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Abstract—Inspired by research in psychology, we introduce
a behavioral approach for visual navigation using topological
maps. Our goal is to enable a robot to navigate from one
location to another, relying only on its visual observations and the
topological map of the environment. To this end, we propose using
graph neural networks for localizing the agent in the map, and
decompose the action space into primitive behaviors implemented
as convolutional or recurrent neural networks. Using the Gibson
simulator and the Stanford 2D-3D-S dataset, we verify that our
approach outperforms relevant baselines and is able to navigate
in both seen and unseen indoor environments.

I. INTRODUCTION

Despite the ever-changing state of our indoor environments
due to rearrangements in furniture, changes in lighting, or the
simple accumulation of clutter, humans are able to seamlessly
navigate through these dynamic spaces as if nothing in the
environment had changed at all. How can we build similar vi-
sual navigation systems for robots? Although most approaches
for visual navigation today rely on metric maps of the world
and precise localization [44], research suggests that biolog-
ical systems in mice and men rely on coarse spatial layout
representations in the form of cognitive maps [45]. At the
core of such maps, studies suggest that there is a topological
description of the environment that can capture relationships
about different locations [27, 30, 35, 42]. Animals then execute
navigation strategies based on their qualitative knowledge of
the space [13]. Motivated by these ideas from psychology
research and the success of neural networks at solving a variety
of tasks [26], this work revisits early ideas of topological robot
navigation [46] and behavioral control [6, 16, 20].

We pose the problem of robot navigation as a graph traversal
problem in a topological representation of the environment.
More specifically, the goal of the robot is to navigate from
place A to place B given a topological map, a plan for how
to get from A to B in the map, and the current observation of
the environment obtained with an on-board camera (Fig. 1).
This formulation leads to three key questions:

1) What is an effective topological representation or map for
navigation?

2) How do we localize the agent within this topological
representation?

3) Given localization information, how do we control the
robot to move according to our plan?
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Fig. 1: A robot operates in a cluttered indoor environment
(a). Using a topological representation of the environment
and depth observations (b), the robot must navigate to its
destination, specified as a location within the topological map.

To address question (1), we construct the map to be a
directed graph with coarse information about relevant locations
for the navigation task (nodes) and connectivity between close
locations (edges). Every edge of the map is also labeled with
a visuo-motor behavior, such as turn left or turn right, that can
be executed to move from the source to the target node.

Given the topological map, we propose using convolutional
and graph neural networks to address localization (question
(2)). This approach takes advantage of the each neural network
architecture. Convolutional neural networks are effective for
visual inference [26, 36], and graph neural networks (GNN)
capture relational inductive biases [49], making them a natural
approach for solving graph-related inference tasks, e.g., as
specified by a topological map. We use these models in
our approach to infer the location of a robot based on the
environment topology and its current observation of the world.



Lastly, the robot must determine how to maneuver itself
according to the plan (question (3)). By construction, a path
in the topological map can be translated to a navigation plan
in the form of a sequence of behaviors. It is therefore trivial
to determine which behavior to execute given a localization
prediction and a plan. We use neural networks to robustly
execute the given behavior, and repeat localization and low-
level control at every timestep (e.g. 5 Hz) to ensure smooth
transitions to different parts of an environment.

We tested our approach on the Stanford 2D-3D-S dataset
[4, 3], which consists of reconstructed meshes of several
university buildings with complex layouts and large amounts
of clutter. We first constructed and annotated maps of these
environments with the proposed topological descriptions. We
then incorporated the maps into the Gibson physics-based sim-
ulator [48] and extended the simulator’s capabilities to create
a testbed for benchmarking robot navigation approaches. We
contribute to the community our map specification as well as
our tools and data, including a dataset that we created for
training the learning components of our system.! This dataset
is composed of 2,371 long sequences of robot observations
(e.g., RGB, depth, and semantic data) of the 2D-3D-S build-
ings and the corresponding robot locations in the topological
maps. Using this setup, we show that our method can navigate
more successfully than relevant baselines in both seen and
unseen cluttered indoor environments.

In summary, the main contributions of our work are:

« We introduce a specification for topological map design in
complex, real-world environments.

« We propose a novel framework for localization and naviga-
tion using convolutional neural networks in conjunction with
graph neural networks. By using a behavioral approach, we
are able to robustly navigate through realistic environments.
« We provide a new dataset of robot navigation trajectories in
realistic environments with corresponding topological maps.
« We provide a testbed for benchmarking navigation tasks
with topological maps using Gibson. Agents can be controlled
through the Robot Operating System (ROS), and our evalua-
tion suite allows us to thoroughly analyze performance.

II. RELATED WORK

Our work aims to leverage the advantages of both clas-
sical navigation methods and modern deep (DL) learning
approaches. First, we advocate for compositionality [1, 2]. As
in classical approaches, we separate mapping and localization
[44] from path planning and control [28]. Second, we use
DL techniques for localization and low-level control. Due to
limited space, the next paragraphs focus on reviewing close
recent efforts, especially for indoor visual navigation. For
extensive reviews on robot navigation, we encourage readers
to refer to [25, 44].

Environment representation: Recently, several environ-
ment representations have been proposed for navigation. For
instance, Parisotto and Salakhutdinov [33] present a Neural

IProject URL: https://graphnav.stanford.edu.

Map that emulates a 2D occupancy grid [11]. Mirowski et al.
[32] propose loop closure detection to support navigation-
relevant representation learning. Moreover, Savinov et al. [38]
implement a topological representation where graph edges
relate neighboring visual memories. Using this graph, robot
localization is performed using a nearest neighbors approach.

Our proposed topological representation takes advantage of
the rich semantic structure behind man-made environments
and builds directly from Sepulveda et al. [41]. Through this
representation, we avoid reliance on metric information [33]
or specific robot poses [18]. Our topological maps are signifi-
cantly sparser than [38]. Different from Sepulveda et al. [41],
we consider a reduced set of primitive behaviors for the edges
of our topological maps. This facilitates map creation and leads
to more generalizable navigation behaviors. Additionally, our
approach is more practical than Sepulveda et al. [41] because
it does not rely on artificial visual landmarks for navigation.

Localization: A key component of our navigation approach
is a localization network that leverages GNNs [5, 40], as a tool
to model relational data [49]. To the best of our knowledge, we
are the first to use GNNs to pose robot navigation as a graph
traversal problem in a topological map of the environment. In
robotics, the closest work is Yang et al. [50] that uses graph
convolutional networks [24] but in the context of encoding
semantic scene priors.

Action space: Many DL approaches are designed for dis-
crete action spaces in order to avoid dealing with low-level
mechanics and kinematic constraints. For example, Zhu et al.
[52] learn models for target-driven visual navigation and Gupta
et al. [17] focus on emulating the Bayesian cycle behind
classical SLAM methods [44]. In contrast, the approach that
we propose in this work supports continuous action spaces
and does not require ground truth odometry information. Our
approach reasons at high and low levels of abstraction for
planning and motor control, respectively.

Our work revisits ideas from behavioral robotics for low-
level control [6, 20]. This idea can be related to motor control
through primitives in manipulation [12, 21, 51], but our goal is
not to solve new tasks given demonstrations of an ordered set
of actions. Instead, our goal is to execute an abstract navigation
plan given a topological map of a realistic human environment.

Evaluation: We test our approach using Gibson, an envi-
ronment for real-world perception [48] of large-scale indoor
spaces [3]. Here, we create topological maps for different
spaces and extend Gibson by introducing a benchmark for
behavioral robot navigation. With this effort, we support
others, e.g., [10, 39, 47], in building a rich and extensible
environment for robotics research.

III. PROBLEM SETUP

We consider a robot operating in a cluttered indoor envi-
ronment with the goal of navigating from one node (A) in
the topological map to another node (B). In our setup, the
agent may not have seen the environment before, so no prior
visual information is provided in the map. The ground truth
node location A is given to the robot when navigation begins,
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but it must rely on its visual input and the map to reach the
desired destination. It is crucial for the robot to avoid obstacles
— otherwise it will fail the navigation task.

To mimic realistic physical settings, we consider a ROS-
controlled Turtlebot robot navigating in the PyBullet[8]-
powered Gibson simulator [48] (Fig. 1b). We perform experi-
ments with this robot on environments from the Stanford 2D-
3D-S dataset [3, 4]. The dataset was created using a Matterport
scanner to capture the geometry of office spaces in three
different university buildings. As a result, the floor plans can
be very complex and the spaces are filled with clutter including
chairs, couches, tables, boxes, and even dollies.

IV. TOPOLOGICAL MAP DESIGN

Inspired by research in psychology [27, 30, 35, 42], we
use a topological representation — a graph — to encode spatial
information about the environment. At a high level, each
node in the topological map represents a location. Each edge
corresponds to a behavior that allows the robot to get from
the corresponding source node to the target node, similar to
Sepulveda et al. [41]. However, due to the layout complexity of
the naturalistic environments in the Stanford 2D-3D-S dataset,
we substantially changed the topological map design compared
to Sepulveda et al. [41]. In our work, the map annotations are
done manually as described in the next paragraphs. Automat-
ing this process is a valuable future research direction.

Our insight behind map design is that the robot should be
able to traverse to and from any semantic location (e.g. office
1, office 2, pantry 1, conference room 1, etc.) by composing
a minimal length sequence of behaviors (edges) as specified
by the topological map. We leverage the Manhattan world
structure of indoor environments [7] and define the behaviors:
{find door (fd), corridor follow (cf), turn left (tl), turn right
(tr), straight into room (s)}. We reduce the specificity of our
behaviors (compared to Sepulveda et al. [41]) in order to
simplify the design of topological maps, and make navigation
more generalizable and transferable across different scenarios.
Intuitively, turning left out of an office should require very sim-
ilar controls to turning left at a four-way intersection/junction
or turning left into a room (Fig. 2a).

To avoid localization ambiguities at each position in the
topological map, nodes and edges also have associated orien-
tations. For example, if executing a corridor follow behavior
in a hallway, it is not clear which direction to travel in, since
an agent can move along two opposite directions. To resolve

this ambiguity, there are two sets of nodes and edges for each
corridor, one for each direction (Fig. 2c).

Each room has a corresponding room node that indicates
that the robot is within the boundaries of that space and facing
any direction. In this case, if the robot is facing towards the
inside of the room, a turn behavior (e.g. turn left out of the
room) is not well defined. Thus, to ensure smooth transitions
in and out of these enclosed spaces, we also add door nodes to
rooms. These door nodes indicate that the robot is positioned
at the door and oriented towards the exit of the room ( Fig. 2b).

Based on these observations, we formulate the topological
map as a directed graph. We apply this representation to real
world environments using the following rules:

1) Each room in the environment, such as an office or
conference room, has its own single node.

2) Each room door also has its own node.

3) The find door behavior should connect each room node
to its door node.

4) Corridors have two sets of nodes, one for each direction
of the corridor.

5) Edges which indicate entering a room should connect to
the room node.

6) Exiting a room occurs from the door node.

In general, nodes should be placed at any transition point —
that is, any location that may require a change of behavior. For
example, upon approaching the exit to a room, there are many
possible behaviors to execute, such as turn left, turn right, or
even go straight across the hallway into another room. Because
this would require a change from the previous behavior (find
door), a door node should be placed prior to the exit of each
room. Likewise, after an agent has turned into a hallway, the
robot will likely transition from the turning behavior to a
different behavior (e.g. corridor follow). Therefore, a node
must be placed immediately after the turn to signify the
transition. Using this topological map representation, it is then
trivial to compute the sequence of behaviors for navigating
to and from any location (node) in the map with classical
planning algorithms [37].

V. METHOD

Two challenges for effective navigation with our topological
representation are: how to localize the agent, and how to direct
the agent along a plan. We organize our navigation approach
based on these key problems, as illustrated in Fig. 3.

The first challenge, localization, only needs to be done
relative to the topological map. To this end, we propose using
a graph neural network in combination with a convolutional
neural network (CNN). Once localized, the agent can easily
plan paths to any destination in the environment.

The second challenge is how to execute the plan. While the
agent continuously updates its localization prediction, it also
has to generate motion controls to ensure that it continues to
follow the planned trajectory. In our work, for each behavior
we implement an individual neural network, which we call a
behavior network. These networks take as input the current
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Fig. 3: Our navigation approach addresses localization and behavior selection. Based on the localization estimate from the
graph localization network (GLN) and the navigation plan, the agent can select a behavior network for the current timestep.
The velocities output from the selected network are used for low-level motor control.

observation of the world — in our case, a depth image — and
predict low-level velocity commands.

The above components are combined using a simple behav-
ior selection module, which looks up the correct behavior to
execute given the localization prediction and the navigation
plan. In the case that a localization estimate is not part of the
plan, the module continues selecting the behavior from the
last valid position that was part of the plan. Localization and
behavior selection are repeated (e.g. at 5 Hz) until the agent
reaches its final destination or deviates from the expected path.

Sec. V-A provides a brief introduction to graph neural
networks followed by a description of the graph representation
used in our model (Sec. V-B). Then, we describe the graph
localization network (Sec. V-C), behavior selection (Sec. V-D),
and, lastly, the behavior networks (Sec. V-E).

A. Preliminaries on Graph Neural Networks

First introduced by Scarselli et al. [40], GNNs have been
shown to be effective at learning relative inductive biases
specified by graph structures. The following overview borrows
heavily from the description and notation in Battaglia et al. [5].

We define a directed graph to be a tuple G = (u,V, E),
where u is a global feature for the graph and can be interpreted
as a feature representation for the entire graph. V = {v;};=1.p,
is the set of vertices/nodes (cardinality n) where each v; is
a feature for node ¢, and E = {(eg, 7, Sg) }k=1.m i the set
of edge tuples (cardinality m) for which edge %k connects the
source node with index s; to the target node with index ry.
For simplicity, we assume the global, vertex, and edge features
have the same dimensionality D. That is, u € RP, v, €
RP Vie{l,....,n}, e, e RP Vke {1,...,m}.

The basic element of a GNN is a graph network block (GN
block). A GN block takes as input a graph G= (q, v, E) and
produces an updated graph G’ = (@', V', E') which can have
arbitrary feature dimensionality. The GN blocks propagate
information encoded in graphs according to their structure.

We compose our GNN with sequential GN blocks such that
it eventually computes an output prediction for the task. As
detailed in Algorithm 1, the computation is done by first updat-
ing the edge features, followed by the node features, and lastly
the global features. The update functions ¢*(+), ¢¢(-), ¢“(-)
and aggregation functions p®~?(-), p*~*(-), p*~*(-) can be

implemented in different ways. In our work, we use multi-
layer perceptrons for the update functions and summation for
the aggregation functions.

B. Graph Representation

To use GNNs for localization, we must convert the concept
of a topological map (Sec. IV) into the representation defined
in Sec. V-A. Since nodes in the topological maps have seman-
tic room annotations, we can categorize nodes into one of three
possibilities: room, hallway, open space. Similarly, each edge
is one of five options: corridor follow, turn left, turn right,
find door, straight (into room). Therefore, we represent each
node and edge in the map by a feature vector associated with
the node or edge’s category, similar to Mikolov et al. [31].
The node and edge features are learned jointly with the graph
network and are represented as the embedding lookup table
in Fig. 4. The global feature, detailed in Sec. V-C, changes at
each timestep and is a function of the current visual input.

C. Graph Localization Network (GLN)

The goal of the graph localization network is to predict
the robot’s location in the map based on its current visual
observation, its last predicted location, and the entire map rep-
resented as described in Sec. V-B. To accomplish this, we use

Algorithm 1: Computation in a GN Block

1 function GraphNetwork (u, V, E)

2 for k€ {1...m} do

// update edge features

3 e;c — ¢’e(ek‘av7‘k5v3k7u)

4 fori € {1...n} do

// aggregate incoming edges

5 let E; = {(€}, Tk, Sk) brp=i,k=1:m
o || e
7 v; < ¢"(€;,v;,u) // update node features

// aggregate updated node/edge features
8 let V' = {vi}iz1n

9 \—’I <_pv~>u(v’)

10 let ' = {(e}, Tk, Sk) bh=1:m

1 él <_pe~>u(E/)

12 u + ¢"(e',v',u) // update global feature
13 return (v, V', E')
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Fig. 4: The graph localization network (GLN) takes three inputs: the depth image stack, the topological map, and the last
predicted location. This information is then used to predict the agent’s current position within the topological map.

a CNN to process the observations into visual features, which
are used as the global feature in our graph representation. In
parallel, we crop the graph to the local region around the last
predicted location. Then, together with the node, edge, and
newly computed global features, the graph is passed through
the GNN to predict the agent’s current edge in the graph. Note
that when navigation begins, the agent is provided with its
ground truth location (e.g. office 1). After the initial timestep,
the agent relies on its own localization predictions.

More concretely, the inputs to the graph localization net-
work are the graph vertices and edges, the last predicted
location, and an image stack I of dimension H x W x C'
where H and W are the image height and width, respectively.
To ensure that spatio-temporal information is captured from
the visual observations, the agent maintains a stack of the
C most recent depth image frames.> The graph localization
network then processes these inputs as follows:

1) Computing the Global (Visual) Features: The image
stack I is forward passed through a convolutional neural
network to compute visual features (Fig. 4). These features
are used as the global feature u € R” in our model’s GNN.

2) Subgraph Cropping: In parallel to the computation of
the global features, the topological map is mapped to its graph
representation using the node and edge features described in
Sec. V-B. Since the graph of the entire environment can be
very large and it is unlikely for the robot to move from one
side of the graph to another far side, we crop a local region of
the map centered on the previous predicted robot location. In
particular, we crop a node if it is above a certain number
of edges away from the previous predicted location. The
localization prediction is then performed on the local subgraph,
which also has the added benefit of reducing computation.

The correct localization is at the center of the subgraph
at training time, but this may not necessarily hold true at
test time due to noisy (previous) localization predictions. To
increase localization robustness, we augment the training data
by sampling nearby nodes as the center for the subgraph.

2 Although other modalities such as RGB may be used instead, we use depth
images (clipped to a maximum distance of 3.5 m) to facilitate with general-
ization to different scenes which may have diverse visual/color appearances.

3) Graph Neural Network Prediction: To train the graph
neural network, we treat the localization problem as a clas-
sification task. Given a subgraph S with m, edges, the goal
is to classify which of the mg edges the robot is currently
on. In our setup, we use edge classification rather than node
classification because edge classification is better defined. For
example, at any instant the agent is executing an edge along
the navigation plan. In the case of turning left out of an office,
it is more natural to claim that the agent is actively executing
a turn behavior out of the room than to claim that the robot is
still currently located at the room node, even if it has exited
the office already. Additionally, the edge carries both source
node and target node information, so it is trivial to localize
the agent to a (source) node given an edge prediction.

Our network is composed of two sequential GN blocks, with
the last block outputting per-edge logits of dimension 1. Let
ms be the number of edges in the subgraph, y be the index of
the ground truth edge, and p® be the vector of unnormalized
probabilities such that each element pf is the unnormalized
probability that the agent is on edge k. To train the network,
we use a softmax cross-entropy loss on the edge probabilities:

I(p®,y) = —log(exppi/ > exppf)
k

D. Behavior Selection

To determine the agent’s current progress in the navigation
plan, the edge probabilities output by the GLN are summed
at each source node of the topological graph. The highest
probability node is then used by the agent to retrieve the
behavior that it should execute next. This process avoids the
node localization ambiguity, described in Sec. V-C3, while
resolving the edge localization ambiguity illustrated by the
equally weighted left and right turn behaviors in Fig. 6. For
more details, see the supplementary material.

While the model outlined thus far works reasonably well
(see Sec. VII), we can improve performance by filtering noisy
and multimodal GLN predictions which may be caused by
topologically similar intersections. As an example, we explore
using a Bayes filter [15] to improve localization.

We implement a particle filter [9, 14] with the assumption



that the motion model is unaffected by the control input:
p(xi|ug, xp—1) = p(a¢|ri—1) where z; is the current location
and wu; is the current behavior. For the measurement model
p(zt|z+), we assume that p(z¢) and p(z;) are uniform distribu-
tions for all timesteps: p(z:|x:) o p(z¢|2:). For the transition
model, the probability distribution p(x; = zi—1]xi—1) = 0.8
worked well in practice with equally weighted probabilities on
the neighbors of x;_; and O for all other nodes. We use the
output of the GLN to approximate p(x:|z;) by summing the
outgoing edge probabilities for each node.

E. Behavior Networks

Once the robot has been localized, the next question is
how to control the robot given coarse localization information.
Unlike most prior deep-learning based approaches, we use a
behavioral approach for navigation [41]. Our action space is
composed of high-level semantic behaviors which take charge
of low-level motor control.

We implement the behavior networks as either a convolu-
tional neural network or a recurrent neural network, depending
on the specific behavior. The inputs to each network are
visual observations (e.g. depth images) and the outputs are
the translational and rotational velocities v = [v,, vg] for the
robot. For the corridor follow and find door behavior, we use
a CNN similar to the one used for computing the graph global
features in Sec. V-C. For all other behaviors (turn right, turn
left, straight), we use a Long Short-Term Memory network
[19] with a CNN encoder.

We collected a dataset, as detailed in Sec. VI-A, and trained
the behavioral networks via behavioral cloning. We used a
mean squared error loss on the predicted and ground truth
velocities: [(v,7) = (v — D)%

VI. EXPERIMENTAL SETUP

We perform all training and testing in the Gibson simulator,
which is powered by the Bullet physics engine [48]. This setup
is fairly different from those used by prior DL approaches
for navigation. For example, several works use synthetically
generated environments which do not accurately represent real
indoor spaces [32, 38, 41]. Other approaches have been tested
in more realistic house or office settings [17, 18, 47, 50], but
they ignore the collision problem entirely and allow the agents
to continue their trajectories despite undergoing collisions. In
our case, collisions are fatal and result in a failed navigation.

We model the agent as a Turtlebot robot which is operated
via ROS. The robot is equipped with a depth camera with a
150° field-of-view. This wide angle view alleviates problems
with occlusions and doorways. Commands are executed with
a frequency of 5 Hz and the robot’s velocity is capped at 0.5
m/s. We do not provide ground truth ego-motion to the agent,
in contrast to prior works [17, 32, 33].

A. Dataset Collection

We collected data within Gibson in order to train the be-
havior networks and graph localization network. In particular,
we ran thousands of navigation tasks in simulation with the

ROS Navigation Stack [29] using ground truth odometry and
recorded visual observations from the robot (RGB, depth, and
semantic information) as well as odometry information. We
also injected noise into the velocity commands during data
collection in order to teach the agent to recover from poor
positioning. In our experiments, we used only depth images
for practicality and generalizability to different environments,
but provide RGB and semantic data for future endeavors.

After data collection, we used an automated annotation
process based on heuristics to label the robot’s trajectory data
in relation to the environment’s topological map. In particular,
we labeled frames/timesteps with tags corresponding to the
current behavior that is being executed by the robot, the current
node/edge that it is traversing, and the semantic location (e.g.,
room name). In total, we collected 2,371 motion trajectories
with an average of 423.56 frames per trajectory. Data collec-
tion is further outlined in the supplementary material.

B. Navigation Evaluation Suite

Because our automated process to label robot trajectories
can run in real-time, we were able to create an experimental
setup for the systematic evaluation of behavioral navigation ap-
proaches. Our setup aims to facilitate reproducibility, such that
we can easily perform a thorough analysis of the performance
of various navigation models in realistic indoor environments.
For example, our setup can identify that a navigation approach
is very effective at turning from a hallway into another hallway,
but struggles with turning from a hallway into an office. We
refer to this infrastructure as our evaluation suite, and further
detail its key features in the next paragraphs.

1) Generation of Navigation Tasks: Our evaluation suite
supports sampling navigation plans (random start and end
nodes, followed by the shortest path) for the Stanford 2D-
3D-S dataset for which we created topological maps. Sampled
plans can then be used to evaluate navigation approaches or
roll-outs of navigation policies.

In our experiments, we generated a set of navigation tasks
separately from the previously mentioned dataset of Sec. VI-A.
Their path lengths range from very short (< 5 meters) to very
long (> 50 meters). Example trajectories resulting from these
tasks can be observed in Fig. 5.

2) Evaluation Metrics: Our evaluation suite supports sev-
eral metrics. First, it can evaluate navigation performance
based on success rate, similar to prior work [39, 41]. A success
occurs if the robot can follow the navigation plan all the
way until the destination without deviating from the path.
Conversely, a failure occurs if the robot deviates or gets stuck
due to a collision. Second, our suite can evaluate partial plan
completion. More specifically, plan completion is measured
as the fraction of nodes in the plan that were successfully
reached by the agent during navigation. Third, performance
evaluation can be conducted in semantically meaningful ways.
For example, our suite allows checking the average success
rate of a particular furn or junction in the map, or whether
the robot struggles more with turning into offices compared to
turning out of them. These metrics are particularly useful as
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they provide insight into what kinds of scenarios an approach
is likely to succeed or fail in.

C. Implementation Details

We implemented all neural networks using PyTorch [34].
We use depth images of 320 x 240 pixels and image stacks
of the C' = 20 most recent frames where appropriate. Each
behavior network is trained individually. For training all net-
works, we use the Adam optimizer [23] with a learning rate
and batch size of le-4 and 32, respectively. We implement
the CNNs as a series of strided convolution layers with batch
normalization [22], and the graphs are encoded using global,
node, and edge features of dimension 512. The supplementary
material provides additional implementation details.

VII. EXPERIMENTAL RESULTS

We conduct experiments to evaluate the performance of
our navigation approach against several baselines. Following
Gupta et al. [18], we use five areas {1, 3, 4, 5, 6} from the
Stanford 2D-3D-S dataset in our evaluation. Areas 1, 5, and
6 are used for training, area 3 is used for validation, and area
4 corresponds to testing. It is worth noting that there are only
three distinct buildings in the dataset: areas 1, 3, 6 correspond
to different parts of one building, whereas area 4 and area 5 are
captured in two other different locations. Because each area is
unique, with varying size and structure, we report results for
all of the train, validation, and test areas.

We divide the navigation tasks into three difficulties based
on the number of nodes in the corresponding path: 1 through
10 nodes corresponds to difficulty I; 11 through 20 nodes
is difficulty II; and > 20 nodes is difficulty III (see the
supplementary material for additional details).

Our evaluation considers 3 baselines:

PhaseNet: This network [51] determines when to transition
behaviors by predicting their phase, or temporal progress. We
implement this network with an LSTM trained with a mean-
squared error objective on the progress of the behavior.
BehavRNN: Sequence-to-sequence deep learning model [43]
trained to perform behavior classification at each timestep
with a softmax cross-entropy loss. The model takes as input
the current visual observation and the navigation plan (as a
sequence of behaviors).

GTL: Navigation approach that uses our automated annota-
tion tools for Gibson to compute the Ground Truth Location
(GTL) of the robot in real-time relative to the map. To

navigate, the robot executes the behavior network according
to its current node in the map. The behavior networks used
for this baseline are the same as in our approach.

The first two baselines serve to compare our approach with
other relevant DL methods for behavioral navigation. The
third baseline helps us study the performance of our behavior
networks in isolation from potential localization errors induced
by our GLN. We refer to our approach in the following
sections as GraphNav and GraphNavPF (with particle filter).

We evaluate approaches based on full plan success rates,
per-behavior success rates, and average plan completion. As
mentioned before, plan completion is computed as the fraction
of nodes in the plan that the agent successfully reached.

A. Overall Navigation Performance

The quantitative results can be found in Table 1. The results
show that PhaseNet and BehavRNN models work poorly,
resulting in the lowest success rates and plan completion per-
centages. In contrast, our approach outperforms the PhaseNet
and BehavRNN baselines in both seen and unseen areas. For
example, in the seen environments (areas 1, 5, 6), we see an
average improvement of 819% and 1,471% in the success rate
of GraphNavPF over the PhaseNet and BehavRNN baselines,
respectively. Since the baselines also utilize the same behavior
networks as the GraphNav models, the improvement in perfor-
mance is primarily due to more accurate localization. While
this difference is not as big in the unseen areas, there is still
a substantial difference in performance. For example, Graph-
NavPF achieves a 208% and 325% improvement in success
rate, and a 40% and 52% improvement in plan completion
compared to PhaseNet and BehavRNN on the validation area.
On the test area, the improvement is smaller: 44% (PhaseNet)
and 158% (BehavRNN). We suspect this is because the test
area is very different from the few available training areas.

Fig. 6 shows a qualitative example of how the localization
works with GraphNav. While the agent is in the office, the
graph localization network correctly predicts the location. As
the robot approaches the door, it is unclear in which direction
it will turn. At this point, the network weighs the left and right
turns equally, which translates to predicting that the agent is at
the door node, triggering a behavior transition. Lastly, as the
visuals show the robot turning left, the GLN becomes more
confident that it is on the edge corresponding to the left turn.

Successful navigation tasks by GraphNav are shown in
the four left-most images of Fig. 5. The robot completes



Seen Areas (Train)

Unseen Area (Val)

Unseen Area (Test)

Model I 1I 1T Total I I Total I 11 11T Total
PhaseNet 12.0 /529 1.6/373 0/219 5.3 /40.7 204 /61.3 0/378 153/554 179/554 93/372 0/245 12.0/419
BehavRNN 7.6 /48.1 0/265 0/14.6 3.1/328 14.8 /549 0/40.0 11.1/51.1 143 /495 23/27.1 0/93 6.7 /34.5
GraphNav 47.0/799 239/61.6 186/61.2 323/678 40.7/755 167/612 347/719 250/67.8 11.6/448 0/17.7 16.0/52.0
GraphNavPF  61.7 / 83.3 44.0/71.8 23.6/57.1 487/73.8 50.0/77.6 389/781 472/777 321/687 93/417 0/245 17.3/509
GTLf 63.0/852 539/795 432/637 568/794 741/86.6 833/889 764/872 57.1/77.6 465/720 0/33.0 48.0/72.0

TABLE I: Performance comparison using success rate (SR) and average plan completion (PC). The T indicates that GTL
utilizes additional ground truth information. The best performing entries are bolded per area (not including GTL).

Current
Frame
Hallway Hallway Hallway Hallway Hallway Hallway
Localization OO O O OO O O O O O QUSD O O >0 O >0
Prediction Door Door Door Door Door Door
Office Office Office (O Office (O Office (O Office
Fig. 6: GLN predictions over time. See the text for more details.
Area ID cf fd tr t s There is also room for improvement in the navigation
1 (Seen) 913 (438) 982 (54) 929 (56) 885 (61) 250 (4) success rate (Table I). GTL struggles in certain cases such as
g (geen) gig (Zﬁ) gg; (gi) ggé (575? ggg (Sg) 512% (‘g large open spaces, which are prevalent in areas 1, 3, 4, and 6.
(Seen) 3 (418) 269 ) 785 O 1n these spaces, the robot may fail to orient itself correctly and
3 (Unseen) 961 (228) 97.0 33) 982(54) 921(63) 7504 walk into a corner or deviate from the correct path. Recovery
4 (Unseen)  95.7 (376) 87.5(32) 8L1(74) 92.5(67) -(®  is difficult because the clutter prevents the agent from having

TABLE II: Average behavior success rate for the GTL model.
Number of attempts for each behavior is in parentheses.

trajectories ranging from 20 m to 32 m. On the right is a failure
case in which the robot navigated most of the 26 meter-long
trajectory but deviated from the path towards the end.

B. Performance of the Behavior Networks

Qualitatively, we observe that the behavior networks used
in our approach succeed in their assigned task (e.g., follow
a corridor) while being robust to collisions with walls and
clutter, especially in structured areas. We refer the reader to
the supplementary material for more qualitative examples. We
verify our observations quantitatively using the GTL baseline,
which uses our behavior networks for motion control along
with our annotation tool for localization. As can be seen in
Table II, the per-behavior success rates, we observe results
generally above 80% and even 90%, indicating robustness in
both seen and unseen environments.

C. Limitations

Although our approach significantly outperforms the base-
lines, there are a few limitations. First, our topological maps
were manually annotated and the behaviors were pre-defined.
These manual processes limit the scalability of our setup,
and the behaviors may not be optimal for navigating in all
environments, such as environments with multi-door rooms. In
the future, it would be interesting to investigate mechanisms to
define topological maps and behaviors in a data-driven fashion.

a direct line-of-sight to the room exit and because the depth
camera has a maximum depth 3.5 m.

A second source of error comes from imperfect localization
and therefore imprecise behavior transition timing. When this
happens, the agent either (1) selects the wrong behavior, or
(2) transitions behaviors slightly too early or too late, causing
the robot to deviate from the intended path especially since
the agent does not anticipate its next behavior.

VIII. CONCLUSION

We introduced an effective topological map design for
behavioral navigation and, to the best of our knowledge, are
the first to propose graph neural networks for robot local-
ization. We tested our proposed approach using Gibson and
provide an open-source testbed for benchmarking navigation in
complex, human environments. Our results show the potential
of combining DL with classical robotics, and we hope that our
work inspires further research in visual navigation.
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