
Safe Motion Planning in Unknown Environments:
Optimality Benchmarks and Tractable Policies

Lucas Janson, Tommy Hu, and Marco Pavone

Abstract—This paper addresses the problem of planning a safe
(i.e., collision-free) trajectory from an initial state to a goal region
when the obstacle space is a-priori unknown and is incrementally
revealed online, e.g., through line-of-sight perception. Despite
its ubiquitous nature, this formulation of motion planning has
received relatively little theoretical investigation, as opposed to the
setup where the environment is assumed known. A fundamental
challenge is that, unlike motion planning with known obstacles,
it is not even clear what an optimal policy to strive for is.
Our contribution is threefold. First, we present a notion of
optimality for safe planning in unknown environments in the
spirit of comparative (as opposed to competitive) analysis, with
the goal of obtaining a benchmark that is, at least conceptually,
attainable. Second, by leveraging this theoretical benchmark, we
derive a pseudo-optimal class of policies that can seamlessly
incorporate any amount of prior or learned information while
still guaranteeing the robot never collides. Finally, we demon-
strate the practicality of our algorithmic approach in numerical
experiments using a range of environment types and dynamics,
including a comparison with a state of the art method. A key
aspect of our framework is that it automatically and implicitly
weighs exploration versus exploitation in a way that is optimal
with respect to the information available.

I. INTRODUCTION

This paper addresses the problem of planning a safe (i.e.,
collision-free) trajectory from an initial state to a goal region
when the obstacles in between are a priori unknown and are
instead revealed online, e.g., through line-of-sight perception.
A fundamental challenge is that, unlike motion planning with
known obstacles or obstacles whose uncertainty is fully mod-
eled probabilistically, when parts of the configuration space are
simply unknown it is not even clear what an optimal policy
to strive for (through, e.g., asymptotic convergence) is. One
of the main goals of this paper is to address this shortcoming
in the literature by defining a notion of optimality for use
as a benchmark and also for conceptual guidance. We then
follow this conceptual guidance to propose a novel algorithm
for planning in unknown environments that produces low-cost
solutions by flexibly incorporating side information about the
environment, is guaranteed to be collision-free (even if the side
information is incorrect), and requires on the order of 0.5–1s
of (serial) computation time per action.

Related Work: Most algorithms for motion planning assume
full knowledge of the environment, and can not be used, at
least directly, to find a motion plan within an incomplete map
[17, 18]. A common heuristic approach is to set temporary
goals along the way to the goal region, and re-compute in

Lucas Janson is with the Department of Statistics, Harvard University, Cam-
bridge, MA, 02138, ljanson@fas.harvard.edu. Tommy Hu is with the
Department of Mechanical Engineering, Stanford University, Stanford, CA,
94305, hutommy@stanford.edu. Marco Pavone is with the Department
of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305,
pavone@stanford.edu.

This research was supported by NASA under the Space Technology
Research Grants Program, Grant NNX12AQ43G.

Current
position
Realized
trajectory

Predicted
trajectory

Obstacle

Unobserved
environment

Observed
environment

Fig. 1. Planning in unknown environments: as the robot moves (in this
example, with double-integrator dynamics and line-of-sight perception), it
needs to weigh exploration versus exploitation in a way that is best with
respect to the information available. In particular, the robot should never
take an action that leads into an inevitable collision state with respect to
any unobserved part of the environment.

a receding horizon fashion motion plans within the portion
of the environment that has been observed (a technique also
referred to as re-planning). An instantiation of this approach
is represented by frontier-based exploration, in which the
temporary goals are placed at the boundary between the
observed and unobserved environment (e.g., on the nearest
frontier [1]; see also [6] for more sophisticated heuristics for
temporary goal placements). Such a receding horizon approach
is also quite effective in the presence of moving obstacles or,
more in general, dynamic environments [13, 8, 25].

If one considers a kinodynamic model of a robot (as is
the case in this paper), an additional consideration is how to
ensure safety when the environment is only partially known.
An important concept in this regard is the notion of inevitable
collision states (ICS) [10], states for which, no matter what
future control inputs the robot applies, a collision with an
obstacle must eventually occur. To ensure safety, the robot
should then never take an action that leads into an inevitable
collision state with respect to any unobserved part of the en-
vironment (see Figure 1). The notion of planning in unknown
environments under ICS constraints has been studied by a
number of authors, see, e.g., [11, 10, 21, 2], with a focus
on making the computation of ICS tractable.

An additional important consideration is how to reason
about actions and/or observations that might be taken in the
unobserved environment [12]. This is directly related to the
notion of selecting actions that best weigh exploration versus
exploitation as a function of available information, such as
from perception. A possible approach is to bias motion plans
toward “next best view” states [7], which capture the notion
of amount of unobserved environment that can be seen at a
future state. For example, this idea is infused within a receding



horizon planning scheme in [4]. A conceptually similar idea
is to choose temporary goals that reward exploration [12].
More in general, one can frame the problem of planning
in unknown environments as a partially observable Markov
decision process, where the partial observability is with respect
to the environment [22]. To make the problem tractable, one
needs to consider a number of approximations, for example,
replacing collision avoidance constraints with penalties on
collision probabilities (possibly learned [22]).

Statement of Contributions: Despite the wealth of algo-
rithms available for planning under uncertainty, and the well-
established theoretical foundations for planning in known
environments (e.g., [15, 14, 20]), the problem of planning in
unknown environments has received relatively little theoretical
investigation. Accordingly, the contribution of this paper is
threefold. First, we present a notion of optimality for planning
in unknown environments in the spirit of comparative [16]
(as opposed to competitive [5, 9]) analysis, with the goal of
obtaining a benchmark that is, at least conceptually, attain-
able. Second, by leveraging the theoretical benchmark and
combining the aforementioned notions of re-planning, ICS,
and forward-looking biasing in a self-contained framework,
we derive a pseudo-optimal class of policies that can seam-
lessly incorporate any amount of prior or learned information
while still guaranteeing the robot never collides. Finally, we
demonstrate the practicality of our algorithmic approach in
numerical experiments using a range of environment types
and robot dynamics, including a comparison with a state of
the art method for planning in unknown environments [22].
Importantly, computation times are on the order of 0.5–1s of
(serial) computation time per action, making it an algorithm
amenable to real-time implementation.

Organization: This paper is structured as follows. In Section
II we provide notation for a number of concepts needed to
rigorously state the problem of planning in unknown envi-
ronments. In Section III we develop a notion of optimality
that can be used as a benchmark. In Section IV we leverage
such a notion of optimality to derive a pseudo-optimal class
of policies. In Section V we present results from numerical
experiments supporting our statements. Finally, in Section VI
we draw some conclusions and discuss directions for future
work.

II. NOTATION

This paper concerns planning trajectories for robots with
dynamics and perception through static configuration spaces
with obstacles, and we will need carefully-defined notation for
all these concepts. First the robot’s configuration space: we
assume it lies in [0, 1]d, and it is characterized by its obstacles
Xobs ⊂ [0, 1]d, or more generally the subset of [0, 1]d which
the robot is not allowed to enter. The remainder of the con-
figuration space which the robot is free to traverse is denoted
Xfree = [0, 1]d \ Xobs and we will assume Xfree is a closed
set. We will sometimes informally refer to the configuration
space with obstacles defined equivalently by Xobs or Xfree as
the environment. In particular, this paper deals with the case
of unknown environment, necessitating notation for the set
of all possible Xfree: Xfree = {X ⊂ [0, 1]d : X closed} and
all possible Xobs: Xobs = {X ⊂ [0, 1]d : [0, 1]d \ X closed}.
Define the robot’s initial state as x0 ∈ Xfree and its goal

region as Xgoal ⊂ Xfree, where the set Xgoal will also be
assumed closed. Next, we define the dynamics D as the set
of differential equations governing the robot’s motion. Let
σ : [0, T ]→ [0, 1]d denote a finite-time trajectory of duration
T , with ΣD the set of all dynamically-feasible trajectories
under D. Let START(σ) := σ(0) and END(σ) := σ(T ), and
let RANGE(σ) denote the curve in [0, 1]d traced out by σ.
Let c : ΣD → R≥0 be an additive cost function on the
set of finite-time dynamically-feasible trajectories. Another
important component in this paper is the robot’s perception
mechanism/function P : Xfree × [0, 1]d → Xfree × Xobs, which
takes in the environment and robot state and P1 (the first output
of P) returns a (usually local) set XPfree of collision-free states
around the robot’s state x ∈ [0, 1]d and P2 (the second output
of P) returns the observed open (except on the boundaries
of [0, 1]d) subset XPobs of Xobs (while many robot sensors will
only be able to perceive obstacle boundaries, which are closed,
we will assume such sensors instead return a very thin open
set along the obstacle boundary).12 Note that P2 is not just
redundantly returning [0, 1]d \XPfree, as it makes the important
distinction between obstacle boundary, which the robot must
avoid, and unexplored frontier, which the robot should explore
in order to reach its goal.

P1

P2

Fig. 2. For a robot (green triangle) with line-of-sight perception, the observed
obstacle-free space is given by P1 in red while the observed obstacle subsets
are given by P2 in blue. Note that P1 and P2 are not completely redundant,
as the boundary of P1 excluding P2 represents unexplored and ostensibly
obstacle-free frontier.

The first argument to P is the configuration space, so the
actual perception of the robot at a state x navigating an
environment Xfree will always be given by P(Xfree, x), but
importantly, the explicit dependence on the first argument will
also allow us to reason about hypothetical future perception
in a postulated environment X guess

free which need not correspond
to the true environment Xfree. It will also be useful to have a
function ICS : Xfree → Xfree, which takes a set of collision-
free states Xfree and returns the set of inevitable collision states
(ICS) XICS defined as states x for which there exists Tx <∞
such that a robot in state x and with dynamics D is guaranteed
to leave Xfree before time Tx (for notational simplicity we
suppress the dependence on the dynamics D). Throughout this
paper we will assume no noise, that is, there is no stochasticity
in the dynamics D, the perception P, and the robot is assumed
to always know its current state x. We will also assume that
Xgoal ∩ ICS(Xfree) = ∅, although this is not really necessary.
Finally, let [N ] := {1, . . . , N}.

1P(Xfree, x) may be defined arbitrarily for x /∈ Xfree.
2P could also take as its second argument an entire trajectory—everything

in this paper would still go through with only minor notational changes.



III. A NOTION OF OPTIMALITY FOR PLANNING
IN UNKNOWN ENVIRONMENTS

A. Benchmarking Motion Planning in Unknown Environments
A significant algorithmic challenge and central contribution

of this paper is how to define the objective for motion planning
in unknown environments. As shorthand and to distinguish the
settings of known and unknown environments, we will refer
to motion planning in unknown environments as MPun and
motion planning in known environments as MPkn. Pedagogi-
cally, we find it useful to compare with the known-environment
setting, where the problem statement is clear:

Find a minimum-cost collision-free trajectory from
x0 to Xgoal.

Assuming a collision-free and dynamically-feasible trajectory
exists, the minimum cost for the MPkn problem with given D,
c, Xfree, x0, and Xgoal is given by (where dependence on D
and c have been suppressed to streamline the notation)

c∗(Xfree, x0,Xgoal) = min
σ∈ΣD,

RANGE(σ)⊂Xfree,
START(σ)=x0, END(σ)∈Xgoal

c(σ) (1)

Parsing the constraints: the first line enforces dynamic fea-
sibility, the second line ensures the trajectory is collision-
free, and the third line requires the trajectory to start at x0

and end in Xgoal. As achieving c∗(Xfree, x0,Xgoal) exactly
is rarely computationally possible, actual MPkn algorithms
usually target something weaker, such as feasibility (e.g.,
[19]) or asymptotic optimality (e.g., [26, 23, 24, 20]), but it
seems indisputable that c∗(Xfree, x0,Xgoal) is the gold standard
against which any MPkn algorithm can be compared. Before
getting to MPun, let us rewrite (1) in a way that explicitly
acknowledges that in practice most planning problems are
dealt with in discrete time. As such, we can use D to define
an action-generating function AD : [0, 1]d → ΣD which gives
the closed set of actions (dynamically-feasible finite-length
trajectories) the robot may follow starting from any given
state.3 We can now write the discretized MPkn problem, the
analogue of (1), as

c∗(Xfree, x0,Xgoal) = min
σ1,...,σN s.t. N∈N,

σk∈AD
(

END(σk−1)
)
∀k∈[N ],

RANGE(σk)⊂Xfree ∀k∈[N ],
END(σN )∈Xgoal

N∑
k=1

c(σk) (2)

As written, the minimization is over N as well as the σk, but in
practice N will be fixed to some large value (an upper-bound
for the number of actions in the optimal trajectory) and AD
will be augmented to always include a null action which takes
zero time, has zero cost, and does not change the robot’s state.
This allows the robot to take any number of null actions once it
reaches Xgoal, so that c∗ can accommodate optimal trajectories
shorter than N actions. Parsing the constraints: the first line
divides the trajectory into a finite number of actions σk, the
second line requires each action to be dynamically feasible
(for notational simplicity, define END(σ0) := x0), the third

3For instance, these actions could be traces through a prespecified short time
or distance of solutions to the differential equations in D using parameters
defined by a set of low-level controls such as steering angle or acceleration;
we abstract this all away for notational convenience to deal only with actions.

line requires each action to be collision-free, and the final line
requires the final action to end in Xgoal.

Despite the work in MPun reviewed earlier, we are not
aware of any analogue to c∗(Xfree, x0,Xgoal) for MPun, i.e.,
a gold standard against which to compare an algorithm’s
performance and measure its suboptimality. Equation (2) is
also useful in that if one could find a minimizer, that trajectory
would be optimal for discretized MPkn. For these reasons we
seek an MPun analogue. First note that c∗(Xfree, x0,Xgoal) will
generally represent an unattainable objective for MPun, and
thus does not itself represent an ideal benchmark for MPun.

Example 1. Consider a robot with a limited sensing radius
and bounded speed and acceleration (which can be applied in
any direction, that is, unlike a car, the robot has no ‘forward’
direction) so that the stopping distance from its top speed
is greater than its sensing radius. Then the only way to
achieve c∗(Xfree, x0,Xgoal) when Xobs = ∅ is for the robot to
immediately accelerate to maximum speed in the direction of
the nearest point in Xgoal and proceed until it reaches Xgoal.
However, this trajectory clearly is not collision-free if there
is an obstacle along that path, and in fact even if the robot
chooses to follow this trajectory until an obstacle is sensed, it
is guaranteed to collide if the obstacle is far enough away from
x0. We emphasize that this fact makes such a choice inherently
unsafe, since even if there is prior information suggesting there
are no obstacles, the robot cannot verify this assertion because
of its limited sensing and so may still end up colliding with
an unexpected obstacle.

The preceding paragraph hints at two important points.
First, although it was sufficient in MPkn to talk only about
trajectories, in MPun new information actually comes in during
a trajectory that the robot in general can react to, so it is
more appropriate to discuss online policies instead, which
are functions that take a priori information about the robot
and environment and combine it with a history of perception
information gathered by the robot up to a given time to
produce the robot’s next action. In this paper, we want to find
policies which are safe.

Definition 1 (Safe Policy). A safe policy is a func-
tion that takes in AD, c, P, x0, Xgoal, and a vec-
tor of historical perception information of arbitrary length
(P(Xfree, x0), . . . , P(Xfree, xk)) and returns an action that is
guaranteed not to leave Xfree, for any value of Xfree that agrees
with the historical perception information.

Note that Xfree only appears in the inputs to a policy through
the perception function P, so the only information about the
environment that the policy can use to ensure safety is gathered
online by the robot. Also, policies may in general have a
random component, in which case we could talk about the
probability of the policy returning an action that collides with
an obstacle, but in this paper we only deem a policy safe if
that probability is zero. The goal of this paper is to establish a
framework for computing safe policies that produce (collision-
free, by definition) trajectories with as low a cost as possible.

Second, the only way to guarantee a policy is safe is
to ensure that no action takes the robot into an inevitable
collision state with respect to any unobserved part of the
environment. This is a necessary condition for a policy to be



safe as defined in Definition 1, since if the robot ever enters
an ICS with respect to an unobserved part of the environment,
then the robot will (inevitably) collide for some possible
values of the environment (e.g., for

⋃k
j=0 P1(Xfree, xj), which

matches the observed environment perceived up until the ICS
is reached, but for which Xobs contains all the unobserved
environment), contradicting the definition. This is suggestive
of the following discretized MPun problem, analogous to the
discretized MPkn problem of Equation (2) (in addition to
suppressing dependence on the dynamics AD and the cost
function c, we also now suppress the dependence on P, since
all three of these inputs are normally fixed for a given robot):

c̃∗(Xfree, x0,Xgoal) = min
σ1,...,σN s.t. N∈N,

σk∈AD
(

END(σk−1)
)
∀k∈[N ],

RANGE(σk)
⋂

ICS(
⋃k−1

j=0 P1(Xfree, xj))=∅ ∀k∈[N ],

END(σN )∈Xgoal

N∑
k=1

c(σk) (3)

where the second-to-last constraint line is the only part that
changed from Equation (2) (we abuse notation slightly by
letting ICS now and for the remainder of the paper denote
its discrete analogue, defined as the set of states x for which
there exists Tx <∞ such that a robot in state x and following
any actions in AD is guaranteed to leave Xfree before time
Tx). That line states that the kth action cannot be in an ICS
with respect to everything that the robot will perceive up
through the end of (k − 1)th action σk−1. Note that all the
states in Xobs are ICS, so this is at least as strong as just
requiring all the actions to be collision-free, and thus c̃∗ ≥ c∗
when the two take the same arguments. Nevertheless, because
any trajectory returned by a safe policy can never enter an
ICS (and thus can never violate the second constraint line
in Equation (3)), c̃∗(Xfree, x0,Xgoal) lower-bounds the cost of
any trajectory returned by a safe policy applied in Xfree. The
natural next question is whether Equation (3) is tight—that is,
does there exist a safe policy which attains it?

The answer is a qualified “yes.” As we show next, there is a
safe policy that achieves the cost c̃∗(Xfree, x0,Xgoal), but that
policy depends on Xfree. A reasonable criticism would be: if
we allow the policy to depend on Xfree, why not have a policy
that just returns a solution to the discretized MPkn problem
from Equation (2), which would attain the even lower cost
c∗? The answer is that such a policy is not safe as we have
defined it, in that it does not in general produce a collision-
free trajectory, while the safety of the Xfree-dependent policy
we describe next actually does not depend on Xfree. That is,
the policy we are about to define produces a trajectory that
is collision-free no matter what, even if Xfree is not the true
environment. As underscored in Example 1, this distinction
is not only conceptually important, but will be practically
important when we turn to developing algorithms for real
problems, where the true Xfree is never known exactly but
may be guessed at based on prior knowledge or information
gained along the trajectory, making it crucial that the safety
of a policy does not depend on perfect knowledge of Xfree.

Consider a policy that starts with some guess X guess
free for Xfree

and takes actions according to a minimizer of Equation (3)—
except with X guess

free replacing Xfree—until it reaches Xgoal or
it first perceives an obstacle boundary not in X guess

free (here is

where we first see the utility of P2, since only P1 was used in
Equation (3) but it does not distinguish between observed ob-
stacles and the simple boundary of observed free space). In the
latter case—denote such a waypoint by xk—the robot updates
X guess

free to some X guess(2)
free that matches its perception (e.g., by

taking the union of the obstacles in X guess
free and any obstacle

boundary perceived thus far) and then follows a minimizer
of Equation (3)—with X guess(2)

free now replacing Xfree, with xk
as its starting point, and still with all perception information
up to time k incorporated into the second constraint—until it
reaches Xgoal or it first perceives an obstacle boundary not
in X guess(2)

free , and continues this loop indefinitely. This is a
safe policy because by definition the trajectory it produces
never enters a state that is ICS with respect to the unobserved
part of the environment. Furthermore, in the lucky case when
X guess

free = Xfree, an obstacle boundary not in X guess
free will never

be observed, and the trajectory will simply be a minimizer
of Equation (3) and thus, will have cost exactly equal to
c̃∗(Xfree, x0,Xgoal). The following theorem summarizes what
we have shown in this section (this paragraph established
the upper-bound and the lower-bound comes from the four
sentences following Equation (3)).

Theorem 1. For a robot constrained to take actions defined
by AD in an environment Xfree which is unknown to it except
through a perception mechanism P, the optimal cost c of any
trajectory from x0 to Xgoal returned by a safe policy is exactly
c̃∗(Xfree, x0,Xgoal), defined by Equation (3).

Remark 1. We stop here to briefly contrast our benchmark
with the usual approach of competitive analysis [5], which
would benchmark an online algorithm to its best possible
offline performance—in this paper that would mean using c∗
as a benchmark instead of c̃∗. But since we have shown that
c∗ is in general unachievable in MPun, increasing c∗ to c̃∗

by imposing constraints that are necessary conditions for any
safe MPun trajectory provides a more realistic benchmark. Our
approach is similar to that of comparative analysis [16], with
the addition that Theorem 1 also proves that our benchmark
is tight.

B. A Flexible Class of Pseudo-Optimal Policies
The proof of Theorem 1’s tightness in the previous sub-

section exhibited a class of safe policies that achieve cost
exactly equal to c̃∗(Xfree, x0,Xgoal) when fed a guess X guess

free
of Xfree that happens to be correct (and because they are safe
policies, even if the guess is incorrect they are still guaranteed
to never produce a colliding trajectory). This is certainly a
desirable property for a safe MPun policy, but perhaps more
important from a practical standpoint is ensuring the cost
does not depend too dearly on the accuracy of X guess

free . In
simpler terms, we would like our safe policy to achieve nearly
optimal cost when given a nearly correct guess of Xfree, and
to still perform reasonably well even if no prior knowledge
about about Xfree. In this subsection we will introduce a
flexible class of safe policies that are all pseudo-optimal in
that they achieve c̃∗(Xfree, x0,Xgoal) when fed a correct guess
X guess

free = Xfree, but also allows for more clever methods of
updating X guess

free as new obstacles are observed online, so that
the cost degrades gracefully as X guess

free diverges from Xfree. We
still ignore computational constraints in this subsection, but



address the approximations needed for computability in the
following subsection.

As just alluded to, we first need notation to describe a
X guess

free -updating scheme. Let U : Xfree × Xobs → Xfree take as
arguments the thus-far perceived collision-free space XPfree and
the thus-far perceived subset of Xobs, XPobs, and return a guess
X guess

free of what the true Xfree might be. A minimal requirement
for a reasonable guessing function U would be that its output
guess at least agrees with its inputs of historical perception,
i.e., XPfree ⊂ U(XPfree,XPobs) and XPobs ⊂ [0, 1]d \ U(XPfree,XPobs).
This leaves many reasonable choices for U, such as if there is
an outdated map of the environment Xmap

free , then a reasonable
choice might be U(XPfree,XPobs) =

(
Xmap

free ∪ XPfree

)
\XPobs, which

would produce highly accurate guesses if Xmap
free is pretty close

to Xfree, while still being able to adapt to unexpected obstacles.
At the other end of the spectrum, if very little is known about
the environment a priori, since we are only considering safe
policies anyway, it may make sense to take an aggressive
strategy and simply set U(XPfree,XPobs) = [0, 1]d \ XPobs. This
generic formalism allows for both extremes and everything in
between.

With U in hand, the problem simplifies in the sense that
there is a well-defined “best” policy which assumes its guess
at the environment is correct, still constrains itself to never
enter an ICS with respect to unknown parts of the environment,
and is also forward-looking in that it takes into account the
consequences of its current action on all future actions. From
a given state x with XPfree the union of P1’s thus far and XPobs
the union of P2’s so far, define the optimal cost-to-go when
using a given updating function U as

c̃∗U
(
x,
(
XPfree,XPobs

)
,Xgoal

)
= min

σ1,...,σN s.t. N∈N,

σk∈AD
(

END(σk−1)
)
∀k∈[N ],

RANGE(σk)
⋂

ICS(FU
1(XP

free,X
P
obs,(σ1,...,σk−1)))=∅ ∀k∈[N ],

END(σN )∈Xgoal

N∑
k=1

c(σk) (4)

where again for notational simplicity define END(σ0) := x,
and the function FU : Xfree × Xobs × {(σ1, . . . , σk) : σj ∈
ΣD ∀j ∈ [k], k ∈ N} → Xfree × Xobs takes in the current
state of perception in XPfree and XPobs, as well as a sequence of
future actions {σ1, . . . , σk}, and pushes forward the perception
function P and the updating function U along the hypothetical
trajectory σ1, . . . , σk, returning what the robot would have
perceived by the end of σk assuming U produces a correct
guess of the environment. Function FU can be explicitly
defined recursively as:

FU
(
XP

free,XP
obs, ∅

)
=
(
XP

free,XP
obs

)
, (5)

FU
1

(
XP

free,XP
obs, (σ1, . . . , σk)

)
=

FU
1

(
XP

free,XP
obs, (σ1, . . . , σk−1)

) ⋃
P1

(
U
(
FU
(
XP

free,XP
obs, (σ1, . . . , σk−1)

))
, END(σk)

)
,

FU
2

(
XP

free,XP
obs, (σ1, . . . , σk)

)
=

FU
2

(
XP

free,XP
obs, (σ1, . . . , σk−1)

) ⋃
P2

(
U
(
FU
(
XP

free,XP
obs, (σ1, . . . , σk−1)

))
, END(σk)

)
.

Using Bellman’s equation and the recursive nature of FU, c̃∗U
can also be written recursively as

c̃∗U
(
x,
(
XPfree,XPobs

)
,Xgoal

)
= (6)

min
σ∈AD(x),

RANGE(σ)
⋂

ICS(XP
free)=∅

c(σ) + c̃∗U
(

END(σ), FU
(
XPfree,XPobs, {σ}

)
,Xgoal

)
and we can in turn explicitly write the optimal policy similarly

σ∗U
(
x,
(
XPfree,XPobs

)
,Xgoal

)
= (7)

arg min
σ∈AD(x),

RANGE(σ)
⋂

ICS(XP
free)=∅

c(σ) + c̃∗U
(

END(σ), FU
(
XPfree,XPobs, {σ}

)
,Xgoal

)
.

(σ as an optimization variable here represents a single action,
in contrast to Equation (1) where it is a full trajectory
ending at Xgoal.) Note that the policy class σ∗U has the
pseudo-optimality property that as long as U is chosen such
that it returns the true Xfree until it is given contradicting
perception information, the cost of following σ∗U from x0,
namely, c̃∗U (x0, P (Xfree, x0),Xgoal), will exactly equal the op-
timal MPun cost proved in Theorem 1: c̃∗(Xfree, x0,Xgoal).
This can be seen by noting that if U always returns Xfree,
then the second-to-last constraint of Equation (4) matches that
of Equation (3), and everything else matches as well. The
pseudo-optimality tells us that, despite no explicit reward for
exploration in the formulation of σ∗U, for good-enough U, σ∗U
trades off exploration and exploitation exactly optimally, and
we may hope this implicit trade-off is still fairly good for
more general U. However, we do not try to characterize the
gap between c̃∗U and c̃∗ for general U, as such a theoretical
investigation would be beyond the scope of this paper, and a
simulation experiment would be computationally prohibitive
due to the cost of computing c̃∗.

IV. AN APPROXIMATELY PSEUDO-OPTIMAL
CLASS OF POLICIES

A. Generic Approximations
We now turn to the implementation and computational

tractability of employing the policy σ∗U. Despite the fairly com-
pact recursive representation of c̃∗U in Equation (6), performing
dynamic programming would be prohibitively expensive due
to the exponential (in N ) size of the search space. But
luckily, there are a few approximations/simplifications we can
make that drastically improve the computational properties
of σ∗U, and we have found in practice that our approximate
σ∗U still performs quite well (as discussed in Section V). We
list all these approximations next, which together provide an
approximately pseudo-optimal class of policies that are also
computationally tractable. In the next subsection, we will give
the implementation details for these approximations that we
found to work well in our numerical experiments.

Approximation #1: First, ICS is outer-bounded by ĨCS which
checks only a few stopping actions (e.g., maximum decel-
eration with no turning angle, maximal left turning angle,
and maximal right turning angle). Note that because this
approximation is a tight outer-bound, it does not change the
guarantee that our policy never results in collision.
Approximation #2: One thing to note about Equation (5) is
that if U has the reasonable property that its output X guess

free



does not change with new perception information as long as
that information agrees with X guess

free , then FUsimplifies and can
be written nonrecursively as

FU1
(
XPfree,XPobs, (σ1, . . . , σk)

)
= (8)

XPfree

k⋃
j=1

P1

(
U(XPfree,XPobs), END(σj)

)
FU2

(
XPfree,XPobs, (σ1, . . . , σk)

)
=

XPobs

k⋃
j=1

P2

(
U(XPfree,XPobs), END(σj)

)
.

The reason is that no matter how far into the future the
guess is being propagated, since the hypothetical future actions
are all assumed to gather perception information from an
environment that matches U(XPfree,XPobs), and new perception
information that matches the existing guess doesn’t change the
guess, then that guess is the same as just the guess with the
current information. This property of U is not necessary, but
both of the examples given when U was introduced satisfy it,
and even for some U functions that do not, we expect that
solving Equation (4) with the simplified constraint given by
Equation (8) will give a good approximation to solving it with
the full constraint for most reasonable choices of U. Thus we
plug in the union in Equation (8) for FU1 in the second-to-last
constraint line of Equation (4).
Approximation #3: Having just rewritten the second-to-last
constraint line of Equation (4) using Equation (8), we now
proceed to simplify it further by reducing the union in
Equation (8) to only XPfree and the last perception output,
i.e., XPfree ∪ P1

(
U(XPfree,XPobs), END(σk)

)
if the third argument

to FU1 has at least one action, or simply XPfree if it has
none. That is, for checking ICS, we always keep track of
all the actual perception information gathered by the robot,
but only keep track of the most recent hypothetical perception
information. We expect this approximation to be quite good in
most cases, since the robot will usually be moving forward into
unknown space, not backward into already-explored space.
This approximation gives the optimization problem optimal
substructure, which makes it far easier to solve.
Approximation #4: Until Xgoal first intersects XPfree, we greedily
set an intermediate goal region just outside XPfree and only
optimize our hypothetical trajectory to reach that instead
of Xgoal. Said intermediate goal X inter

goal

(
XPfree,XPobs,Xgoal

)
is

chosen as the collision-free region of the boundary of the
unknown environment that minimizes the sum of an ap-
proximate cost-to-come from x to X inter

goal and an approximate
cost-to-go from X inter

goal to Xgoal through the current guess
of the environment. This approximation drastically reduces
the search space, especially early in the trajectory, and for
simple approximations adds little computational cost. The
intuition behind this approximation is that the robot, without
knowing what lies beyond the next obstacle, is unlikely to
be able to make good high-level choices and must instead be
greedy at low resolution. For instance, if a robot traversing a
hallway encounters a fork, with limited information about the
environment beyond its immediate vicinity, it might as well
choose the hallway which points more towards Xgoal. This

approximation does nothing to hinder the main benefit of the
forward-looking nature of σ∗U, which is highly-intelligent local
behavior, like how best to approach a blind corner.

Combining these approximations gives us an expression for
an approximation to σ∗U that is more computationally tractable:

σaprx
U

(
x,
(
XPfree,XPobs

)
,Xgoal

)
= (9)

arg min
σ∈AD(x),

RANGE(σ)
⋂

ICS(XP
free)=∅

c(σ) + c̃aprx
U

(
END(σ),

(
XPfree,XPobs, σ

)
,Xgoal

)
,

where the new approximate cost-to-go function c̃aprx
U is given

by (note it has different inputs from c̃∗U)

c̃aprx
U

(
x,
(
XPfree,XPobs, σ0

)
,Xgoal

)
= min
σ1,...,σN ,

σk∈AD
(

END(σk−1)
)
∀k∈[N ],

RANGE(σk)
⋂

ĨCS(XP
free∪P1(U(XP

free,X
P
obs),END(σk)))=∅ ∀k∈[N ],

END(σN )∈X inter
goal (X

P
free,X

P
obs,Xgoal)

N∑
k=1

c(σk). (10)

B. Implementation Details

The way we implemented σaprx
U made various choices

about the approximations discussed in the previous subsec-
tion, which can be categorized into the choice of U, ĨCS,
X inter

goal

(
XPfree,XPobs,Xgoal

)
, and how we actually computed a

solution for Equation (9). These choices are purely heuristic,
and were found through experience and experimentation to
work well for a range of problems, but there may be many
other good choices as well. In all of our experiments the cost
function c was simply the elapsed time of the trajectory.
Choice of U: We chose U so that all unobserved space is
guessed to be collision-free, except any obstacle boundaries
that are already observed but end at unknown territory are
extended by a small amount into the unknown. This choice
of U is optimistic while assuming roughly that “walls are
locally smooth”, and we expect this to be a reasonable choice
in almost any setting with little a-priori knowledge of the
unknown environment. For observed obstacle boundaries that
ended at unknown territory, five evenly-spaced points were
marked up to 0.125m from the unknown boundary, and then
those points were fit with either a linear or quadratic curve
and extended into the unknown until intersection with a known
region, up to a maximum length of 0.125m.
Choice of ĨCS: Three stopping actions were used: maximal
straight-line deceleration in current direction of travel, maxi-
mal deceleration while turning left, and maximal deceleration
while turning right.
Choice of X inter

goal : Intermediate goals were selected by dividing
the unknown frontier into lengths of 0.3m, and the location
defined by the midpoint of each frontier segment is used
to define the center of a circular candidate X inter

goal of radius
0.3m. The cost-to-come for each candidate was computed
by dynamically-constrained (but not ICS-constrained) FMT∗
[23, 24] and the cost-to-go computed by FMT∗ [14], both
with sample density of 150 samples/m2 and connection radius
of 0.75m. Since FMT∗ returns a geometric path and not a
kinodynamic trajectory, the FMT∗ solution path distance was
converted to time by assuming that from the final speed when
the robot reaches X inter

goal , the robot maximally accelerates to



and continues at maximum speed to Xgoal along the FMT∗
path.
Choice of X inter

goal : Finally, the actual optimization problem was
approximated again by dynamically-constrained FMT∗ but
with the addition of the ICS constraint in the third constraint
line of Equation (10). In fact, even that constraint is again
simplified by replacing RANGE(σk) with END(σk)—this is
purely a computational simplification, since if the endpoints
are not in ICS, then no point along the action can possibly
be in ICS. Because of this simplification and approximations
#2 and #3 in the previous subsection, the ICS constraint can
actually be checked pointwise, making it extremely amenable
to sampling-based motion planning algorithms such as FMT∗,
since each sample can be checked for ICS immediately after
being sampled and before any edges are drawn. Note that
sampling-based algorithms take a slightly different approach
to approximate the solution to Equation (9), but the sample
density and edges between samples implicitly define the
discreteness parameters N and the set of actions AD.

V. NUMERICAL EXPERIMENTS

In this section we present simulation results on maze, forest,
and office building environments to show the versatility of our
algorithm in environments of varying complexity. We imple-
mented two dynamics models for experiments. The first is a
nonlinear vehicle model with maximum acceleration/braking
of 1m/s2, maximum speed of 9 m/s, maximum curvature
of 0.13 m, and maximum curvature rate of 7.5 (ms)−1.
The second is a 2D double integrator dynamics model with
maximum acceleration/braking of 1 m/s2 and maximum speed
of 6 m/s. Experiments were written in the Julia programming
language [3] and run on a Intel Core i5-4300U CPU@1.90GHz
quadcore laptop, although the four cores were not used in
parallel.

We first demonstrate the strength of our algorithm in a
large-scale comparison with the method of [22]. We ran
our algorithm on randomly-generated hallway (maze with no
dead ends) maps with the nonlinear vehicle dynamics model
and considered the resulting tradeoff between path cost and
collision probability. Hallway maps of width 1.2 m were
generated by sampling from a Markov chain hallway generator
with turn frequency of 0.4. The path cost for connections
considered is total time to goal, and the resulting total path
cost on each map was normalized by the path cost of the
path planned by the dynamically-constrained (but not ICS-
constrained) FMT∗ algorithm with comparable sample density
on the fully known map. Figure 3 shows the resulting com-
parison between our algorithm and that of [22]. By design,
our algorithm is guaranteed not to collide and thus only has
one data point denoting zero probability of collision. The
data point for our algorithm lies below the curve defining the
collision probability-path cost tradeoff of [22]’s algorithm, and
for their approach to achieve the same path cost as σaprx

U would
require roughly a 5% probability of collision. Additionally,
as [22]’s method’s probability of collision approaches zero,
the cost begins to climb rapidly, far above that of σaprx

U . This
outperformance can most readily be explained by the forward-
looking nature of σaprx

U , as it optimizes with respect to future
actions and perception, in contrast to the method of [22].

22

Fig. 3. Normalized average path cost versus collision probability of
simulations from 500 random hallway maps using our algorithm (red). Path
costs are normalized by the cost of the path planned by the kFMT* algorithm
with comparable sample density and with full knowledge of the map, and
then averaged over the trials. The data points for the [22] method (blue) were
produced by running their algorithm on 1000 randomly generated hallway
maps with different cost-of-collision values and averaging over the paths that
did not result in collision. Their algorithm was trained on 50,000 sample
hallway maps and features used were the same as the ones in the original
paper, with appropriate hyperparameter tuning. Error bars denote ±1 standard
deviation.

To understand better the behavior of our implementation of
σaprx
U , Figure 4 displays the results of our algorithm on a maze

environment with the nonlinear vehicle dynamics. We see
that the vehicle takes wide turns when approaching corners,
which allows for greater visibility of what is around the corner
before actually making the turn and minimizes the deceleration
necessary to maintain safety. The optimization automatically
and implicitly trades off the extra distance required to take
the turn more widely and the extra speed allowed by seeing
the open hallway earlier and thus not having to slow down to
ensure safety in case of a hidden obstacle. Figures 4(a) and
4(b) show the added benefit of this approach—early detection
of bad trajectories. While a myopic approach may have
optimistically rushed into the path suggested in Figure 4(a), by
taking the turn more widely (which, again, was never explicitly
programmed into our algorithm) the vehicle detects the dead
end early and swings back up to the correct route, having
suffered only a minor delay. Figures 5 and 6 show results
of our algorithm with double integrator dynamics in a forest
environment with scattered tree obstacles and a real office
building environment with complex hallways, furniture, and
rooms. In the forest environment, greedy exploration and plans
to intermediate goals guide the robot to the goal on a direct
and fast trajectory with minimal detours despite the lack of any
prior knowledge of the environment (the U function used was
the same as for the maze) and guaranteed safety. The office
building simulation shows each of the safety and optimality
features of our algorithm. Initial travel in the narrow hallway
is slow and cautious, followed by higher speeds in the wider
space, and finally wide turns when traveling back into the
narrower hallway and into the room to arrive at the goal.

Table I shows the computation times for each environment



(a) (b) (c)

Final Trajectory

0 2 4 6 8 10 12 14
Time (s)

0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
 (

m
/s

)

Speed vs. Time

(d)

Fig. 4. Simulation results on a maze map with dead ends and forks in the
path. The receding horizon plan to the goal is shown in the dashed (current
to intermediate goal) and the dotted (intermediate goal to final goal) lines.
The travelled path up to each waypoint is shown in black, with the action
to be taken at the timestep in red. The full path is shown in (d), with speed
indicated by the color bar. Note the recovery from exploration of a hallway
that turned out to be a dead end shown in (a) and (b).

(a) (b) (c)

Final Trajectory

0 1 2 3 4 5 6 7
Time (s)

0

1

2

3

4

5

S
p
e
e
d
 (

m
/s

)

Speed vs. Time

(d)

Fig. 5. Simulation results on a forest environment with tree obstacles.
Formatting is the same as in Figure 4.

with their corresponding complexity defined by number of
half-planes defining the obstacles in the map and the average
number of half-planes defining the unexplored frontier at the
beginning of each action. Each action requires about 0.5 -
1s of (serial) computation time, which makes the algorithm
amenable to real-time implementation. Computation times
could be significantly improved by considering a parallel
implementation, which is left for future work.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a algorithmic framework and a pseudo-
optimal class of policies for the problem of safe motion
planning in unknown environments. This work easily raises as

(a) (b) (c)

Final Trajectory

0 2 4 6 8 10
Time (s)

0

1

2

3

4

5

6

S
p
e
e
d
 (

m
/s

)

Speed vs. Time

(d)

Fig. 6. Simulation results on simplified scan of the Stanford Gates building
internals. Formatting is the same as in Figure 4.

TABLE I
COMPUTATION TIMES

Environment Total # of obstacle
half-planes

Avg. # of frontier
half-planes

Avg. Time
(ms)/plan

Maze 96 2 540
Forest 490 15 780
Office Bldg. 1493 25 1340

many interesting questions as it solves, and future work will in-
clude (1) improving computation times through parallelization
and optimized implementation, (2) deployment on real robot
and integration with true dynamics and perception functions,
(3) theoretical bounds on the optimality gap of σ∗U as a function
of U, (4) characterization of performance when the problem
is infeasible, (5) extension to the setting of uncertainty, both
in the dynamics and perception of the robot, for instance
by replacing ‘inevitable’ in the ICS acronym with ‘highly-
probable’, and (6) investigation into the best implementation
details for different types of problems, especially the crucial
choices of ĨCS and U. We highlight this last direction, the
choice of U, as particularly appealing for its allowance of
sophisticated machine learning algorithms to guess at the
unexplored environment. While especially the most complex
learning algorithms can have spectacular performance, they are
often criticized for a lack of reliability and generalizability—
but σ∗U /σaprx

U completely ameliorate this concern by acting as
a wrapper around the machine learning in U that guarantees
the robot’s safety no matter what it returns. Underscoring this
point: if U ever returns a grossly inaccurate guess for the
environment due to one of the many reasons why machine
learning algorithms can fail (e.g., test data which does not
resemble the training data), the robot will (safely) begin to
follow a less-efficient trajectory. This seems like as good an
outcome as possible, since of course no algorithm can perform
equally well if given good or bad information, but using the
methods in this paper the worst we can lose is time, but never
the robot itself due to collision.



REFERENCES

[1] Yamauchi B. A frontier-based approach for autonomous explo-
ration. In Proc. IEEE Int. Symp. on Computational Intelligence
in Robotics and Automation, 1997.

[2] K. E. Bekris and L. E. Kavraki. Greedy but safe replanning un-
der kinodynamic constraints. In Proc. IEEE Conf. on Robotics
and Automation, 2007.

[3] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A
fast dynamic language for technical computing, 2012. Available
at http://arxiv.org/abs/1209.5145.

[4] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Sieg-
wart. Receding horizon ”Next-Best-View” planner for 3D
exploration. In Proc. IEEE Conf. on Robotics and Automation,
2016.

[5] A. Borodin and R. El-Yaniv. Online computation and compet-
itive analysis. Cambridge Univ. Press, 2005.

[6] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider.
Coordinated multi-robot exploration. IEEE Transactions on
Robotics, 21(3):376–386, 2005.

[7] C. Connolly. The determination of next best views. In Proc.
IEEE Conf. on Robotics and Automation, volume 2, pages 432–
435, 1985.

[8] D. Ferguson, N. Kalra, and A. Stentz. Replanning with RRTs.
In Proc. IEEE Conf. on Robotics and Automation, 2006.

[9] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, and G. Trip-
pen. Competitive online approximation of the optimal search
ratio. SIAM Journal on Computing, 38(3):881–898, 2008.

[10] T. Fraichard and H. Asama. Inevitable collision states – a step
towards safer robots? Advanced Robotics, 18(10):1001–1024,
2004.

[11] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion
planning for agile autonomous vehicles. AIAA Journal of
Guidance, Control, and Dynamics, 25(1):116–129, 2002.

[12] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys. Efficient
visual exploration and coverage with a micro aerial vehicle in
unknown environments. In Proc. IEEE Conf. on Robotics and
Automation, pages 1071–1078, 2015.

[13] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized
kinodynamic motion planning with moving obstacles. Int.
Journal of Robotics Research, 21(3):233–255, 2002.

[14] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast
Marching Tree: a fast marching sampling-based method for
optimal motion planning in many dimensions. Int. Journal of
Robotics Research, 34(7):883–921, 2015.

[15] S. Karaman and E. Frazzoli. Sampling-based algorithms for
optimal motion planning. Int. Journal of Robotics Research, 30
(7):846–894, 2011.

[16] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive
analysis. SIAM Journal on Computing, 30(1):300–317, 2000.

[17] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press,
2006.

[18] S. M. LaValle. Motion planning: Wild frontiers. IEEE Robotics
and Automation Magazine, 18(2):108–118, 2011.

[19] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic
planning. Int. Journal of Robotics Research, 20(5):378–400,
2001.

[20] Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically optimal
sampling-based kinodynamic planning. Int. Journal of Robotics
Research, 35(5):528564, 2016.

[21] S. Petti and T. Fraichard. Partial motion planning framework
for reactive planning within dynamic environments. In Proc. of
the IFAC/AAAI Int. Conf. on Informatics in Control, Automation
and Robotics, 2005.

[22] C. Richter, W. Vega-Brown, and N. Roy. Bayesian learning for
safe high-speed navigation in unknown environments. In Int.
Journal of Robotics Research, pages 325–341. 2018.

[23] E. Schmerling, L. Janson, and M. Pavone. Optimal sampling-
based motion planning under differential constraints: the drift-
less case. In Proc. IEEE Conf. on Robotics and Automation,
2015. Extended version available at http://arxiv.org/abs/1403.
2483/.

[24] E. Schmerling, L. Janson, and M. Pavone. Optimal sampling-
based motion planning under differential constraints: the drift
case with linear affine dynamics. In Proc. IEEE Conf. on
Decision and Control, 2015.

[25] J. P. van den Berg and M. H. Overmars. Planning the shortest
safe path amidst unpredictably moving obstacles. In Workshop
on Algorithmic Foundations of Robotics, pages 103–118, 2006.

[26] D. J. Webb and J. van den Berg. Kinodynamic RRT*: Optimal
motion planning for systems with linear differential constraints.
In Proc. IEEE Conf. on Robotics and Automation, 2013.

http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1403.2483/
http://arxiv.org/abs/1403.2483/

	Introduction
	Notation
	A Notion of Optimality for Planning in Unknown Environments
	Benchmarking Motion Planning in Unknown Environments
	A Flexible Class of Pseudo-Optimal Policies

	An Approximately Pseudo-Optimal Class of Policies
	Generic Approximations
	Implementation Details

	Numerical Experiments
	Conclusions and Future Work

