and that the particle
has not started its transition towards escape. In contrast to
the previous case, an estimate for T 0

E cannot be obtained.
Furthermore, in order to meet the expected escape time target,
the particle must transition out as soon as possible. In this
case, the control parameter is set as

c = cmax.

The control strategy pushes the agent towards the center of
the gyre if it gets close to the boundary before the required
amount of time has elapsed, and it pushes the agent towards
the boundary when the elapsed time is close to the required
escape time. The instances at which the control is switched on
are governed by the parameters λs and λt. Note that λt ≤ 1
and 0 ≤ λs ≤ 1. Intuitively it can be seen that large values of
λs will increase the escape time and that large values of λt
will decrease the escape time. In order to analyze the proposed
control strategy and verify its correctness, we map this two-
dimensional (2D) system to an analogous one-dimensional
(1D) system, and analyze the corresponding 1D control strat-
egy. This greatly simplifies the analysis while preserving the
essential characteristics of the controlled system. Insights from
the 1D system are then used to select values for λs and λt.



Fig. 6: Potential well U(x).

V. ANALYSIS OF THE CONTROL STRATEGY

In order to analyze the proposed control strategy, we
consider an analogous 1D system with an analogous control
strategy. Consider a particle in a 1D potential well, subject
to Gaussian noise. The equation of motion of this particle is
given by

ẋ = −∂U
∂x

+ η(t) + u(t), (16)

where x is the position, U represents the potential well (see
Figure 6), u(t) is the control, and η is Gaussian noise with
intensity D. For the uncontrolled case, i.e., u(t) = 0, it has
been shown [22, 23, 20] that if ∆U/D � 1, the average time
(TE) required for a particle to escape the stable equilibrium
at xmin is given by

T 0
E = 1

D

∫ x2

x1
e−
(
Umin
D +

U′′min
2D (x−xmin)2

)
dx (17)

×
∫ A
xmin

e
Umax
D − |U

′′
max|
2D (x−xmax)2

dx,

where U ′′min and U ′′max are the second derivatives of U(x) at
xmin and xmax respectively, and A is a point away from xmax
as shown in Figure 6. Further details of this derivation can be
found in a recent review [20]. Considering the exponential
fall off of the integrands, the limits of both integrals can be
extended from −∞ to ∞, which gives,

T 0
E =

2π√
U ′′min|U ′′max|

e
∆U
D . (18)

This is the well known Kramers’ escape rate for 1D systems
[24].

Now, similar to the double-gyre flow, we consider a control
action of u(t) = c∂U∂x with c ≤ cmax < 1, and an analogous
control strategy given by,

c


< 0, xs ≤ x < xmax and t < Tt

> 0, t ≥ Tt
= 0, otherwise

, (19)

where xs = xmax − λs(xmax − xmin) and Tt = (1− λt)T dE ,
with λt ≤ 1 and 0 ≤ λs ≤ 1 The proposed control results in

a controlled 1D system given by,

ẋ = −(1− c)∂U
∂x

+ η(t). (20)

This is equivalent to considering a potential well Û = (1−c)U .
Thus, for c < 0, the well becomes deeper and for 0 < c < 1
the well becomes shallower. Substituting U = Û in (17) and
(18), we get,

T cE =
2π

(1− c)
√
U ′′min|U ′′max|

e(1−c) ∆U
D =

e−c
∆U
D

1− c
T 0
E . (21)

It can be shown that c < 0 ⇒ T cE > T 0
E , and 0 < c < 1 ⇒

T cE < T 0
E when ∆U/D � 1, i.e., c > 0 pushes the particle out

towards the boundary and c < 0 pulls the particle in towards
the center of the well. Thus, this control is qualitatively similar
to the gyroscopic control considered for the double-gyre flow.

Theorem 1. For a 1D dynamical system given in (16) sat-
isfying ∆U/D � 1, in which the control is of the form
u(t) = c∂U∂x where c is selected according to (19), there exist
−cmax ≤ c ≤ cmax, λt ≤ 1 and 0 ≤ λs ≤ 1 that can achieve
any desired escape time T dE satisfying

Tmin ≤ T dE < Tmax

where

Tmin =
e−cmax

∆U
D

1− cmax
T 0
E

and

Tmax =
T 0
E

4

(
1 +

e−cmax
Umin
D

√
1 + cmax

)(
1 +

ecmax
Umax
D

√
1 + cmax

)
.

Proof: To obtain an expression for the mean escape time
under the proposed control strategy, we first consider applying
a control with c < 0 for xs ≤ x < xmax, without considering
the elapsed time. In this case, the control action can be written
as u(t) = −|c|(Θ(x− xs)−Θ(x− xmax))∂U∂x , where Θ is a
Heaviside function. Thus, the first integral I1 of (17) for the
mean escape time, can now be written as,

I1 =
∫ xs
x1
e−
(
Umin
D +

U′′min
2D (x−xmin)2

)
dx (22)

+
∫ x2

xs
e−(1+|c|)

(
Umin
D +

U′′min
2D (x−xmin)2

)
dx.

Considering that the integrands of both integrals decay expo-
nentially, the lower limit of the first integral can be extended
to −∞, and the upper limit of the second integral can be
extended to ∞. Thus,

I1 =
√

πD
2U ′′min

e−
Umin
D

(
1 + erf

(√
U ′′min
2D (xs − xmin)

)
(23)

+ e−
|c|Umin

D√
1+|c|

(
1− erf

(√
(1+|c|)U ′′min

2D (xs − xmin)
)))

.



Using similar arguments, the second integral I2 of (17), can
be written as

I2 =
√

πD
2|U ′′max|

e
Umax
D

(
2 + erf

(√
U ′′max

2D (xs − xmax)
)
(24)

− e
|c|Umax

D√
1+|c|

erf
(√

(1+|c|)U ′′max
2D (xs − xmax)

))
.

In (23) and (24), erf(x) = 2√
π

∫∞
0
e−t

2

dt. Thus, the expected
escape time, when control of c < 0 is enacted for xs ≤ x <
xmax is

T cEdist =
1

D
I1I2. (25)

Next, we consider introducing a control with c > 0 when
t ≥ Tt. Due to the stochastic nature of escape events, of
the total paths that escape,

∫ Tt
0
PTE (t)dt percent would have

already escaped before the c > 0 control is switched on

at t = Tt. PTE (t) = 1
T cEdist

e
− t
Tc
Edist is the probability

distribution of the escape times before switching on the c > 0
control. Thus, the percentage of particles escaping after turning
on the c > 0 control is, 1−

∫ Tt
0
PTE (t)dt, and the mean escape

time for these particles would be T cEdist +T cE , where T cE is the
mean escape time if the c > 0 control is applied ∀t ≥ 0, and
is given in (21). Thus the expected mean escape time, under
the full control strategy proposed in (19) is

T expE =

∫ Tt

0

tPTE (t)dt+ (Tt + T cEdist)
(

1−
∫ Tt

0

PTE (t)dt
)
.

Using (6), this can be simplified as

T expE = T cEdist − (T cEdist − T
c
E)e
− (1−λt)TdE

Tc
Edist , (26)

where T cEdist is given in (25), and T cE is the nominal mean
escape time with a control of c > 0.

For c = 0, it is trivial to see that T cE = T cEdist = T 0
E . It

can be shown that for ∆U/D � 1, ∂T cEdist/∂|c| > 0 and
∂T cE/∂c < 0. Thus, it can be inferred that, T cEdist ≥ T cE ,
with equality at the trivial case of c = 0. Using this, one can
easily show that ∂T expE

∂λt
< 0 and is continuous for λt ≤ 1.

Thus, T expE is minimized at λ = 1 and it is maximized as
λt → −∞. Thus, from (26), it can be seen that

T cE ≤ T
exp
E < T cEdist , (27)

with T expE = T cE for λt = 1, and T expE → T cEdist for λt →
−∞. Thus, for a given c and λs, there exists λt ≤ 1 that can
achieve a desired escape time in the range established in (27).

As mentioned before, it can be shown that for ∆U/D � 1,
∂T cEdist/∂|c| > 0 and ∂T cEdist/∂λs| > 0. In addition,
T cEdist |c=0 = T 0

E and T cEdist |λs=0 = T 0
E . Thus, the maximum

of T cEdist occurs at c = −cmax and λs = 1. Substituting these
values in (25), we can get,

T 0
E ≤ T cEdist ≤ Tmax, (28)

where

Tmax =
T 0
E

4

(
1 +

e−cmax
Umin
D

√
1 + cmax

)(
1 +

ecmax
Umax
D

√
1 + cmax

)
.

Thus there exists a (−cmax ≤ c ≤ 0, 0 ≤ λs ≤ 1) tuple that
can achieve any T cEdist value in the range given in 28.

In a similar fashion, one can show that there exists a 0 ≤
c ≤ cmax that can achieve any T cE value in the range,

Tmin ≤ T cE ≤ T 0
E

where

Tmin =
e−cmax

∆U
D

1− cmax
T 0
E .

From the above observations it can be concluded that there
exist −cmax ≤ c ≤ cmax, λt ≤ 1 and 0 ≤ λs ≤ 1 that can
achieve any desired escape time in the range Tmin ≤ T dE <
Tmax.

Remark 1. In the above controller we consider c < 1 in the
analysis. If c > 1, the peak and the trough of the effective
potential (1 − c)U will be swapped, and the ∆U/D � 1
assumption would not hold anymore.

VI. CONTROLLER PARAMETER SELECTION IN 2D GYRE
FLOWS

If T dE is inside the limits specified in Theorem 1, there
always exists a set of (c, λt, λs) values that will achieve
the desired escape time. If the noise intensity D is known,
depending on T dE , a suitable set of (c, λt, λs) values can be
selected to achieve T dE . In general, the noise level D is not
known. In such cases, not only is it impossible to determine a
set of (c, λt, λs) values to achieve a given T dE , but it is also not
possible to determine if the required T dE value is even feasible.
In the analogous 2D gyre flow that we considered before,
selecting a set of (c, λt, λs) is even more complicated since an
expression for TE of the form given in (21) is not available,
and because the parameters of the flow are not known.

In the control strategy given in IV-A, the problems outlined
above are overcome by first selecting values for c, λt, λs that
approximately achieve the desired escape time for T dE > T 0

E ,
and then by refining λt to achieve T dE when T dE < T 0

E . For
the T dE > T 0

E case, we first approximately estimate the current
uncontrolled escape time T 0

E using (14), and then select a value
for c that would make TE → T dE using c < 0 control alone.
Note that for this TE to be achieved using c < 0 control alone,
λs = 1. Thus, for this case T cEdist ≈ T dE . According to (26),
to make T expE ≈ T cEdist ≈ T dE we need λt → −∞. That is,
by selecting a large value for λs and a large negative value
for λt, we are able to approximately achieve T dE if T dE > T 0

E .
However, if T dE < T 0

E , this large negative value for λt will not
be able to achieve the required T dE . Thus, in order to achieve
the desired escape time for both T dE > T 0

E and T dE < T 0
E , we

select 0 � λs < 1 and 0 < λt � 1, i.e., λs close to 1, and
λt close to zero.

VII. RESULTS

The control strategy given in section IV-A was used
to control the escape time in a double-gyre flow field
with parameters A = 1, µ = 1 and s = 1. The
simulations considered a set of noise intensities D =



TABLE I: Values of λs and λt used in the simulations

set1 set2 set3 set4 set5 set6

λs 0.85 0.85 0.85 0.2 0.2 0.2

λt -1 0.0625 0.9 -1 0.0625 0.9

{1/30, 1/40, 1/50, 1/60, 1/70}, and for each noise inten-
sity, the following set of desired escape times T dE =
{3, 6, 12, 26, 57, 122, 262} were considered. These T dE values
approximately correspond to the natural escape times T 0

E

for noise levels {1/20, 1/30, 1/40, 1/50, 1/60, 1/70, 1/80}
respectively. For each (D, T dE) pair, 1000 trials were simulated
until escape from the gyre. In all simulations, cmax = 0.5
was considered. In order to investigate the effect of selecting
different λs and λt values, simulations were run for the
(λs, λt) value combinations given in Table I. In sets 1-3, a
large value is selected for λs (≈ 1), and in sets 4-6, a small
value is selected for λs. In both cases, λt is successively
increased from a negative value towards 1. From the discussion
in VI, the best results should be expected for set 2, where
λs is large and λt is moderate. Figures 7a-7f show plots of
desired escape time T dE vs the actual escape times T actE , for
different (λs, λt) value combinations. For each set of (λs, λt)
values, multiple noise levels are considered. In each figure,
the thick dotted line in black represent the ideal T dE = T actE

curve. The closer the T dE vs. T
act
E are to this line, the better

the performance of the control strategy.
From the figures, it can be seen that set 2 (λs = 0.85, λt =

0.0625) indeed gives the best results. In set 1, T actE overshoots
T dE by a considerable margin, since the negative value used
for λt cannot pull back T cEdist in (26) enough towards T cE .
On the other hand, in set 3, where λt is close to 1, T cEdist is
pulled too far back by the c > 0 control, which results in very
small T actE values. Set 4 and set 6 follow similar behaviors as
set 1 and set 3 respectively due to the effect of λt. While sets
2 and 5 consider the same moderate value for λt, in set 5,
T actE undershoots T dE due to the small value of λs considered
in set 5.

Figures 8a-8e show the proability densities of the escape
times obtained for different values of T dE . For these simulations
a noise level of D = 1/60, which has a ‘natural’ escape time
of approximately 57s, was considered. We used λs = 0.85 and
λt = 0.0625 for the control. It can be seen that the proposed
control is able to achieve T dE values that are much farther
away from the natural escape time. From these results, it can
be seen that the control strategy proposed in section IV is able
to achieve a wide range of desired escape times, for a wide
range of system noise levels.

The control strategy was also tested with a non-Gaussian
noise source to check its performance in a non-ideal scenario.
In this case the noise signal was derived as η(t) = σ̃z1/3(t)+δ
where each component of z has a standard normal distribution,
i.e., zi ∼ N (0, 1). The value for σ̃ was selected such that,
the standard deviation of each component of η was equal to
the standard deviations considered in the Gaussian case, i.e.,

(a) set1 (b) set2

(c) set3 (d) set4

(e) set5 (f) set6

Fig. 7: Desired escape time T dE vs. the actual escape times
T actE for different (λs, λt) value combinations. The values of
λs and λt for each set is given in Table I.

σ(ηi) =
√

2D for i = 1, 2. The mean δ essentially shifts the
flow velocities in (2) by a constant amount, and its value is
selected to be small enough such that the gyre structure of
the flow is maintained. Figure 9 shows the results for the case
where δ = 0.1, λs = 0.85 and λt = 0.0625. In the cases
shown σ̃ was selected such that the noise signals have the
same standard deviations as before. It can be seen that the
desired mean escape times are achieved even in the presence
of non-Gaussian noise sources.

VIII. CONCLUSIONS

In this work we presented a control strategy that could
be used to control the inter-gyre switching time of an agent
operating in a gyre flow. The proposed control strategy is
derived from a framework based on large fluctuation theory
which is used to characterize the mean escape time in un-
controlled dynamical systems. We showed how control can
be used to enhance or abate the mean escape time and
presented a strategy to achieve a desired mean escape time. We
analyzed the control strategy using an equivalent 1D system,
and showed that the proposed control strategy is able to
achieve any desired escape time in an interval governed by



(a) T d
E = 3s (b) T d

E = 6s

(c) T d
E = 12s (d) T d

E = 26s

(e) T d
E = 122 (f) T d

E = 262s

Fig. 8: Probability density function of the actual escape times
for various values T dE for a noise level of D = 1/60, where
λs = 0.85 and λt = 0.0625 were used for the control.

Fig. 9: T dE vs. T actE curves for non-Gaussian noise, where
η(t) = σ̃z1/3(t)+δ with δ = 0.1, λs = 0.85 and λt = 0.0625.
σ̃ was selected such that σ(ηi) =

√
2D for i = 1, 2.

the maximum available control. We showed how parameters
of the control strategy can be picked in environments where
full knowledge of the flow dynamics and stochasticity is not
available. Finally, we demonstrated the effectiveness of the
strategy in simulations, where we showed that the strategy
works even in environments with non-Gaussian noise sources.

The presented method makes few key assumptions regarding
the motion model and the noise model. While marine vehicles
can be considered to be holonomic if the flow structures
have a much larger spatial scale compared to the vehicle,
they are non-holonomic in general. Furthermore, practical
noise sources can be non-Gaussian and noise samples may be
correlated in time. Even with these simplifying assumptions,
obtaining a control law that achieves a given desired escape
time is complicated. Relaxing these assumptions will some-
times require a new modeling paradigm and/or new theoretical
results. Thus, evaluating the effects of modeling assumptions
is a key area for future work. Towards this end we are
currently designing and building an experimental setup to test
the proposed methodology in a scaled gyre flow.

The presented methodology has potential applications in a
wide range of disciplines. The method could potentially be
used in other dynamical systems with multiple stability states
to control switching between these states. For example, this
framework could be used to study the noise-driven informa-
tion state dynamics in a swarm using nonlinear consensus
algorithms. Generalizing this method to work with such meta-
stable dynamical systems is another direction for future work.
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