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Abstract—We introduce a method for following high-level navi-
gation instructions by mapping directly from images, instructions
and pose estimates to continuous low-level velocity commands
for real-time control. The Grounded Semantic Mapping Network
(GSMN) is a fully-differentiable neural network architecture that
builds an explicit semantic map in the world reference frame
by incorporating a pinhole camera projection model within the
network. The information stored in the map is learned from
experience, while the local-to-world transformation is computed
explicitly. We train the model using DAGGERFM, a modified
variant of DAGGER that trades tabular convergence guarantees
for improved training speed and memory use. We test GSMN in
virtual environments on a realistic quadcopter simulator and
show that incorporating an explicit mapping and grounding
modules allows GSMN to outperform strong neural baselines and
almost reach an expert policy performance. Finally, we analyze
the learned map representations and show that using an explicit
map leads to an interpretable instruction-following model.

I. INTRODUCTION

Autonomous navigation from high-level instructions re-
quires solving perception, planning and control challenges.
Consider the navigation task in Figure 1. To complete the task,
a quadcopter must reason about the instruction, observations
of the environment, and the sequence of actions to execute.
Engineered systems commonly address this challenge using
modular architectures connected by curated intermediate rep-
resentations, including, for example, a perceptual module for
object localization, a grounding module to map localization
results to the instruction, and a planner to select the trajectory.
The required engineering effort is challenging to scale to com-
plex environments. In this paper, we study a learning-based
approach to directly predict continuous control commands
given an instruction and visual observations. This approach
offers multiple benefits, including not requiring explicit de-
sign of intermediate representations, implementing planning
procedures, or separately training multiple sub-models. We
demonstrate the effectiveness of our approach on continuous
control of a quadcopter for navigation tasks specified with
symbolic instructions.

Mapping instructions to actions on a quadcopter requires
addressing multiple challenges, including building an envi-
ronment representation by reasoning about observations, re-
covering the goal from the instruction, and continuous control
in a realistic environment. We address these challenges with
the Grounded Semantic Mapping Network (GSMN) model

‘ Go to the right side of the rock‘

Fig. 1: High-level instruction in our navigation environment,
and an illustration of the goal position and trajectory that the
agent must infer and follow given its observations.

(Figure 2). The model consists of a single neural network
that explicitly maintains a semantic map by projecting learned
features from the agent camera frame into the global reference
frame. The map representation is learned from data and can
include not only occupancy probabilities, but also high-level
semantic information, such as object classes and descriptions.
The alignment between the map and the environment enables
the agent to accumulate memory of features that disappear
from the view and avoid the difficulty of reasoning directly
about partially-observed first-person observations.

We train the agent to mimic an expert policy using a variant
of DAGGER [44]. The flexibility of the model makes learning
generalizable representations from instructions, observations,
and expert actions challenging. We use a set of auxiliary
objectives to help the different parts of the model specialize
as expected. For example, we classify the objects mentioned
in the instruction from the intermediate map. The auxiliary
objectives also solve the credit assignment problem. Any
failure can be easily attributed to one of the components, but
the entire model is still trained end-to-end, which allows later
modules to correct previous mistakes.

We evaluate our approach in a simulated quadcopter en-
vironment with language instructions generated from a pre-
defined set of templates. Our model is continuously queried
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Fig. 2: A high-level illustration of the GSMN model. Each
block represents a neural network or a deterministic differ-
entiable computation. We overlay the different map repre-
sentations created on an overhead view of the environment
to illustrate how the different maps interpret the various
environment elements.

11: “Go to the left side of coach”

and updated at a rate of 5Hz. Our experiments demon-
strate that GSMN significantly outperforms standard recur-
rent architectures that combine convolutional and recurrent
layers. Our simulator, code, data, and models are available
at https://github.com/clic-lab/gsmn.

II. TECHNICAL OVERVIEW
A. Task

We model instruction following as a sequential decision-
making process [7]. Let X’ be the set of instructions, S the set
of world states, and A the set of all actions. An instruction
u is a sequence of n tokens (uq,...,uy). Given a start state
51 € S and an instruction v € X, the agent executes u by
generating a sequence of actions, where the last action is the
special action STOP. The agent behavior in the environment
is determined by its configuration ¢, which specifies the
controller setpoints. Actions deterministically modify the agent
configuration or indicate task completion. An execution is an
m-length sequence ((s1,a1),...,(Sm,am)), where s; € S is
the state observed, a; € A is the action updating the agent
configuration and a,, = STOP.

In our navigation task, the agent is a quadcopter flying
between landmarks in a simulated 3D environment. The state
s specifies the full configuration of the simulator, including the
positions of all objects and the quadcopter configuration. The
quadcopter location in the environment is given by its pose
P = (p,0), where p is a position and 6 is an orientation. The
quadcopter has a proportional-integral-derivative (PID) flight
controller that maintains a fixed altitude, and takes as input the
configuration ¢, which consits of two target velocities: linear
velocity v € R and angular yaw-rate w € R. An action a
is either a tuple (v,w) of velocities or the completion action
STOP. Given an action a; = (vj,w,), we set ¢; = (vj,w,). We
observe the environment and generate actions at a fixed rate of
5Hz. The environment simulation runs continuously without
interruption. Between actions, the quadcopter configuration is
maintained. To correctly complete a task, the agent must take
the STOP action at the goal position.

B. Model

The agent observes the environment via a monocular camera
sensor, and has access to its location. We distinguish between

the world state, which includes the locations of all landmarks
and the agent, and the agent context s. The agent has access
to the agent context only, including for choosing actions. The
agent context §; at step j is a tuple (u, I;, P;), where u € X
is an instruction, I; is an RGB image, and P; is the agent
pose. I; and P; are generated from the current world state
s; using the functions IMG(s;) and LocC(s;) respectively.
We model the agent using a neural network that explicitly
constructs and maintains a semantic map of the environment
during execution, and uses the instruction to identify goals in
the map. At each step j, the network takes as input the agent
context 5;, and predicts the next action a;. We formally define
the agent and model in Section IV.

C. Learning

We assume access to a training set of N examples
{(u(i),sgz),E(i))}ij\il, where ng) is a start state, u(") is an
instruction, and 20 = (P ... P} is a sequence of m
poses that defines a trajectory generated by a demonstration
execution of w. The first pose P;" is the quadcopter pose
at state sgz). Given =(9), we design an expert oracle policy
using a simple path-following carrot planner tuned to the
quadcopter dynamics. During training, for all states, the oracle
policy generates actions that move the quadcopter towards and
along the demonstration path. We train the agent to mimic the
expert policy using a variant of the DAGGER [44] algorithm
(Section V).

D. Evaluation

We evaluate task completion error on a test set of M ex-
amples {(u(®, sg ),p( Doyl )) M, where u(" is an instruction,

5 V) is a start state, py” is the goal position, and ré) is the suc-
cessful completion region defined by an area surrounding p( ),
We consider a task as completed correctly if the quadcopter

takes the STOP action inside rg (Sectlon VID).

III. RELATED WORK

Mapping natural language instructions to actions has been
studied extensively, both using physical robots [7, 16, 25,

, 34, 49, 50] and virtual agents [2, 4, 29, 30, 32]. These
approaches are based on a modular system architecture, with
separate components for language parsing, grounding, map-
ping, planning, and control. While decomposing the problem,
the modular approach requires to explicitly design symbolic
intermediate representations, a challenging task for large and
complex environments. In contrast, we study a single model-
approach using a differentiable model architecture that maps
visual observations directly to actions, while learning inter-
mediate representations. This type of approach was studied

recently for virtual agents with discrete control [1, 5, 17, 33].
In contrast, we study a continuous control problem using a
realistic quadcopter simulator. We follow existing work [5, 17]

and abstract the natural language problem by using synthet-
ically generated language. This provides a simple way to
specify high-level goals, while focusing our attention on the
problem of mapping, planning and task execution.
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Fig. 3: An illustration of our model architecture. The instruction u is encoded with an LSTM network into an instruction
embedding at the start of an episode. At each timestep, image features are produced with a custom residual network [ResNet;

] network and projected on the ground in the global reference frame using a 3D projection based on a pinhole camera model.
The projected environment representations are accumulated through time using a masked leaky integration into a persistent map
of the world. This map is then filtered to reason about the relevant objects and the most likely goal location using convolutional
filters produced from the instruction embedding. From the resulting goal and relevance maps, a dense perceptron (Dense MLP)
controller produces a velocity command that drives the robot towards its goal.

Recently, using a single differentiable model to map from
inputs to outputs across multiple sub-problems has been ap-
plied to learning robotic manipulation and control skills [26,

] and visual navigation in simulated environments [43].
Similar to recent single model instruction following meth-
ods [5, , 33], these policies are able to learn to effec-
tively complete complex tasks, but suffer from a lack of
interpretability. In contrast, we design our model to provide
an interpretable view of the agent’s understanding via the
semantic map. Our goal is orthogonal to providing safety
guarantees [15, 22, 43].

Key to our approach is building a semantic map of the
environment within a neural network model. Building environ-
ment maps that incorporate information about the semantics of
the environment has been studied extensively, commonly with
probabilistic graphical models [9, 38, 41, 42, 50]. In contrast,
our semantic map is a differentiable 3-axis tensor that is part
of a larger neural network architecture and stores a feature
vector for every observed location in the world. This approach
does not require maintaining a distribution over likely maps.
Using a differentiable mapper and planner has been studied
for navigation in discrete environments [11, 12, 23, 37]. We
work with continuous action and state spaces, and emphasize
efficient learning from limited data by incorporating explicit
projection and simple aggregation instead of learned memory
operations. Including affine transformations and projections
inside a neural network has been previously studied in vision
and graphics [21, 51]. We use these techniques for learning
map-based environment representations.

We evaluate our approach on a realistic simulated quad-
copter performing a high-level navigation task. Quadcopters
have been recently studied with the goal of learning low-level
continuous control [36, 45] or navigation policies [10, 46],
where navigation was cast as traversable space prediction
using supervised learning. In contrast, we focus on mapping
high-level symbolic instructions directly to control signals.

For learning, we use imitation learning [3, 6, 47], where
an agent policy is trained to mimick an expert policy while

learning how to recover from errors not present in the expert
demonstrations. We use a variant of DAGGER [44], where
states and actions are aggregated from an expert policy for
supervised learning. Hussein et al. [20] provides a general
overview of imitation learning.

IV. MODEL ARCHITECTURE

We model the agent policy m with a neural network. At
time j, the input to the policy is the agent context 5;, and
the output is an action a;. The action a; modifies the agent
configuration c;. This process continues until the STOP action
is predicted and the agent stops. The agent context 5; is a
tuple (u,I;, P;), where u is the instruction, I; = IMG(s;) is
the current observation, and P; = LOC(s;) is the pose of the
agent. Figure 3 illustrates our network architecture.

Our model design incorporates explicit spatial reasoning
and memory operations into a differentiable neural network.
This relieves the neural network from learning to accomplish
complex coordinate transformations that map between the
camera and the world reference frame and from learning to
integrate current and past observations into a coherent world
model. We incorporate a 3D projection and a coordinate frame
transformation into our image processing pipeline. Feature rep-
resentations seamlessly propagate through these operations in
a differentiable manner, while the transformations themselves
are not learned. The projected image representation is added
into a persistent semantic map defined in the global reference
frame and aligned with the environment, which allows the
agent to easily retain information accumulated through time.
This map is similar in principle to the way simultaneous
localization and mapping (SLAM) systems store low-level
features, such as LIDAR bounces, depth readings or feature
descriptors. However, unlike SLAM maps, the features stored
are representations learned by our differentiable mapper to
directly optimize the task performance.

A. Instruction and Image Embedding

We generate representations for both the input text w and the
image I. We use a recurrent neural network [RNN; &] with a



2
1
2
1
2
1

S

InstanceNorm

InstanceNorm
Conv3x3

LeakyReLU
InstanceNorm

LeakyReLU

®
v

)
kS
&
x

S
o
@

a

3
o<

ResBlock Stride:

32x18x32

1)
32
&
~

S
o
o

a

3
4

ResBlock Stride:

64 x 36 x 32

) &
3| |=
& &
Sl
] 3
g °
-} o
2 2
3 8
-4 o

17}
=
~ &
o R
I 2
IS £
< S
o S
b
g

256 x 144 x 32

Fig. 4: Illustration of our ResNet architecture. The ResNet
architecture (left) contains six residual blocks (right). The
ResNet has 13 convolutional layers: each block has two
convolutional layers and there is one layer at the ResNet input.

long short-term memory recurrence [LSTM; 18] to generate a
sentence embedding of the input instruction text ¢, by taking
the last LSTM output.

Given the observed image I;, we compute a feature rep-
resentation FjC = RESNET(J;) using a 13-layer residual
convolutional neural network [14] (Figure 4). For a given
image I; of size HxWx3, Ff is a feature map of size
(H/ fscate) X(W/ fscatle)xC'y, where the factor ficae is a hyper-
parameter of the RESNET. Each pixel in F jc is a feature-
vector of C'y elements (i.e., channels) that encodes proper-
ties of the corresponding image region receptive field. Each
pixel in ch embeds a different image region, which allows
recovering locations of objects visible in I; given ch. In our
implementation, Cy = 32, fiae = 8 and the receptive field
of each feature vector in FjC is a 61x61 neighborhood in the
image I;. The resolution of I; is 256x144.

B. Feature Projection

The image representation ch is oriented in the first-person
view corresponding to the camera image plane. We project
ch on the ground in the world reference frame to align with
the environment and integrate it with previous observations.
The current location of each element feature vector ¢ in FjC
is represented in homogeneous 2D pixel coordinates as p{ =
[z, yE, 1]T, where ¢ and y¢ are the 2D coordinates of i in
ch. We use a pinhole camera model to project each element
1 to the ground in the world reference frame:

YV = T RAYCAST(K ~1p¢),

where K is the camera matrix, Tg’ is a camera-to-world affine
transformation deterministically computed from the agent pose
Pj, and RAYCAST is a function that maps a ray to the point
where the ray intersects the ground plane at elevation 0. Poling
[40] provides a brief tutorial of camera models. We construct
the observation representation FjW in the world reference
frame by copying each element ¢ in ch to the location p}" in
FJW. To generate the final FjW, for each pixel, we interpolate
the neighboring points by applying bi-linear interpolation [21].
This creates a discretized tensor representation of FJW and
resolve cases where multiple elements are placed in the same
pixel location.

C. Semantic Map Accumulation

We use the transformed feature map FJW to update a
persistent semantic map SJW, where we accumulate visual
information through time. The map SJW is a 3D tensor with
two spatial dimensions and one feature vector dimension to
store the different channels generated by the RESNET. Given
the feature map FjW computed at step j and the semantic map
Sjvzl from step j — 1, we compute the semantic map S]W at
step j with a leaky integrator filter:

wo_ w w w
S =0-=NSL +AF oM7) +
w w
AS/L 01 =M7)),

where M jW is a binary-valued mask indicating which pixels in
S]W are within the agent’s field of view and © is an element-
wise multiplication. This update ensures that (a) unobserved
locations (e.g., behind the robot, outside the view of the
camera) are not updated, and (b) information is combined with
what is already in the map so that an erroneous reading does
not fully overwrite valid prior information. The model is able
to tolerate moderate amounts of noise in the pose estimate, a
likely source of noise in physical robots with GPS or SLAM
based localization. We test noise-tolerance in Section VIII.

D. Language Grounding and Goal Prediction

We use the instruction embedding ¢,, to create two maps
from the semantic map: a relevance map that accounts for
landmarks mentioned in the instruction and a goal map to
identify the goal location. To compute the relevance map, we
use the instruction embedding to create a language-dependent
1x1 convolutional filter:

CONViabel = Wiabel®u + biabel,

where ¢,, is the instruction embedding and Wi,pe and bjapel
are learned parameters. The relevance map R"Y aims to
identify the objects in the semantic map mentioned in wu:'

R;/V = CONVapel (S;/V)

The goal map G* is computed from the relevance map with
wider convolutions to capture spatial relationships. While the
relevance map is computed in the global world reference
frame, instructions are usually given in the ego-centric agent
reference frame. Before computing the goal map, we compute
Rf by transforming R}/V to the agent reference frame. We use
a separate convolution filter computed from the instruction w:

CONVspatial = Wspatial¢u + bspatial )

where  Wipatiat  and  bgpatiat  are  learned parameters.
CONVgpatial consists of two cascaded 3x3 convolutions.? The
goal map is computed as

Gf = CONVspatiﬂl(Rf)

IThe 1x1 convolution operation is equivalent to an affine transformation
performed on each value (i.e., feature vector) in S]W. This allows the output
map to store semantic information conditioned on the instruction.

2Both convolutions use a kernel size of 3 and LEAKYRELU activations.
The second convolution uses a dilated kernel [52] with dilation of 3 to increase
the receptive field of the filter.



E. Control

To compute the output action a;, we use a densely-
connected two-layer perceptron. Densely connected neural
networks have been shown as more stable and faster to train
than standard feed-forward models [19]. The input to the
perceptron is a concatenation of pre-processed relevance and
goal maps and the instruction embedding:

$p., = [RESBLOCK g(R}'), RESBLOCK (G, du]

where RESBLOCK(.) is a residual block (Figure 4) with a
stride of two to reduce the spatial dimensionality of the maps.
Formally, the densely-connected perceptron is:

¢ZJ1 = Z(WIH ¢pm + bl)l)
U“j = sz [¢pin ) ¢P1] + bpz ’

where () is a LEAKYRELU activation function [
is the output action of the policy 7.

] and a;

F. Initial Values and Parameters

At the beginning of execution every element of S} is set
to 0. The model parameters O include the word embeddings
used as input for the LSTM, the LSTM, the RESNET,
RESBLOCK R, RESBLOCK and the matrices and bias vectors:
Wlabeh Wspatiah Wpl’ ng, blabel’ bspatiah bpp bpz- The
map transformations and observation projections are computed
deterministically given the agent pose.

V. LEARNING

We estimate the parameters of the model © using imitation
learning with DAGGERFM, a variant of DAGGER [44] for
memory-limited training scenarios.” While DAGGER provides
realistic sample complexity and has been shown to work on
robotic agents [45], it requires maintaining an ever-growing
dataset to provide stable training. In complex continuous
visuo-motor control settings, such as ours, the number of
samples generated is large and each sample requires significant
amount of memory. This quickly results in exhaustion of
memory resources. DAGGERFM trades the guarantees of
DAGGER for a fixed memory budget.

We assume access to a training data of N examples
{(sgz),u(i),E(i))}f\il, where s(lz) is a start state, u(") is an
instruction, and 2 = (Py,..., P,,) is a demonstration
sequence of m poses starting at Pl(i) = LOC(SY)). Given an
expert policy 7* and a training example (sgz),u(i), 2@), we
minimize the expected distance between the policy actions
a = m(5) and the expert action a* = 7*(P,E(®). The
expectation is computed over the state distribution d induced
when executing the learned policy 7 starting from sgl) and
using u(?):

‘](@) = Esjwd,r [Da(av a*)] (D

During learning, we sample states s; from the state distribution
dz induced by the mixture policy 7, which converges to d,

3FM in DAGGERFM stands for fixed memory.

Algorithm 1 DAggerFM Training Algorithm for imitation
learning with capped dataset size.
D* + collect_dataset(n*, Ny)
Tp, < train_supervised(D*)
Sample initial dataset D ~ D* of size N
for i =1 to K do
Discard Ny trajectories from D uniformly at random
Decay B: 3 + (Bo)’
Let 1, = ™ + (1 - B)ﬂ'i
D; + collect_dataset(#;, Ng) of size Ny
D+ DUD;

Ti+1 < train_epoch(D,m;)
return 7

The distance metric D, is defined as:

Dq(a,a”) = |lv—v*[3 + |lw — w*[I3 +

[p:topl()g(pstop) + (1 - p:top)IOQ(l - pstop)] )

where a = (v,w, Pstop) and a* = (v*,w*, p¥,,)- The policy
outputs the STOP action when pgop > 0.5.

Algorithm 1 shows the training algorithm. Learning begins
by collecting a dataset D* of N, trajectories using the ex-
pert policy 7* for supervised learning. Following supervised
training on D*, we sample the initial dataset D from D*. We
then iterate for K iterations. At each iteration, we discard
Ny trajectories from D, collect new Ny trajectories using a
mixture policy that interpolates the oracle 7* and the current
policy 7;, update the dataset with the new trajectories, and do
one epoch of gradient updates with the aggregated dataset.

DAGGERFM does not provide a convergence guarantee for
a tabular policy. However, we empirically observe that the
dataset performs a stabilizing function similar to that of replay
memory in deep Q-learning [35].

VI. AUXILIARY OBJECTIVES

The decomposition of the model architecture according to
the different types of expected reasoning (i.e., perception,
grounding, and planning) allows us to easily define appropriate
auxiliary objectives. These objectives encourage the different
parts of the model to assume their intended functions and solve
the credit assignment problem. We add four additive auxiliary
objectives to the training objective:

J(@) = JaCt(@) + )‘vaercept(@> +
)‘lJlang(@) + )‘nground(@) + )‘pJplan(@) )

where J,et(+) is the main objective (Equation 1) and the four
auxiliary objectives are Jpercept (), Jiang(-)s Jerouna(:), and
Jpian (). Each auxiliary objective is weighted by a coefficient
hyper-parameter.

The perception objective Jpercept(-) aims to require the
perception components of the model to correctly classify
visible objects. At time j, for every object o visible in I;, we
classify the element in the semantic map S JW corresponding to
its location in the world. We apply a linear softmax classifier



to every semantic map element that spatially corresponds to
the center of an object. The classifier loss is:

Jpercept(@) =T

where 9, is the true class label of the object o and y, is the
predicted probability. The instruction objective Jiang (-) defines
a similar objective for the instruction representation. Given an
instruction, it requires to classify the object mentioned and the
side of the goal (e.g., right, left). The objective is otherwise
identical to Jpercept ().

The grounding and planning objectives Jgrounda(-) and
Jplan () use binary classification on positions in the relevance
and goal maps. Both objectives use a binary cross-entropy
loss. The relevance map objective Jgrouna(+) classifies each
object on the relevance map as to whether it was mentioned
in the instruction u» or not. For each timestep j, we average
the objective over all objects in the agent’s field of view. The
object mentioned in the instruction is a positive example, and
all others are negative examples. The objective is:

—1 A T N T
Jgrouna(©) = > liplog(yh)+(1—i5)log(1—yp)),
|Orpv| oeOmoy

where Oppy is the set of objects visible from the agent
perspective, ¢, indicates if the object was mentioned in the
instruction u, and y. is the prediction of a linear classifier.
The goal map objective Jpian(-) is a similar binary objective,
and classifies a point on the goal map as being the goal or not.
Positive examples are taken form the annotated goals. For each
goal, a negative example is randomly sampled.

VII. EXPERIMENTAL SETUP
A. Environment

We evaluate our approach in randomly generated virtual
environments in Unreal Engine. Figure 5 shows an example
environment. Each environment consists of a square-shaped
green field with edge length of 30 meters and |O| landmarks.
We choose |O| uniformly at random between 6 and 13 inclu-
sive and draw landmarks from a pool of 63 3D models without
replacement. Landmarks are placed in random locations but
no closer than 2.7 meters to the environment edges and at
least 1.8 meters apart. We fill the remaining area with random
decorative lakes. The quadcopter starts in one of the four
corners of the field, facing inwards with a full view of the field.
This allows us to validate the model capabilities independently
of an exploration strategy.

B. Data

For each environment, we randomly sample a pair 7 =
(v¢,~%), where 4 is one of the 63 landmarks and 7* is one
of {left, right, front, back}. Given -, we generate the instruc-
tion u, of the form "go to the S side of C'", and a goal location
pg. There are 45 unique noun phrases for the 63 landmarks,
and some instructions are ambiguous and unsolvable by even a
perfect model. The goal location p is placed between 2.25 and
3.75 meters from the landmark depending on its size, on the

Go to the back side of wooden house

Fig. 5: Example environment (left) with 9 objects and an
instruction. Ground truth trajectory is shown in red. The trajec-
tory taken by our learned agent policy is in blue. The shaded
circle is the target landmark region with pc —p,, < Dgtop, and
the quadrant highlighted in green is the successful completion
region. On the right, from the top: the first observation I,
the last observation I37, and the final relevance map R;‘{‘é
produced by GSMN model. The relevance map R}, shows
the instruction grounding result with both houses highlighted
in blue and the wooden house receiving the stronger highlight.
The agent correctly stops in the completion region even though
the house is outside its field of view in I37

side corresponding to s when viewed from the start position
po- We generate the ground-truth demonstration trajectory =
by simulating a point-mass attracted to p, with landmark
avoidance constraints. We generate a total of 3500 training,
750 development and 750 testing environments. The same
63 landmarks are found in all dataset splits, but in different
combinations and locations. We additionally report results
on a pruned test set, where environments with ambiguous
instructions have been excluded.

C. Evaluation Metric

Given the instruction template 7, let pc be the location
of the target landmark ¢ in the environment. We define the
target landmark region as the circular area where the Euclidean
distance of the agent’s last position p,, is less than a threshold
Dgyop from pc. We subdivide the target landmark region into
4 quadrants, corresponding to left, right, front and back, with
respect to the agent’s starting position. We define the task as
successfully completed if the agent outputs the action STOP
within the correct quadrant 7,4 of the target landmark region
(see Figure 5). We use Dg;,, = 6 meters.

We additionally report the mean and median of the distance
between p,, and the ground truth goal position p,, as well as
the fraction of executions in which the agent stopped in the
target landmark region, but on any side of the landmark.



Success Rate (%)

Distance to Goal (m)

Overall Landmark Mean Median

GSMN(Ours) 83.47 (87.21) 89.33 (93.38) 2.67 (2.24) 1.21 (1.12)
GSMN W/0 Jplan  69.89 (71.03)  84.76 (89.56) 3.19 2.91) 1.63 (1.65)
GS-FPV 2493 (27.35)  56.80 (56.03) 7.23 (7.15) 5.14 (4.97)
GS-FPV-MEM 28.67 (33.82)  60.13 (65.74) 6.72 (6.11) 4.34 (3.95)
Oracle (Expert) 87.87 (86.47)  98.40 (98.10) 0.74 (0.78) 0.67 (0.73)
Avg # Steps Fwd 3.32 (3.98) 49.00 (14.12)  11.96 (13.43)  12.23 (13.71)
Random Point 2.13 9.59 15.14 15.05
Random Landmark 17.31 17.31 13.26 13.37

TABLE I: Test results. The numbers in brackets show performance on a pruned version of the test set containing only the 690

environments that do not include ambiguous instructions.

Success Rate (%) Dst. to Goal (m)

Overall Landmark Mean  Median
GSMN(Ours) 79.20 86.00 2.98 1.21
GSMN- Jplan 64.40 82.00 3.61 1.75
GSMN- Jground 5.73 17.73 10.69 10.64
GSMN- Jjang 41.20 57.20 6.62 3.37
GSMN- Jpercept 50.00 63.73 5.89 2.55
GSMN+ npos 74.40 85.33 3.01 1.41

TABLE II: Development results. We compare our approach
against ablations of the different auxiliary objectives and a
model that observes noisy poses GSMN+ 7.

D. Systems

We demonstrate the performance of our model GSMN
against two neural network baselines that use first-person
view: GS-FPV-MEM and GS-FPV. GS-FPV-MEM pro-
cesses the feature map FC in the first-person view using
the same language-derived filters CONV}ape1 and CONVgpatial
and applies the same auxiliary objectives to all intermediate
representations, resulting in per-timestep relevance and goal
maps R and G in the first-person view. The only difference
is that no 3D projection takes place and consequently no
environment map is built. Since GSMN uses the semantic map
as spatial memory, GS-FPV-MEM uses an LSTM memory
cell for this purpose [5, 17]. We store the current R¢ and
G in the LSTM cell and take the current output of the
LSTM as an additional input to the DENSEMLP. GS-FPV
is a baseline with the same architecture as GS-FPV-MEM,
but without the LSTM memory. We do not use Jpla, With
the baselines because the goal location may not be visible
in view. The direct comparison should be made against the
GSMN W/0 Jpjan ablation, which uses the the same set of
auxiliary objectives.

We use GS-FPV and GS-FPV-MEM as baselines to
clearly quantify the contribution of the semantic mapping
mechanism. We also compare against three trivial baseline
models: (a) take the average action for average number of
steps (30); (b) go to a random point in the field; and (c) go
to the correct side of a random landmark in the field. As an
upper bound, we compare against the expert policy.

Finally, we study the sensitivity of our model to simple noise
in the position estimate by adding Guassian noise. We consider
the pose at time j as a 3D position and 3D Euler angles
P; = [pa, Py, Pz, 0z, 0y, 6.]. At each timestep j, we replace the
pose P;j with Pj = P; +nj;, where n; = [1p,,,7p,, 7p.., 0,0, 0]
is additive noise. Each noise component 7, , is drawn at
every timestep j independently at random from a Gaussian
distribution with zero mean and variance of 0.5 meters.

E. Hyper-parameters and Implementation Details

We train all neural network models using the same pro-
cedure. We collect a supervised dataset D* consisting of
sequences of observations and actions on all 3500 training
environments by executing the expert policy. We then train on
D* for 30 epochs, and execute DAGGERFM for 100 epochs
with Np = 520 and M = 20 (Section V). We optimize
the parameters © of the policy 7 using ADAM [24] with
a = 0.001, learning rate of 0.001, L2 regularization with
~ = 1075, and the gradient BJG()”). We set A\, A\g, A;, and
Ap to 0.1. We execute the trained policies and baselines
on a simulated quadcopter using the Microsoft AirSim [48]
plugin for Unreal Engine 4.18, which captures realistic flight
dynamics. We control the quadcopter by sending velocity
commands to the flight controller in its local reference frame,
and limit the linear velocity to 1.6 m/s and the angular velocity
to 2.44 rad/s.

VIII. RESULTS

Table I shows our test results. Our approach significantly
outperforms the baselines. While our full approach includes
the goal auxiliary objectives, which the baselines do not have
access to, we observe that GSMN W/0 Jp14,, Which ablates
this auxiliary objective, also outperforms the RNN baseline
GS-FPV-MEM. Our full model GSMN performs very closely
to the expert policy, especially when removing ambiguous
instructions. In general, the oracle performs imperfectly due
to the simple model we use. For example, at times, the agent
reaches the goal position in high speed and ends up stopping
just outside the correct completion boundary.

Table II shows development results. We ablate each aux-
iliary objective. Each objective contributes to the model per-
formance. We observe that the grounding objective Jground 18



’ Go to the right side of fir tree ‘

‘ Go to the left side of box‘

Fig. 6: Two task failures using our approach. The ground truth and policy trajectories are shown in red and blue respectively.
On the left, the failure is due to an ambiguous instruction. The Relevance Map R overlaid on the environment reveals that
the agent has correctly grounded the instruction to the two fir trees present, while ignoring the other objects. The goal map
G" shows that the goal location is inferred for both fir trees. The agent correctly reasons about the task, but the ambiguity
confuses it. On the right, box is incorrectly grounded to multiple objects as seen in R". Given this wrong grounding, the
goal location is inferred to the correct side (left) of all grounded objects, as shown in G"Y. The agent then executes given the
confused goal map, which causes it to fly through the correct goal and towards one of the wrongly detected goals.
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Fig. 7: Accuracy curves for main objective (Juct(+)) and
the different auxiliary objectives: perception (Jpercept(:))s
instruction understanding (Jiang(+)), grounding (Jground(:)),
and planning (ngund(-)). The curves show the progress of
learning in terms of individual accuracies during supervised
pre-training measured on the development set. We show the
curves for GSMN (left) and GS-FPV-MEM (right).

essential and without it the model fails to learn. The planning
auxiliary objective Jpan is the least important. This suggests
that after having successful grounding results, the set of simple
spatial relations we use is relatively easy to learn. We also
observe that our model is robust to moderate amount of
localization noise without a significant decline in performance.
This indicates the model potential for physical robotic systems,
where position estimates are likely to be noisy.

Figure 7 shows development accuracy of auxiliary objec-
tives during training as function of the number of epochs.
We observe that most auxiliary objectives converge for both
the GSMN model and the GS-FPV-MEM baseline. The
instruction landmark accuracy converges to a relatively low
value due to instruction ambiguity.

Our model enables us to easily visualize the agent percep-
tion and interpret the cause of errors. Figure 6 shows the visual
process we can use to identify if the perception, grounding,
planning, or control components failed.

1X. DISCUSSION

Neural network architectures have achieved remarkable per-
formance in various high-level tasks, but their applications

to the robotics domain have largely been limited to single,
repeated tasks [10, 26, 36] or required substantial amount of
training data due to high sample-complexity [39].

We show that a modular neural network architecture that
(a) assigns explicit roles to its subcomponents in the form
of auxiliary objectives; and (b) relieves the neural network
from having to learn spatial transformations or memory op-
erations that can be computed explicitly, can obtain strong
performance on a complex visual navigation task that requires
effective perception, symbol grounding, planning, and control.
The model is able to learn from limited amount of data,
and generalize to unseen environments. Key to enabling this
efficient learning is the combination of auxiliary objectives
and a modular architecture that results in explicitly solving
the symbol grounding problem [13] by spatial reasoning on a
high-level map representation.

There are several directions for future work that follow up
on limitations of our model and setup. A key problem that
is not addressed by our experiments is exploration. The wide
field-of-view provided to the agent abstracts away issues of
observability, and allows us to to focus on spatial reason-
ing and task-completion abilities. While the architecture is
not specifically designed for fully observable environments,
it is likely that the learning procedure will not be robust
to such challenges. A second potential direction for future
work is removing the auxiliary objectives. These objectives
require ground truth labels of landmarks in the environment
and meaning of the instruction. This type of information is
challenging to obtain in physical environments or when using
natural language instructions.
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