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Abstract—We propose a robust approach for the registration
of two sets of 3D points in the presence of a large amount of
outliers. Our first contribution is to reformulate the registration
problem using a Truncated Least Squares (TLS) cost that makes
the estimation insensitive to a large fraction of spurious point-
to-point correspondences. The second contribution is a general
framework to decouple rotation, translation, and scale estimation,
which allows solving in cascade for the three transformations.
Since each subproblem (scale, rotation, and translation estima-
tion) is still non-convex and combinatorial in nature, out third
contribution is to show that (i) TLS scale and (component-wise)
translation estimation can be solved exactly and in polynomial
time via an adaptive voting scheme, (ii) TLS rotation estimation
can be relaxed to a semidefinite program and the relaxation is
tight in practice, even in the presence of an extreme amount
of outliers. We validate the proposed algorithm, named TEASER
(Truncated least squares Estimation And SEmidefinite Relaxation),
in standard registration benchmarks showing that the algorithm
outperforms RANSAC and robust local optimization techniques,
and favorably compares with Branch-and-Bound methods, while
being a polynomial-time algorithm. TEASER can tolerate up to
99% outliers and returns highly-accurate solutions.

I. INTRODUCTION

Point cloud registration is a fundamental problem in
robotics and computer vision and consists in finding the best
transformation (rotation, translation, and potentially scale) that
aligns two point clouds. It finds applications in motion estima-
tion and 3D reconstruction [27, 6, 17, 58], object recognition
and localization [19, 53, 56, 40], panorama stitching [3], and
medical imaging [2, 50], to name a few.

When the ground-truth correspondences between the point
clouds are known and the noise follows a zero-mean Gaussian
distribution, the registration problem can be readily solved,
since elegant closed-form solutions [28, 1] exist for the case of
isotropic noise, and recently proposed convex relaxations [9]
are empirically tight even in the presence of large anisotropic
noise. In practice, however, the correspondences are either
unknown, or contain a high ratio of outliers. Large outlier
rates are typical of 3D keypoint detection and matching
techniques [52, 46]. Therefore, it is common to use the
aforementioned methods within a RANSAC scheme [21].

While RANSAC is a popular approach for several robust
vision and robotics problems, its runtime grows exponentially
with the outlier ratio [11] and it can perform poorly with ex-
treme outlier rates. The capability of tolerating a large amount
of outliers is of paramount importance in applications where

(a) Cluttered scene (b) Registration result
Fig. 1. We address 3D point cloud registration with extreme outlier rates.
(a) Bunny dataset spoiled with 80% outlier correspondences: finding/localizing
the bunny is challenging even for a human; (b) The proposed Truncated least
squares Estimation And SEmidefinite Relaxation (TEASER) is able to find the
correct inlier correspondences (green) and compute the correct registration
result in polynomial time. TEASER is robust to 99% outlier correspondences.

the correspondences are unknown and when operating in the
clutter (e.g., object pose estimation in the wild). Moreover,
even when the correspondences are known but uncertain, it
is desirable to develop registration techniques that can afford
stronger performance guarantees compared to RANSAC.

This paper is motivated by the goal of designing an approach
that (i) can solve registration globally (without relying on an
initial guess), (ii) can tolerate extreme amounts of outliers
(e.g., when 99% of the measurements are outliers), (iii) runs
in polynomial time, and (iv) provides formal performance
guarantees. The related literature, reviewed in Section II, fails
to simultaneously address all these aspects, and only includes
techniques that are robust to moderate amounts (e.g., 60%) of
outliers and lack optimality guarantees (e.g., FGR [59]), or are
globally optimal but run in exponential time in the worst case,
such as branch-and-bound (BnB) methods (e.g., Go-ICP [55]).

Contribution. Our first contribution (presented in Sec-
tion III) is to reformulate the registration problem using a
Truncated Least Squares (TLS) cost that is insensitive to a large
fraction of spurious data. We name the resulting problem the
Truncated Least Squared Registration (TR) problem.

The second contribution (Section IV) is a general framework
to decouple scale, rotation, and translation estimation. The idea
of decoupling rotation and translation has appeared in related
work, e.g., [39, 37, 11]. The novelty of our proposal is
threefold: (i) we develop invariant measurements to estimate
the scale ([37, 11] assume the scale is given), (ii) we make
the decoupling formal within the framework of unknown-but-



bounded noise [42], and (iii) we provide a general graph-
theoretic framework to derive these invariant measurements.

The decoupling allows solving in cascade for scale, rotation,
and translation. However, each subproblem is still combina-
torial in nature. Our third contribution is to show that (i)
in the scalar case TLS estimation can be solved exactly in
polynomial time using an adaptive voting scheme, and this
enables efficient estimation of the scale and the (component-
wise) translation; (ii) we can prune a large amount of outliers
by finding a maximal clique of the graph defined by the invari-
ant measurements; (iii) we can formulate a tight semidefinite
programming (SDP) relaxation to estimate the rotation, (iv)
we can provide per-instance bounds on the performance of
the SDP relaxation. To the best of our knowledge, this is the
first polynomial-time algorithm for outlier-robust registration
with computable performance guarantees.

We validate the proposed algorithm, named Truncated least
squares Estimation And SEmidefinite Relaxation (TEASER), in
standard registration benchmarks as well as robotics datasets,
showing that the algorithm outperforms RANSAC and robust
local optimization techniques, and favorably compares with
Branch-and-Bound methods, while being a polynomial-time
algorithm. TEASER can tolerate up to 99% outliers (Fig. 1)
and returns highly-accurate solutions.

II. RELATED WORK

There are two established paradigms for the registration
of 3D point clouds: Correspondence-based and Simultaneous
Pose and Correspondence methods.

A. Correspondence-based Methods

Correspondence-based methods first detect and match 3D
keypoints between point clouds using local [52, 24, 46, 47]
or global [19, 33] descriptors to establish putative correspon-
dences, and then either use closed-form solutions [28, 1] in
a RANSAC [21] scheme, or apply robust optimization meth-
ods [59, 11] to gain robustness against outliers. 3D keypoint
matching is known to be less accurate compared to 2D
counterparts like SIFT and ORB, thus causing much higher
outlier rates, e.g., having 95% spurious correspondences is
considered common [11]. Therefore, a robust backend that can
deal with extreme outlier rates is highly desirable.

Registration without outliers. Horn [28] and Arun [1]
show that optimal solutions (in the maximum likelihood sense)
for scale, rotation, and translation can be computed in closed
form when the points are affected by isotropic zero-mean
Gaussian noise. Olsson et al. [44] propose a method based on
BnB that is globally optimal and allows point-to-point, point-
to-line, and point-to-plane correspondences. Recently, Briales
and Gonzalez-Jimenez [9] propose a semidefinite relaxation
that can deal with anisotropic Gaussian noise, and has per-
instance optimality guarantees.

Robust registration. Probably the most widely used ro-
bust registration approach is based on RANSAC [21, 15],
which has enabled several early applications in vision and
robotics [25, 41]. Despite its efficiency in the low-noise and

low-outlier regime, RANSAC exhibits slow convergence and
low accuracy with large outlier rates [11], where it becomes
harder to sample a “good” consensus set. Other approaches
resort to M-estimation, which replaces the least squares ob-
jective function with robust costs that are less sensitive to
outliers [51, 5, 35]. Zhou et al. [59] propose Fast Global
Registration (FGR) that uses the Geman-McClure cost function
and leverages graduated non-convexity to solve the resulting
non-convex optimization. Since graduated non-convexity has
to be solved in discrete steps, FGR does not guarantee global
optimality [11]. Indeed, FGR tends to fail when the outlier
ratio is high (>80%), as we show in Section VI. Bustos and
Chin [11] propose a Guaranteed Outlier REmoval (GORE)
technique, that uses geometric operations to significantly re-
duce the amount of outlier correspondences before passing
them to the optimization backend. GORE has been shown to
be robust to 95% spurious correspondences [11]. However,
GORE does not estimate the scale of the registration and has
exponential worst-case time complexity due to the possible
usage of BnB (see Algorithm 2 in [11]).

B. Simultaneous Pose and Correspondence Methods

Simultaneous Pose and Correspondence (SPC) methods
alternate between finding the correspondences and computing
the best transformation given the correspondences.

Local methods. The Iterative Closest Point (ICP) algo-
rithm [4] is considered a milestone in point cloud registration.
However, ICP is prone to converge to local minima and it only
performs well given a good initial guess. Multiple variants
of ICP [22, 48, 57, 38, 16, 32, 7] have proposed to use
robust cost functions to improve convergence. Probabilistic
interpretations have also been proposed to improve ICP conver-
gence, for instance interpreting the registration problem as a
minimization of the Kullback-Leibler divergence between two
Gaussian Mixture Models [30, 43, 31, 13]. All these methods
rely on iterative local search, do not provide global optimality
guarantees, and typically fail without a good initial guess.

Global methods. Global SPC approaches compute a glob-
ally optimal solution without initial guesses, and are usually
based on BnB, which at each iteration divides the parameter
space into multiple sub-domains (branch) and computes the
bounds of the objective function for each sub-domain (bound).
A series of geometric techniques have been proposed to
improve the bounding tightness [26, 8, 55, 14, 12] and increase
the search speed [55, 36]. However, the runtime of BnB
increases exponentially with the size of the point cloud and
it can be made worse by the explosion of the number of
local minima resulting from high outlier ratios [11]. Global
SPC registration can be also formulated as a mixed-integer
program [29], though the runtime remains exponential.

III. ROBUST REGISTRATION WITH
TRUNCATED LEAST SQUARES COST

In the robust registration problem, we are given two 3D
point sets A = {ai}Ni=1 and B = {bi}Ni=1, with ai, bi ∈ R3,



such that:

bi = sRai + t+ oi + εi (1)

where s > 0, R∈SO(3), and t∈R3 are an unknown scale,
rotation, and translation, εi models measurement noise, and oi
is a vector of zeros for inliers, or a vector of arbitrary numbers
for outliers. In words, if the i-th correspondence (ai, bi) is an
inlier, bi corresponds to a 3D transformation of ai (plus noise),
while if (ai, bi) is an outlier correspondence, bi is just an ar-
bitrary vector. SO(3)

.
= {R ∈ R3×3 : RTR = I3,det(R) =

+1} is the set of proper rotation matrices (where Id is the
identity matrix of size d). We consider a correspondence-based
setup, where we need to compute (s,R, t) given putative
correspondences (ai, bi), i = 1, . . . , N .

Registration without outliers. When εi is a zero-mean
Gaussian noise with isotropic covariance σ2

i I3, and all the
correspondences are correct (i.e., oi = 0,∀i), the Maximum
Likelihood estimator of (s,R, t) can be computed in closed
form by decoupling the estimation of the scale, translation,
and rotation, using Horn’s [28] or Arun’s method [1].

Robust registration. In practice, a large fraction of the
correspondences are outliers, due to incorrect keypoint match-
ing. Despite the elegance of the closed-form solutions [28, 1],
they are not robust to outliers, and a single “bad” outlier can
compromise the correctness of the resulting estimate. Hence,
we propose a truncated least squares registration formulation
that can tolerate extreme amounts of spurious data.

Truncated Least Squares Registration. We depart from
the Gaussian noise model and assume the noise is unknown
but bounded [42]. Formally, we assume the noise εi in (1) is
such that ‖εi‖≤ βi, where βi is a given bound.

Then we adopt the following Truncated Least Squares
Registration (TR) formulation :

min
s>0,t∈R3,R∈SO(3)

N∑
i=1

min

(
1

β2
i

‖bi − sRai − t‖2 , c̄2
)

(2)

which computes a least squares solution of measure-
ments with small residual ( 1

β2
i
‖bi − sRai − t‖2 ≤ c̄2),

while discarding measurements with large residuals (when
1
β2
i
‖bi − sRai − t‖2 > c̄2 the i-th summand becomes con-

stant and does not influence the optimization). The constant
c̄2 is typically chosen to be 1, while one may use a different
c̄2 to be stricter or more lenient towards potential outliers.

IV. DECOUPLING SCALE, ROTATION,
AND TRANSLATION ESTIMATION

We propose a polynomial-time algorithm that decouples the
estimation of scale, translation, and rotation in problem (2).
The key insight is that we can reformulate the measure-
ments (1) to obtain quantities that are invariant to a subset
of the transformations (scaling, rotation, translation).

A. Translation Invariant Measurements (TIM)

While the absolute positions of the points in B depend
on the translation t, the relative positions are invariant to

Fig. 2. Graph topologies for generating TIMs in the Bunny dataset.

t. Mathematically, given two points bi and bj from (1), the
relative position of these two points is:

bj − bi = sR(aj − ai) + (oj − oi) + (εj − εi) (3)

where the translation t cancels out in the subtraction. There-
fore, we can obtain a Translation Invariant Measurement (TIM)
by computing āij

.
= aj − ai and b̄ij

.
= bj − bi, and the TIM

satisfies the following generative model:

b̄ij = sRāij + oij + εij (TIM)

where oij
.
= oj−oi is zero if both the i-th and the j-th mea-

surements are inliers (or it is an arbitrary vector otherwise),
while εij

.
= εj−εi is the measurement noise. It is easy to see

that if ‖εi‖≤ βi and ‖εj‖≤ βj then ‖εij‖≤ βi + βj
.
= βij .

The advantage of the TIMs in eq. (TIM) is that their
generative model only depends on two unknowns, s and R.
The number of TIMs is upper-bounded by (N2 ) = N(N−1)/2,
where pairwise relative measurements between all pairs of
points are computed. For computational reasons, one might
want to downsample the TIMs. Theorem 1 below provides a
graph-theoretic way to create the TIMs.

Theorem 1 (Translation Invariant Measurements). Define the
vectors a ∈ R3N (resp. b ∈ R3N ), obtained by concatenating
all vectors ai (resp. bi) in a single column vector. Moreover,
define an arbitrary graph G with nodes {1, . . . , N} and an
arbitrary set of edges E . Then, the vectors ā = (A⊗I3)a and
b̄ = (A⊗ I3)b are TIMs, where A ∈ R|E|×N is the incidence
matrix of G, and ⊗ is the Kronecker product.

A proof of the theorem is given in the Supplementary
Material. Three potential graph topologies for generating TIMs
are illustrated in Fig. 2.

B. Translation and Rotation Invariant Measurements (TRIM)

While the relative locations of pairs of points (TIMs) still
depends on the rotation R, their distances are invariant to both
R and t. Therefore, to build rotation invariant measurements,
we compute the norm of each TIM vector:

‖b̄ij‖= ‖sRāij + oij + εij‖ (4)



We now note that for the inliers (oij = 0) it holds (using
‖εij‖≤ βij and the triangle inequality):

‖sRāij‖−βij ≤ ‖sRāij + εij‖≤ ‖sRāij‖+βij (5)

hence we can write (4) equivalently as:

‖b̄ij‖= ‖sRāij‖+õij + ε̃ij (6)

with |ε̃ij |≤ βij , and õij = 0 if both i and j are inliers or is an
arbitrary scalar otherwise. Recalling that the norm is rotation
invariant and that s > 0, and dividing both members of (6) by
‖āij‖, we obtain new measurements sij

.
=
‖b̄ij‖
‖āij‖ :

sij = s+ osij + εsij (TRIM)

where εsij
.
=

ε̃ij
‖āij‖ , and osij

.
=

õij
‖āij‖ . It is easy to see that

|εsij |≤ βij/‖āij‖ since |ε̃ij |≤ βij . We define αij
.
= βij/‖āij‖.

Eq. (TRIM) describes a translation and rotation invariant
measurement (TRIM) whose generative model is only function
of the unknown scale s. A summary table of the invariant
measurements and a remark on the novelty of creating TIMs
and TRIMs is presented in the Supplementary Material .

C. Our Registration Algorithm: Truncated least squares Esti-
mation And SEmidefinite Relaxation (TEASER)

We propose a decoupled approach to solve in cascade for
the scale, the rotation, and the translation in (2). The approach,
named Truncated least squares Estimation And SEmidefinite
Relaxation (TEASER), works as follows:

1) we use the TRIMs to estimate the scale ŝ
2) we use ŝ and the TIMs to estimate the rotation R̂
3) we use ŝ and R̂ to estimate the translation t̂ from the

original TLS problem (2).
The pseudocode is also summarized in Algorithm 1.

Algorithm 1: Truncated least squares Estimation And
SEmidefinite Relaxation (TEASER).

1 Input: points (ai, bi) and bounds βi (i = 1, . . . , N ),
threshold c̄2 (default: c̄2 = 1), graph edges E (default:
E describes the complete graph);

2 Output: s,R, t;
3 % Compute TIM and TRIM
4 b̄ij = bj − bi , āij = aj − ai , βij =

βi + βj ∀(i, j) ∈ E
5 sij =

‖b̄ij‖
‖āij‖ , αij =

βij

‖āij‖ ∀(i, j) ∈ E
6 % Decoupled estimation of s,R, t
7 ŝ = estimate_s({sij , αij : ∀(i, j) ∈ E}, c̄2)

8 R̂ = estimate_R({āij , b̄ij , βij : ∀(i, j) ∈ E}, c̄2, ŝ)
9 t̂ = estimate_t({ai, bi, βi : i = 1 . . . , N}, c̄2, ŝ, R̂)

10 return: ŝ, R̂, t̂

The following section describes how to implement the func-
tions in lines 7-9 of Algorithm 1. In particular, we show how
to obtain global and robust estimates of scale (estimate_s)
in Section V-A, rotation (estimate_R) in Section V-B, and
translation (estimate_t) in Section V-C.

Fig. 3. (a) confidence interval for each measurement sk (every s in the k-th
interval satisfies ‖s−sk‖

2

α2
k

≤ c̄2; (b) cardinality of the consensus set for
every s and middle-points mj for each interval with constant consensus set.

V. SOLVING THE REGISTRATION SUBPROBLEMS

A. Robust Scale Estimation

The generative model (TRIM) describes linear measure-
ments sij of the unknown scale s, affected by bounded noise
|εsij |≤ αij including potential outliers (when osij 6= 0). Again,
we estimate the scale given the measurements sij and the
bounds αij using a TLS estimator:

ŝ = arg min
s

K∑
k=1

min

(
(s− sk)2

α2
k

, c̄2
)

(7)

where for simplicity we numbered the measurements from 1
to K = |E| and adopted the notation sk instead of sij .

The following theorem shows that one can solve (7) in
polynomial time by a simple enumeration.

Theorem 2 (Optimal TLS Scale Estimation). For a given s ∈
R, define the consensus set of s as C(s) = {k : (s−sk)2

α2
k
≤ c̄2}.

Then, for any s ∈ R, there are at most 2K − 1 different non-
empty consensus sets. If we name these sets C1, . . . , C2K−1,
then the solution of (7) can be computed by enumeration as:

ŝ = arg min

fs(ŝi) : ŝi =

(∑
k∈Ci

1

α2
k

)−1 ∑
k∈Ci

sk
α2
k

,∀i

 (8)

where fs(·) is the objective function of (7).

Theorem 2, whose proof is given in the Supplementary
Material, is based on the insight that the consensus set can only
change at the boundaries of the intervals [sk −αk c̄, sk +αk c̄]
(Fig. 3(a)) and there are at most 2K such boundaries. The
theorem also suggests a straightforward adaptive voting algo-
rithm to solve (7), with pseudocode given in Algorithm 2. The
algorithm first builds the boundaries of the intervals shown
in Fig. 3(a) (line 4). Then, for each interval, it evaluates the
consensus set (line 12, see also Fig. 3(b)). Since the consensus
set does not change within an interval, we compute it at the
interval centers (line 6, see also Fig. 3(b)). Finally, the cost
of each consensus set is computed and the smallest cost is
returned as optimal solution (line 17).

The interested reader can find a discussion on the relation
between TLS and consensus maximization (a popular approach
for outlier detection [49, 37]) in the Supplementary Material.

Maximal clique inlier selection (MCIS). The graph theoretic
interpretation of Theorem 1 offers further opportunities to
prune outliers. Considering the TRIMs as edges in the graph
G(V, E) (where the vertices V are the 3D points and the edge



Algorithm 2: Adaptive Voting.

1 Input: sk, αk, c̄;
2 Output: ŝ, scale estimate solving (7);
3 % Define boundaries and sort
4 v = sort([s1−α1c̄, s1 +α1c̄, . . . , sK−αK c̄, sK+αK c̄])

5 % Compute middle points
6 mi = v2i−1+v2i

2 for i = 1, . . . , 2K − 1
7 % Voting
8 for i = 1, . . . , 2K − 1 do
9 Si = ∅

10 for k = 1, . . . ,K do
11 if mi ∈ [sk − αk c̄, sk + αk c̄] then
12 Si = Si ∪ {k} % add to consensus set
13 end
14 end
15 end
16 % Enumerate consensus sets and return best
17 return:

arg min

fs(ŝi) : ŝi =

(∑
k∈Ci

1

α2
k

)−1∑
k∈Ci

sk
α2
k

,∀i



set E induces the TIMs and TRIMs per Theorem 1), we can
use the scale estimate ŝ from Algorithm 2 to prune edges
(i, j) in the graph whose associated TRIM sij is such that
(sij−ŝ)2
α2

ij
>c̄2. This allows us to obtain a pruned graph G′(V, E ′),

with E ′ ⊆ E , where gross outliers are discarded. The following
result ensures that inliers form a clique in the graph G′(V, E ′)
enabling an even more substantial rejection of outliers.

Theorem 3 (Maximal Clique Inlier Selection). Edges corre-
sponding to inlier TIMs form a clique in E ′, and there is at
least one maximal clique in E ′ that contains all the inliers.

A proof of Theorem 3 is presented in the Supplementary
Material. Theorem 3 allows us to prune outliers by finding the
maximal cliques of G′(V, E ′). Although finding the maximal
cliques of a graph takes exponential time in general, there exist
efficient approximation algorithms based on heuristics [10, 45,
54] . In addition, under high outlier rates, the graph G′(V, E ′) is
sparse and the maximal clique problem can be solved quickly
in practice [20]. In this paper, we choose the maximal clique
with largest cardinality, i.e., the maximum clique , as the inlier
set to pass to rotation estimation. Section VI-A shows that this
method drastically reduces the number of outliers.

In summary, the function estimate_s in Algorithm 1 first
calls Algorithm 2, then computes the maximum clique in the
resulting graph to reject all measurements outside the clique.

What if the scale is known? In some registration problems,
the scale is known, e.g., the scale of the two point clouds is
the same. In such a case, we can skip Algorithm 2 and set ŝ
to be the known scale. Moreover, we can still use the MCIS
method to largely reduce the number of outliers.

B. Robust Rotation Estimation

The generative model (TIM) describes measurements b̄ij
affected by bounded noise ‖εij‖≤ βij including potential
outliers (when oij 6= 0). Again, we estimate R from the
estimated scale ŝ, the measurements b̄ij and the bounds βij
using a TLS estimator:

R̂ = arg min
R∈O(3)

K∑
k=1

min

(
‖b̄k − ŝRāk‖2

β2
k

, c̄2
)

(9)

where for simplicity we numbered the measurements from 1
to K = |E| and adopted the notation āk, b̄k instead of āij , b̄ij .
We have also relaxed R ∈ SO(3) to R ∈ O(3), where
O(3)

.
= {R ∈ R3×3 : RTR = I3} is the Orthogonal Group,

which includes proper rotations and reflections. For simplicity
of notation, in the following we drop ŝ and assume that
ā1, . . . , āK have been corrected by the scale (āk ← ŝāk).

A fundamental contribution of this paper is to develop a
tight convex relaxation for (9). The relaxation is tight even
in presence of a large number (90%) of outliers and provides
per-instance suboptimality guarantees. Before presenting the
relaxation, we introduce a binary formulation that is instru-
mental to develop the proposed relaxation.

Binary formulation and Binary cloning. The first insight
behind our convex relaxation is the fact that we can write the
TLS cost (9) in additive form using auxiliary binary variables
(a property recently leveraged in a different context by [35]):

min
R∈O(3),

θk∈{−1,+1},∀k

K∑
k=1

(1 + θk)

2

‖b̄k −Rāk‖2

β2
k

+
(1− θk)

2
c̄2 (10)

The equivalence can be easily understood from the fact that
min(x, y) = minθ∈{−1,+1}

(1+θ)
2 x+ (1−θ)

2 y.
We conveniently rewrite (10) by replacing the binary vari-

ables with suitable (orthogonal) matrices.

Proposition 4 (Binary cloning). Problem (10) is equivalent to
the following optimization problem

min
R,Rk,∀k

∑K
k=1

‖b̄k−Rāk+RTRkb̄k−Rkāk‖2
4β2

k
+

(1−eT
1R

TRke1)
2 c̄2

subject to RTR = I3, R
T
kRk = I3,

RTRk ∈ {−I,+I}, k = 1, . . . ,K (11)

where we introduced a matrix Rk ∈ R3×3 for each k =
1, . . . ,K, and defined the vector e1

.
= [1 0 0]T.

A formal proof of Proposition 4 is given in the Supplemen-
tary Material. We name the re-parametrization in Proposition 4
binary cloning, since we now have K clones of R (namely
Rk = θkR ∈ {R,−R}, k = 1, . . . ,K) that are in charge of
rejecting outliers: when Rk = R the k-th term in the objective
becomes ‖b̄k−Rāk‖2

β2
k

(i.e., k is treated as an inlier, similarly to
choosing θk = +1), while when Rk = −R the k-th term is
equal to c̄2 (i.e., k is treated as an outlier, similarly to choosing
θk = −1). This reparametrization enables our relaxation.

Convex relaxation. The proposed relaxation is presented
in Proposition 5. The main goal of this paragraph is to provide



the intuition behind our relaxation, while the interested reader
can find a formal derivation in the Supplementary Material.

Let us define a 3 × 3(K + 2) matrix X =
[I3 R R1 . . . RK ], stacking all unknown variables in (11).
We observe that the matrix Z .

= XTX contains all linear and
quadratic terms in R and Rk:

Z
.
= XTX =

I︷︸︸︷ R︷︸︸︷ R1︷︸︸︷ . . .
RK︷︸︸︷

I3 R R1 . . . RK

? I3 RTR1 . . . RTRK

? ? I3 . . . RT
1RK

?
...

...
. . .

...
? ? ? . . . I3


(12)

Now it is easy to see that the cost function in (11) can be
rewritten as a function of Z, by noting that R,RTRk,Rk

(appearing in the cost) are entries of Z, see (12). The
constraints in (11) can be similarly written as a function of
Z. For instance, the constraints RTR = I3 and RT

kRk = I3

simply enforce that the block diagonal entries of Z are identity
matrices. Similarly, RTRk ∈ {−I,+I} can be rewritten as
a (non-convex) constraint involving off-diagonal entries of
Z. Finally, the fact that Z .

= XTX implies Z is positive
semidefinite and has rank 3 (number of rows in X , see (12)).

According to the discussion so far, we can reparametrize
problem (11) using Z, and we can then develop a convex
relaxation by relaxing all the resulting non-convex constraints.
This is formalized in the following proposition.

Proposition 5 (TLS Rotation Estimation: Convex Relaxation).
The following convex program is a relaxation of (11):

min
Z�0

tr
(
Q̄Z

)
(13)

subject to [Z]RR = I3, [Z]RkRk
= I3, [Z]II = I3,

[Z]RRk
= (eT1 [Z]RRk

e1)I3, ∀k
‖[Z]IR ± [Z]IRk

‖≤ 1± (eT1 [Z]RRk
e1), ∀k

‖[Z]IRk
± [Z]IRk′‖≤ 1± (eT1 [Z]RkRk′e1), ∀k, k′

where Q̄ is a known 3(K + 2)× 3(K + 2) symmetric matrix
(expression given in the supplementary), and [Z]RRk

denotes a
3×3 block of Z whose row indices correspond to the location
of R in X (cf. with indices at the top of the matrix in eq. (12))
and column indices correspond to the location of Rk in X
(similarly, for [Z]RR, [Z]RkRk

, [Z]II , etc.).

The convex program (13) can be solved in polynomial time
using off-the-shelf convex solvers, such as cvx [23]. It is a
relaxation, in the sense that the set of feasible solutions of (13)
includes the set of feasible solutions of (11). Moreover, it en-
joys the typical per-instance guarantees of convex relaxations.

Proposition 6 (Guarantees for TLS Rotation Estimation). Let
Z? be the optimal solution of the relaxation (13). If Z?

has rank 3, then it can be factored as Z? = (X?)T(X?),
where X? .=[I3,R

?,R?
1, . . ,R?

K ] is the first block row of Z?.
Moreover, R?,R?

1, . . ,R?
K is an optimal solution for (11).

Empirically, we found that our relaxation is tight (i.e.,
numerically produces a rank-3 solution) even when 90% of
the TIMs are outliers. Even when the relaxation is not tight, one
can still project Z? to a feasible solution of (11) and obtain
an upper-bound on how suboptimal the resulting solution is.

In summary, the function estimate_R in Algorithm 1
solves the convex program (13) (e.g., using cvx) to obtain
a matrix Z? and extracts the rotation estimate R̂ from Z?. In
particular, R̂ = [Z?]IR if Z? has rank 3 (Proposition 6), or R̂
is computed as the projection of [Z?]IR to O(3) otherwise.

C. Robust Translation Estimation

Since we already presented a polynomial-time solution for
scalar TLS in Section V-A, we propose to solve for the transla-
tion component-wise, i.e., we compute the entries t1, t2, t3 of
t independently (see the Supplementary Material for details):

min
tj

N∑
i=1

min

(
1

β2
i

∣∣∣[bi − ŝR̂ai]j − tj∣∣∣2, c̄2) , j = 1, 2, 3 (14)

where [·]j denotes the j-th entry of a vector.
In summary, the function estimate_t in Algorithm 1 calls

Algorithm 2 three times (one for each entry of t) and returns
the translation estimate t̂ = [t1 t2 t3].

VI. EXPERIMENTS AND APPLICATIONS

The goal of this section is to (i) test the performance of
our scale, rotation, translation solvers and the MCIS pruning
(Section VI-A), (ii) evaluate TEASER against related techniques
in benchmarking datasets (Section VI-B), (iii) evaluate TEASER
with extreme outliers rates (Section VI-C), and (iv) show an
application of TEASER for object localization in an RGB-D
robotics dataset (Section VI-D). In all tests we set c̄2 = 1.

Implementation details. We implemented TEASER in mat-
lab and used cvx to solve the convex relaxation (13). More-
over, we used the algorithm in [20] to find all the maximal
cliques in the pruned TIM graph (see Theorem 3).

A. Testing TEASER’s Subproblems

Testing setup. We use the Bunny point cloud from the
Stanford 3D Scanning Repository [18] and resize it to be
within the [0, 1]3 cube. The Bunny is first downsampled to
N = 50 points, and then a random transformation (s,R, t)
(with 1 ≤ s ≤ 5 and ‖t‖≤ 1) is applied according to eq. (1).
To generate the bounded noise εi, we sample εi ∼ N (0, σ2I),
until the resulting vector satisfies ‖εi‖≤ βi = β. We set
σ = 0.01 and β = 0.0554 such that P

(
‖εi‖2/σ2 > β2

)
≤

10−6 (this bound stems from the fact that for Gaussian εi,
‖εi‖2 follows a Chi-square distribution with 3 degrees of
freedom). To generate outliers, we replace a fraction of bi
with vectors uniformly sampled inside the sphere of radius 5.
We test increasing outlier ratios {0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9}.
All statistics are computed over 40 Monte Carlo runs.

Scale solver. Given two point clouds A and B, we first
create N(N − 1)/2 TIMs corresponding to a complete graph
and then use Algorithm 2 to solve for the scale. We compute
both maximum consensus [49] and TLS estimates of the scale.
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Fig. 4. Results for scale, rotation, translation estimation, and impact of
maximal clique pruning for increasing outlier ratios.

Fig. 4(a) shows box plots of the scale error with increasing
outlier ratios. The scale error is computed as |s?−sgt|, where
s? is the scale estimate and sgt is the ground-truth . We
observe the TLS solver is robust against 80% outliers, while
maximum consensus failed three times in that regime.

Rotation Solver. We apply a random rotation R to the
Bunny, and fix s = 1 and t = 0. Two metrics are boxplotted in
Fig. 4(b) to show the performance of the rotation solver: (i) the
stable rank of Z?, the optimal solution of SDP relaxation (13),
where the stable rank is defined by the squared ratio between
the Frobenius norm and the spectral norm; (ii) the rotation
estimation error, defined as

∣∣arccos
((

tr
(
RT
gtR

?
)
− 1
)
/2
)∣∣,

i.e. the geodesic distance between the rotation estimate R?

and the ground-truth Rgt. We observe the stable rank is
numerically close to 3 (Proposition 5) even with 90% of
outliers, and the rotation error remains below 2 degrees.

Translation Solver. We apply a random translation t to the
Bunny, and fix s = 1 and R = I3. Fig. 4(c) shows component-
wise translation estimation using both maximum consensus and
TLS are robust against 80% outliers. The translation error
is defined as ‖t?− tgt‖, the 2-norm of the difference between
the estimate t? and the ground-truth tgt.

Maximal Clique Inlier Selection. We downsample Bunny
to N = 1000 and fix the scale to s = 1 when applying the
random transformation. We first prune the outlier TIMs/TRIMs
(edges) that are not consistent with the scale s = 1, while
keeping all the points (nodes), to obtain the graph G′. Then
we compute the maximum clique in G′ using the algorithm
in [20], and remove all edges and nodes outside the clique,
obtaining a pruned graph G”. Fig. 4(d) shows the outlier
ratio in G′ (label: “Before MCIS”) and G” (label: “After
MCIS”). The MCIS procedure effectively reduces the amount
of outliers to below 10%, facilitating rotation and translation
estimation, which, in isolation, can already tolerate more than
90% outliers.

B. Benchmarking on Standard Datasets

Testing setup. We benchmark TEASER against two state-of-
the-art robust registration techniques: Fast Global Registration
(FGR) [59] and Guaranteed Outlier REmoval (GORE) [11]. In
addition, we test two RANSAC variants: a fast version where
we terminate RANSAC after a maximum of 1,000 iterations
(RANSAC (1K)) and a slow version where we terminate RANSAC
after 60s (RANSAC). Four datasets, Bunny, Armadillo, Dragon
and Buddha, from the Stanford 3D Scanning Repository are
selected and downsampled to N = 100 points. The tests below
follow the same protocol of Section VI-A. In the Supplemen-
tary Material, we provide an example of the performance of
TEASER on registration problems with high noise (σ = 0.1).

Known Scale. We first evaluate the compared techniques
with known scale s = 1. Fig. 5(a) shows the rotation and
translation error at increasing outlier ratios for the Bunny
dataset. TEASER, GORE and RANSAC are robust against up to
90% outliers, although TEASER tends to produce more accurate
estimates than GORE, and RANSAC typically requires over 105

iterations for convergence at 90% outlier rate. FGR can only
resist 70% outliers and RANSAC (1K) starts breaking at 60%
outlier rate. These conclusions are confirmed by the results on
the other three datasets (Armadillo, Dragon, Buddha), which are
given in the Supplementary Material due to space constraints.

Unknown Scale. GORE is unable to solve for the scale,
hence we only benchmark TEASER against FGR (although the
original algorithm in [59] did not solve for the scale, we
extend it by using Horn’s method to compute the scale at each
iteration), RANSAC (1K) and RANSAC. Fig. 5(b) plots the scale,
rotation and translation error for increasing outlier ratios on the
Bunny dataset. All the compared techniques perform well when
the outlier ratio is below 60%. FGR has the lowest breakdown
point and fails at 80%. RANSAC (1K) and TEASER only fail
at 90% outlier ratio when the scale is unknown. Although
RANSAC with 60s timeout outperforms other methods at 90%
outlier rate, it typically requires more than 105 iterations to
converge, which is not practical for real-time applications.

C. Testing under Extreme Outlier Rates

We further benchmark the performance of TEASER under
extreme outlier rates from 95% to 99% with known scale and
N = 1000 correspondences on the Bunny. We replace RANSAC
(1K) with RANSAC (10K), since RANSAC (1K) already performs
poorly at 90% outlier ratio. Fig. 6 shows the boxplots of
the rotation and translation errors. Both TEASER and GORE
are robust against up to 99% outliers, while RANSAC with
60s timeout can resist 98% outliers with about 106 iterations.
RANSAC (10K) and FGR perform poorly under extreme outlier
ratios. While GORE and TEASER are both robust against 99%
outliers, TEASER produces slightly lower estimation errors.

D. Application: Object Pose Estimation and Localization

We use the large-scale point cloud datasets from [34] to test
TEASER in object pose estimation and localization applica-
tions. We first use the ground-truth object labels to extract the
cereal box/cap out of the scene and treat it as the object, then
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Fig. 5. Benchmark result. (a) Boxplots of rotation and translation errors for the five compared methods on the Bunny dataset with known scale (the top figure
shows an example with 50% outliers). (b) Boxplots of scale, rotation and translation errors for four registration methods on the Bunny dataset with unknown
scale. (c) Successful object pose estimation by TEASER on a real RGB-D dataset. Blue lines are the original FPFH [47] correspondences with outliers, green
lines are the inlier correspondences computed by TEASER, and the final registered object is highlighted in red.
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Fig. 6. Estimation errors under extreme outlier rates (known scale).

apply a random transformation to the scene, to get an object-
scene pair. To register the object-scene pair, we first use FPFH
feature descriptors [47] to establish putative correspondences.
Then, TEASER is used to find the relative pose. Fig. 5(c) shows
the noisy FPFH correspondences, the inlier correspondences
obtained by TEASER, and successful localization and pose
estimation of the cereal box. The Supplementary Material
provides results on more object-scene pairs.

VII. CONCLUSION

We propose a Truncated Least Squares approach to compute
the relative transformation (scale, rotation, translation) that

aligns two point clouds in the presence of extreme outlier
rates. We present a general graph-theoretic framework to
decouple rotation, translation, and scale estimation. We pro-
vide a polynomial-time solution for each subproblem: scale
and (component-wise) translation estimation can be solved
exactly via an adaptive voting scheme, while rotation estima-
tion can be relaxed to a semidefinite program. The resulting
polynomial-time approach , named TEASER (Truncated least
squares Estimation And SEmidefinite Relaxation), outperforms
RANSAC and robust local optimization techniques, and favor-
ably compares with BnB methods. TEASER can tolerate up
to 99% outliers and returns highly-accurate solutions.

While running in polynomial time, the general-purpose SDP
solver used in our current implementation scales poorly in the
problem size. Current research effort is devoted to developing
specialized SDP solvers to allow using TEASER to solve large-
scale registration problems in real-time.
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